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ABSTRACT. We enrich the category Frm of frames and frame homomorphisms
with the important concept of approximation by specifying a full subcategory of
linear FS-frames. We show that this subcategory is equivalent with the subcat-
cgory of linear FS-domains via the standard Stone duality. The Stone duality
for sober spaces tells us that a distributive continuous lattice, i.e., a continuous
frame can be viewed as the lattice of open sets of a locally compact space. The
Stone duals of linear FS-domains considered as topological spaces, LF5-frames,
may be replaced by their suitably taken distributive sublattices with an addi-
tional relation of approximation, thus discarding with infinitary operations. This
is intended as a step towards the development of a domain theory in logical form
beyond the standard algebraic world. Moreover, since any linear FS-frame is stably
continuous and supercontinuous, we can characterize the full category of stably
continuous supercontinuous frames to be equivalent to the subcategory of stable
prelocales (distributive lattices with an approximation relation and stable ap-
proximable relations between them). Similarly, we may introduce the notion of
a linear FS-preframe in the setting of the category of preframes and preframe
homomorphisms. We can show that the category of linear FS-preframes is self-
dual, and that any linear FS-preframe is a stably continuous complete lattice. A
characterization of algebraic LFS-frames is given. The Stone duality in terms of
abstract A-semilattice bases is established.
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1. Introduction

In recent years, a new class of objects of Domain Theory — now commonly
referred to as “FS-domains” — was extensively studied ([13], [1] and [2]) together
with its counterparts in the categories of \/-semilattices ([8], [9]) and Scott
domains ([10]).

The present paper is an investigation on this subject in the category of
frames and in the category of preframes. A good source of information about
frames and domains are the classic text by Johnstone [12] and the book by
Abramsky and Jung [2], where the interested reader can find unexplained
terms and notation concerning the subject. Our terminology and notation agree
with the book of Johnstone [12].

In Sections 2 and 5, we summarize some well-known results for supercon-
tinuous frames and preframes. Section 3 is devoted to the study of the Stone
duality for LFS-domains. We enrich the category Frm of frames and frame ho-
momorphisms with the important concept of approximation by specifying a full
subcategory of linear FS-frames. We show that this subcategory is equivalent
with the subcategory of linear F'S-domains via the standard Stone duality.

The Stone duals of linear FS-domains considered as topological spaces.
LFS-frames, may be replaced by their suitably taken distributive sublattices
with an additional relation of approximation, thus discarding with infinitary
operations. This approach is studied in Section 4. It is intended as a step to-
wards the development of a domain theory in logical form beyond the standard
algebraic world. Moreover, since any linear FS-frame is stably continuous and
supercontinuous, we can characterize the full subcategory of stably continuous
supercontinuous frames to be equivalent to the subcategory of stable prelocales
(distributive lattices with an approximation relation and stable approximable
relations between them).

In Section 6, we investigate the category of LFS-preframes. We show that it
is selfdual and give some sufficient characteristics of the LFS-property for pre-
frames. The Stone duality in terms of abstract A-semilattice bases is established.

Now, we begin by stating the definitions and basic properties of them. most
of them well-known, which will be needed in the remainder of the article.

A poset [ in which every directed subset has a supremum we call a directed-
complete partial order, or depo for short. We write directed suprema as || r,
Let D and E be dcpo’s. A function f: D — E is (Scott-) continuous if it is
monotone, and if for each directed subset A of D we have f(| ' A) =" f(A).

Let 2 and y be clements of a depo D. We say that x approrimates y if for
all directed subsets A of D, y < ||l A implies 2 < a for some a € 1. This
concept arose in the theory of continuous lattices ([6]), but it is also present in
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many arguments from topology and analysis, though not always fully explicit.
We say that x is compact if it approximates itself.

We introduce the following notation for z,y € D and A C D:
T Ky <= r approximates y,
le={yeD| y<a},
fz={yeD| z <y},

fa=J1a,

acEA
K(D)={z € D| = compact}.

The relation < is traditionally called “way-below relation”.

Now, we observe the following basic properties of approximation. Let D be
a dcpo. Then the following is true for all z,z',y,y' € D:

. o<y = z<y;
2 d'<rxy<y = <y

We say that a subset B of a dcpo D is a basis for D if for every element z
of D the set B, = | £ N B contains a directed subset with supremum z. We
call elements of B, approximants to = relative to B.

A dcpo is called continuous or a continuous domain if it has a basis. It is
called algebraic or an algebraic domain if it has a basis of compact elements.

Let D be a continuous domain, and let M C D be a finite set each of
whose clements approximates y. Then there exists y’ € D such that M < ¢/
< y holds. If B is a basis for D, then 3’ may be chosen from B. We say, v’
interpolates between M and y.

Let D be a dcpo. A subset A is called (Scott-) closed if it is a lower set and is
closed under suprema of directed subsets. Complements of closed sets are called
(Scolt-) open; they are the elements of o, the Scott-topology on D.

A Scott-open set O is necessarily an upper set such that every directed set
whose supremum lies in O has a non-empty intersection with O.

We have for a dcpo D:

1. For elements «,y € D the following are equivalent:
(a) z <wy.
(b) Every Scott-open set which contains x also contains y.

(c) z € Cl({y}).
2. The Scott-topology satisfies the T separation axiom.
3. (D,op,) is a Hausdorff (= T,) topological space if and only if the order
on D is trivial.

So we can reconstruct the order between elements of a dcpo from the Scott-
topology. The same is true for limits of directed sets.
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For dcpo’s D and FE, a function f from D to FE is Scott-continuous if and

only if it is topologically continuous with respect to the Scott-topologies on D
and FE.

Let D beadcpoand f: D — D be a Scott-continuous function. We say that
[ is finitely separated from the identity on D if there exists a finite set A/ such
that for any = € D there is m € M with f(x) < m < a. We speak of strony
separation if for each x there are elements m,m’ € M with f(r) < m < m’

-
<x.

A pointed depo D (a depo with a bottom element) is called an FS-domain if
there is a directed collection (f;),.; of continuous functions on . each finitely
separated from id;,, with the identity map as their supremumn.

[t is relatively easy to see that FS-domains are indeed continuous. Thus it
makes sense to speak of FS as the full subeategory of CONT . the category of
continuous domains, where the objects are the FS-domains. The category FS
is closed under the formation of products, retracts and function spaces. It is
cartesian closed.

Let us turn to the category of frames. A frame (or locale) is a complete
lattice L in which z A\ z, = V2 Az, for binary meet A. arbitrary join \/.
and any z,z, € L, and a frame homomorphism h: L — M is a map between
frames preserving finite meets, including the top element 1 and arbitrary joins.
including the bottom element 0. The resulting category is denoted Frm. A
frame L is called spatial if for every a,b € L, a £ b implies there is a frane
morphism (point) p: L — 2 such that p(a) =1 and p(b) = 0: here 2 is the two-
clement Boolean algebra. Recall that the set pt L of all points can be equipped
with the topology such that open sets are of the form {p e ptl: pla) =1
for some a € L} . Spaces isomorphic to a space of this form are called sober. i.c..
a sober space is defined as one which can be recovered from its lattice of opens in
Stone duality. Moreover, continuous domains equipped with the Scott-topology
are sober spaces. Now, let p be a point of L, g: K — L a frame homomorphismn.
Then ptg(p) = pog is a point of K and ptg is a continuous map from pt L
to pt K. Note that, for each topological space X, we have a frame Q(.X') of all
open subsets of X and, for each continuous map f: X — Y. we have a fraimne
homomorphism Qf = f~!: QY — QX . Then the functors €2 and pt restrict to
a dual equivalence between CONT and the category of completely distributive
lattices.

Let L be a frame, K C L. We shall say that K is a subframe of L if K is
closed wrt. arbitrary suprema and finite infima. Especially, 0,1 € KA. A frame
L is said to be compact if 1 is a compact element of L.
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2. Supercontinuous frames

DEFINITION 2.1. For a complete lattice L define a relation < totally bellow
on L by

rxy if VACL (y <VA = 3JaeA z <a).
Call L supercontinuous if for every x € L, x = \/{y | y << z} holds.

We shall call an element a € L supercompact if a <€ a. The set of all
supercompact elements of L will be denoted by SK(L). Call L superalgebraic
if forevery z€ L, 2z =\{y<z| y <y} holds.

We say that a subset B of a complete lattice D is a basis for D if for every
clement z of D theset B, = {y € D: y <« 2} N B contains a subset with
supremum . We call elements of B, total approzimants to x relative to B.

Recall that any superalgebraic lattice is supercontinuous.

THEOREM 2.2. Let L be a complete lattice. Then the following conditions are
cquivalent:

l. L is \/ \-embeddable into a powerset Boolean algebra B.

2. L is a superalgebraic lattice.

3. L°P is a superalgebraic lattice.

Proof.

(1) = (2): We assume that there is an embedding e : L < 2M = B that
preserves arbitrary joins and meets. So we have a left adjoint ¢: B — L which
preserves arbitrary joins. For each atom {m} of B, m € M, we show that
the element ¢,, = ¢({m}) is supercompact in L. Notice that ¢, = A{z € L :
{m} Ce(r)}. Assume 0 # S C L, ¢, <\/S.Then {m} <e(c,,) < \e(9),ie.,
there is s € S such that {m} <e(c, ) < e(s). By an elementary computation,
we can verify that the set {c,,},,cp is \/-dense in L.

(2) = (1): Put B =29, where S is the set of all nonzero supercompact
clements of L, and define a map e: L — B by the prescription e(a) = {¢ € S :
¢ < a}. Obviously, e is injective, preserves arbitrary meets and the bottom
clement. We show that it preserves arbitrary nonempty joins. Namely, for ¢ € S
\V ai) < c<a, forsomeiye€l <= cc |Je(a)).
el el
(1) <= (3): By the duality argument. O

we have ¢ € (‘(

COROLLARY 2.3. Let L be a complete lattice. L is superalgebraic if and only
if it is isomorphic to the lattice D(P) of all down-sets of some poset P .

Proof.

= : We put P to be the poset of all nonzero supercompact elements.

<= : Clearly, the supercompact clements are exactly the principal ideals.
The rest is evident. O
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COROLLARY 2.4. FEvery superalgebraic lattice is a spatial frame.

THEOREM 2.5. Let L be a complete lattice. The following conditions are equinv-
alent:

1. L is a \/ \-image of a superalgebraic lattice.

2. L 1s supercontinuous.

3. L°P 1is supercontinuous.

Proof.

(1) = (2): Let f: S — L be a \/ A-homomorphism of a superalgebraic
lattice S onto L. Then f has a right adjoint u and a left adjoint [, i.e., for each
x € L we have u(z) = \/{s € S: f(s) =z}, l(x) = N\{s € S: f(s)=u}.
fou(z) ==z and fol(z) =z. Denote C, :={c€S: c<l(x) and ¢ < c}.
We show that f(c) <€ = holds for each ¢ € C,. Suppose = < \/ r,. Since

il
fl@) A Voulzy) = f(l(z)) AV flu(z;)) = AV a, =, we have ¢ <
i€l i€l i€l
l(z) < V u(z,;), and, by the supercompactness of ¢, we obtain ¢ < u(x;) for an

iel
element j € I. But then f(c¢) < f(u(xj)) = z;. Consequently, f(c) << r. Now

v = FU(@) = F(VC.) = VEF(e): c€C, ).

(2) = (1): Take \/: D(L) — L assigning to each down-set its join.
D(L) is superalgebraic, and \7 is a \/ A-homomorphism. Indeed. \7( U X,> =

el
V \~/(Xi), and, for all j € I, {c e A \~/(Xl)} C X, which immediately
i€l iel
vields V/( 1) X,) = A V(X)).
iel i€l
(1) <= (3): By the duality argument. 0

We recall the following lemma.

LEMMA 2.6. Let L be a supercontinuous lattice, e: L — L an idempotent
\/ -preserving mapping. Then e(L) is a supercontinuous lattice.

1

Proof. It follows from [12; Chapter VII, Lemma 2.3]. O

THEOREM 2.7. A complete lattice L is supercontinuous if and only if it is
retract of a superalgebraic lattice by \/-preserving maps.

Proof.

= : Let L be a supercontinuous lattice, D(L) the lattice of its down-sets.
Then the mappings \7: D(L) — L and t: L — D(L) defined by the prescription
t(a) ={z: z <« a} for all a € L are \/-preserving, id, = Vot.

<= : The converse direction follows from the lemma and the fact that any
superalgebraic lattice is supercontinuous. 0
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COROLLARY 2.8. A complete lattice L is supercontinuous if and only if it is
a retract of a powerset Boolean algebra by \/-preserving maps.

Recall that, in the presence of the Axiom of Choice, supercontinuous lattices
are exactly completely distributive lattices.

THEOREM 2.9. A complete lattice L is supercontinuous if and only if for any
diagram

L
lf
A—1sC

of \/-preserving mappings between complete lattices such that there is an order-
preserving map s: C — A, id, = qo s, we have a \/-preserving morphisms
g: L — A such that go g = f, i.e., the following diagram commutes.

L
7
A—1sC

C

f

Proof.
= : Let L be a supercontinuous lattice. We put g(b) = \/{s o f(z) :
r € {(b)}. We show that g is \/-preserving. Let X C L. We put ¥ = J{t(z) :
€ X} Then g(V.X) = g(VY) = V{sofly): ye¥}=V Vi{so/(y):
z€

y € f(;r)} =V g(X). The rest is evident.

<= : We have a \/-preserving map \7: D(L) — L, and since the map
d: L. - D(L), d(a) = {z € L : x < a} for all a € L, is an order preserv-
ing map with id, = \7 od, there is a \/-preserving map g: L — D(L) such that
id, = \7 o ¢g. The rest follows from Theorem 2.7. O

3. Linear FS-frames

DEFINITION 3.1. Let C be a subcategory of the category of dcpos and Scott-
continuous mappings between them. An object A of C is said to be an LFS-object
if id , = |]" D for some directed set D of C-morphisms from A to A such that
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every d € D is finitely separated from id 4, i.e., there is a finite subset M, CC
such that for all a € A there is m, € M, with d(a) < m, < a. We shall denote.
for all objects A, B from C, C(A, B) the poset of all C-morphisms from 1
to B.

Recall that FS-domains are LFS-objects in the category of depos and Scott-
continuous mappings, FS-lattices are LFS-objects in the category of complete
lattices and suprema-preserving mappings, and FS-frames are LES-objects in
the category Frm of frames. Evidently, any LFS-object in C is an FS-domain.
We can then use all known corresponding results on FS-domains. Notice that.
for all depos A, B, [A — B] is the dcpo of all Scott-continuous mappings
from A to B, for all complete lattices A, B, A— B is the complete lattice
of all suprema-preserving mappings from A to B, and, for all frames 4. B,
Frm(A, B) is the depo of all frame morphisms from A to B.

[f inoreover any object A of C is a distributive lattice, we may assume that
the corresponding finite subset M, CC A is a finite 0 - 1 sublattice of A. and
the element m is the least one suc h that d(a) < m, <a.

Let us recall the following proposition from [8]:

LEMMA 3.2. Let A be a depo. Then:
1. If f €[A— A] is finitely separated from id A, then v < f(y) implics
rLy.
2. If A is an FS-domain, then x < y implies x < f(y) for some [ in
[A — A] finitely separated from id A;
3. in particular, every FS-domain is continuous.

We shall prove the following easy observation:

LEMMA 3.3. Let A be an LFS-object. Then id , = L' D for some dirccted sct
D of C-morphisms from A to A such that for all d € D there is a finite subset
M, CC A such that for all a € A there 1s m, € M, with d(a) < m < «.

Proof. Recall that id, = | |' € for some directed set & of C-morphisms
from A to A such that all d € £ are finitely separated from the identity. Then
we have that for all d € £ there is a finite subset N, CC A such that for all
a € A thereis n, € N, with d(a) <n, <a and

id, =id,-id, =g - &
L doe=|d-d= L d* =] d*.

d.ec€& deE& de& de&E

So we have that dz( ) < ( )< n, <a,ie, d*(a) < d?(n,) <dn,) <
n, < a. We put then D = {d*: d €&}, M, = {(l(n) cmeN, . de&. O
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DEFINITION 3.4. An element p in a lattice A is called V-prime if for all
roy € A with p < o Vvy we must have p < z or p < y. We shall denote by
Sp(A4) the poset of V-primes of A. We shall say that a complete lattice has
cenough V-primes if any its element is a supremum of V-primes below it.

PROPOSITION 3.5. Let A be a complete lattice. Then the following conditions
are equivalent:

L. A is a distributive LFS-lattice.

2. A is supercontinuous.

Proof.

(1) = (2): Let 0 # a € A. We know that d(a) < a for each d € D.
Morcover, there is a finite sublattice M,; CC A and an element /m_  such that
d(a) <m, <a, a,, is the infimum of all such elements in M. Let = € Sp(M ),
0 # . <a, . Then r < a. Namely, let X C A, a < \/X. We may assume
that X < [(a). Then d(a) <d(V X) =V d(y) < V m, < a for some finite

yeX yEXo
subset X, €C X. Then z < q,, < \ m,, ie, there is y € X such that
yeXo

£ < m, <uy.
We hmo that a = \ d(a) <\{z€Sp(M,): deD, z<m,} <a.
deD
(2) = (1): Weput &€ ={M CC A: M is a finite distributive sublattice
of A} and for all M € £ we shall define a map d,;: A — A as follows

dy(a \/{m eEM: m K a}

for all a € A. We put D = {d,, : M € £}. Then evidently each d,, is finitely
scparated from the identity, it preserves arbitrary suprema, D is directed and
L' d=1id,. a
deD

PROPOSITION 3.6. Let A be a distributive LFS-lattice, a € A compact, i.e.,
there is d € D such that d(a) = a. Then there is a finite subset F, of super-
compact elements of A such that a =\/ F,.

Proof. If a =0, we put F, = 0. Now, let 0 #a € A, a = \{z e A:
r < a} = \/t(a). By compactness, there is an element d € D such that d(a) = a
and a = \{d(z) € A: z €t(a)},ie, a= V{m € Sp(M,) : m € t(a)}, and
there is a minimal ﬁnite subset Fy C {m € Sp(M,) : m € t(a)} such that
a = \/FO = \/d(F,). We have that for each x € F,, there is y(x) € F|, such
that o < d(y(a )) S y(r), ie, z = d(y(z)) = y(« ), z is compact and
e My or =m, . Let 2 <uVwv. Then z < d(u) vV d(U) <m, Vm,, ie,
r=m,suorr<=m <wv, ie, x € Sp(A),ie., T is supercompact O

b
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COROLLARY 3.7. Let A be an algebraic supercontinuous lattice. Then A is
superalgebraic.

LEMMA 3.8. Let A and B be LFS-frames. Then:
(i) the poset Frm(A, B) is an FS-domain,
) A B is a linear FS-frame,
(iii) A s bicontinuous,
) assuming the Azxiom of Choice, A has enough coprimes,
) A is stably continuous, i.e., A is compact, and a < b, a < ¢ implies

a<<bAc,
(vi) assuming the Aziom of Choice, A is linked, i.e., the Lawson topologies

on A and A°P? coincide.

Proof.

(1): The proof follows the proof of Lemma 5 in [8]. We have: let D C
Frm(A,A) and € C Frm(B,B) be directed sets with UD = id.A and
JE = id B such that all f € D and g € &£ are finitely separated from
the respective identities. If ]\[f, respectively ]\Ig, is a finite set separating
f € D from id A, respectively g € £ from id B, we are done if (f—g).
where f—g = A .goho f: Frm(A,B) — Frm(A, B), is separated from
id g, (a,p) by some finite set: then idg,na.8) = lj{(f~og)“) | feD. ge&}
as composition of frame morphisms is again a morphism of frames. We define
an equivalence relation ~ on Frm(A4, B) by

hy~hy, &= VYmeM; Tg(h,(m))NM,=T1g(hy(m)) A, . (1]

As M, and M are finite, there are only finitely many equivalence classes on
Frm(A, B). Let M be a non-redundant and complete set of representatives of
these classes. We claim that the finite set f—o g(M) separates (f —g)? from
id, . Given h € Frm(A,B), let h be the corresponding representative in
M. For a € A, we compute

h(a) = h(m;) for sorne m, € M, with f(a) <m, <a.
>m, for some m, € ]\[g with g(h(mf)) <m, < h(mv/-) .
> g(fvz(mf)) as g(h(mf)) <m, and h~ h,

v

g(h(f(a))) as fla) <m,.

By symmetry, we obtain i > (f —og)(h), so h > f—og(h) > (f -~ g)*(h).

(ii): Let D C Frm(A,A) and € C Frm(B.B) be directed sets with
LI'D = id, and L]'E = id,; such that all f € D and ¢ € & arce finitely
separated from the respective identities. We put G = {f * ¢ + [ € D.
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g€ &Y C Frm(A®B,A®B). Then | |'G =id 4. Forall f € D and g € £ we
put Nyoo={meén: me M;, ne M}, andlet M,  be the finite subframe
generated by Nf@g. It is easy to see that MfEBg separates f @ g from id . .
(iii): It follows from 3.5 and 2.5.
(iv): Assuming the Axiom of Choice the proposition follows from (iii).
(v): Wehave 1 = f(1) < 1 forall f € D,ie., Aiscompact. Let a < b and
a < ¢. Then there are f,g € D such that a < f(b), a < g(c). Then there is
h € D such that a < h(b), a < h(c), i.e.,, a < h(b) Ah(c) =h(bAc) < bAc.
(vi): Tt follows from Lemma 5 in [8]. O

COROLLARY 3.9. Let A be an algebraic LFS-frame. Then A is superalgebraic
and coherent.

So we may for any compact supercontinuous frame A define a set A
of maximal supercompact elements. Recall that A
Sp(A)n | A, . Moreover, in any LFS-frame A, there is a finite sublattice of
compact elements of A containing A, such that it is generated as a join
semilattice by a finite subset of supercompact elements. Let us derote this finite
subframe of A as T'(A).

scm

sem 18 finite and Sp(A4) =

PROPOSITION 3.10. Let A be a stably continuous frame, B be a continuous
frame, and the dual B+ be a frame. Let F C Frm(A, B) be a filtered family of
frame morphisms. Then the infimum of F in Frm(A, B) equals the infimum of
Iin A— B.

Proof. The description of infima in [A — B] is well known (see [13]).
If £ C Frm(A,B) is given, then g := XAa. A! f(a): A — B is monotone,
feF
50 ¢° == da. U g(b): A — B is the greatest Scott-continuous function on A
bka
below g; therefore, ¢g¢ is the infimum of F' in [A — B]. Moreover, we have that

g(0) = 0, g(1) = 1, g preserves finite infima and finite suprema. Namely, let
a,be A. Then

gla) Ag(b) = N fla) A N\ F(b) =f/€\ipf(aAb) =g(anb).

fEF fer

Similarly, using the fact that F is filtered and B+ is a frame, we have

gla)Vg(b) = Al fla)v Al h(b) = N d(aVvb)=g(aVb).
feF heF deF
We obtain that ¢g°(0) =0, ¢°(1) =1 (1 <« 1) and ¢° is monotone.
Now, we show that ¢g°: A — B is in A— B if the function ¢g: A — B
preserves finite suprema: Since ¢¢ is the infimum of F in [A — 8], and since
A— B is a subset of [A — B], we are done if ¢g° preserves finite suprema.
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yiven x € g(aVvb) = U g(y), we have < g(y) for some y < aVb.

y<Lavb

set {a’ Vb | d < a and V < b} is directed in A with supremum a V b.
y <a' Vb for some o’ < a and b’ < b. Then, = < g(y) < g(a’ V'): the ]attu
equals g(a’) V g(b') by assumption, and it is a lower bound of g“(a) v ¢“(b).
Hence, ¢°(aV b) = ¢g°(a) V ¢g°(b) as B is continuous.
Let us show that g¢g° preserves finite infima. We easily have g“(a A b) <
g (a)Ag(b). Let u < g°(a)Ag(b). Then there are «’ < a and b' < b such that
u < gla)ngd) = gla AbY) and o’ AV < aAb. Then u < gla' AV) < gland).
e, g(anb) =g(a)Ag° (b) O

COROLLARY 3.11. Let A be a stably continuous frame. I = pt A bc a depo
of points of A. Then P has all filtered infirna.

Proof. Let F¥ C P be a filtered subset. We may assume that I C
Frm(A,2), and 2 evidently satisfies assumptions from 3.10. Then there is
an element p € Frm(A,2) such that p= Al g¢. .

ger
PROPOSITION 3.12. Let A be a linear FS-frame. Then the poset Pt(A) of
all points of A (prime elements) is an FS-domain.

Proof. It follows immediately from 3.8 (i) applied on B = 2. We shall
show how the way from LFS-frames to LFS-domains may be realized directly.
Let Pt(A) be the set of all prime elements of A equipped with the reverse
ordering. Recall that, for any frame map f: A — A, we shall define a Scott-
continuous map Pt(f): Pt(A) — Pt(A) as follows:

Pt(f)(p) =\/{yv € A: fly) <p} =1

Evidently, Pt(f)(p) is a prime element of A. Recall that if f is finitely sepa-
rated from id A by M in the category of \/-lattices, then f* is finitely separated
from id ;. by the set f*(M). By 3.3, we know that f*(p) < ., f"(m) < ., p.
Let us take the set D as in 3.3. We have that d*(a) < d(n,) < n, < «
for all d € D, a € A, and for suitable elements n, € N,. This implies
d(p) < n, < d*(n,) < d*(p). Applying d* again we obtain p < d*(d(p)) <
d*(n,) < d*(d*(np)) < d*(d*(p)). Observe that d*(d*(n,)) <, d*(n,) =
/\{q e Pt(L) : ¢ > d*(np)}, Then there is a finite subset A, = such that
M,, CC {gePt(L): ¢ > d*(np)} and d*(d*(n ) < _,),, A 1(,[, his im-
plies AM, < d (d*(np)) < d*(d*(p)), ie, p < 4y, < < d*(d*(p)) for some
44, € M,,. So we have, for all n,, a prlme eleme nt qy,p+ 100 we may put
Py ={q4,: n, € N} Evidently, this subset finitely separates Pt(d?) = (d%)"
from the identity in Pt(A). U
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PROPOSITION 3.13. Let A be an FS-domain. Then the lattice o(A) of all
Scott-open subsets of A is a linear FS-frame.

Proof. Let A be an FS-domain, and let D C [A — A] be the directed
system of | |'-preserving maps which are finitely separated from the identity
id, on A. Let f € D, and let ]\[f be the corresponding finite subset of A. We
shall show that f~! is finitely separated from the identity id,(4) on o(A).

ledently, f! is a frame morphisms. For each a € A we put m(a) =
U{ fm: mebM,, Iy a< fly) < m}. We have m(a) C T a. Now, let
ye f! (T a,). Then there is z € A such that z < y and z € j'_l(T a), ic.,
f(z) € T a. Then there is an element m € ]\fo such that a < f(z) f§ m<z<Ky,
ie.ye TmCmla ). We have, for all a € A, that f‘l(T ) C fa.

Now, let U be a Scott-open subset of A. We put m(U) = {T m: me M,

Jaell Jy a < f(y) <m},ie, m(U) =U{m(a): ac U} We have [~ (U) g
m(U)CU,ie., f~ 1 is finitely separdted from the identity. Here we put M, , =
{m(U): Ue O'(A)}.

Recall that f < g if and only if f~' Cg~', ie, theset C={f"': fe D}
is a directed subset of Frm(A, A). We have to prove that, for all a € A, T a =
L' /7 '(Ta). Namely, let y € a, ie., thereis f € D and z € A such that
fep

a << fly) <y, le, y€ f_l(T a) for some f E D. We have that, for all
Scott-open subsets U of A, U = [|I f1(U),ie, id, 4 = |_|T . O
fep

THEOREM 3.14. (STONE DUALITY FOR FS-DOMAINS) Tle functors
and pt restrict to a dual equivalence between the category of FS-domains and
the category of LFS-frames.

Proof. Apply 3.12, 3.13 and [2; Theorem 7.2.28]. O

PROPOSITION 3.15. (STONE DUALITY FOR ALGEBRAIC FS-DOMAINS)
The functors € and pt restrict to a dual equivalence between the category of
algebraic FS-domains and the category of algebraic LFS-frames.

Proof. Apply 3.14 and the fact that a domain is algebraic if and only if
its lattice of Scott-open subsets is algebraic. o

So we have the following interesting fact.
PROPOSITION 3.16. Let A be a FS-domain. Then A has all filtered infima.

Proof. We put L = o(A). Apply 3.11 on L (by 3.8, we know that L is
stably continuous). g
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LEMMA 3.17. Let A be a frame, a € A. Then:

(i) if A is a continuous frame, then |(a) is continuous,
(i) if A is a continuous frame, then T(a) is continuous,
(i) of A is an algebraic frame, then |(a) is algebraic,
(iv) if A is an algebraic frame, then 1(a) is algebraic,
(v) if A is a linear FS-frame and a is a compact element, then |(a) is a
linear FS-frame,
(vi) if A is a linear FS-frame, then 1(a) is a linear FS-frame.

Proof.
(i—1iv): It is trivial.

(v): Let @ be a compact element, D be the corresponding directed set of
frame morphisms which are finitely separated from the identity id , on A and
id, = LIT’D. Then there is, by compactness of a, an element g € D with
a = g(a). We put £ = {f eD: f> g}. Evidently, id, = || €. We define
H = {h € Frm(l(a), |(a)) : h = fll(a)’ [ € &} Evidently, H is a directed
set of frame morphisms finitely separated from idl(u)' Namelv, anv h € H
is well-defined, preserves arbitrary suprema and finite infima, and h(0) = 0.
h(lua)) =fla)=a=1, forany f€D. Weput M, ={me M= m< al.
and let = € [(a). Then there is m € M such that h(x) = f(r) <m <. <a.
i.e.. there is m € M, such that h(x) <m <.

It remains to show that id“u) = | ' H. We have, for all v € [(a). &+ =

LI" f(z)= IJ' h(x),ie., [(a) is a linear FS-frame.
fe& he™H

(vi): Let a € A, D be the corresponding directed set of frame morphisms
which are finitely separated from the identity id, on A and id, = L' D. We
define H = {h € Frm(1(a).1(a)) : h = flT(a) Va, f€D}. Evidently. H
is a directed set of frame morphisms finitely separated from id,,,. Namely.
any h € H is well-defined, preserves arbitrary suprema and finite infima and
h(()r(a)) =fa)Va=a= 01(a): h(ll(u)) = f(1)va=1, forsome feé€.
We put M, = {n €l(a): n=mVa, me ]\[f}, and let = € T(a). Then there

is m € M, such that h(z) = fiz)Va <mV <xzVa=uz,ie. thereis n €1/,
such that h(z) <n <z.

We show that id1(a) = ||"'H. We have, for all = € 1(a). r = L' flr) =
fee

L' fz)Va= U h(z), ie., 1(a) is a linear FS-frame. g
fe& heH
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4. Abstract bases and the Stone duality

First, let us recall some definitions from [2].

DEFINITION 4.1. An (abstract) basis is given by a set B together with a
transitive relation < on B, such that

z<x = JyebB 2 <y<=x (INT)
holds for all elements z,z € B.

Examples of abstract bases are concrete bases of continuous domains, of
course, where the relation < is the restriction of the order of approximation.
Axiom (INT) is satisfied because of the interpolation property of <. Similarly,
any basis in the sense of Definition 2.1 equipped with the relation << is an
abstract base.

Other examples are partially ordered sets, where (INT) is satisfied because of
reflexivity. We may identify posets as being exactly the bases of supercompact
clements of superalgebraic frames.

Note that a subset U C B is lower Scot-closed if

1. 2 €U, y<x implies y € U,
2. 2 € U implies there is y € U such that z < y (“roundness”).

DEFINITION 4.2. For a basis (B, <) let D(B) be the set of all lower Scott-
closed subsets ordered by inclusion. It is called the lower completion of B.
Furthermore, let i: B — D(B) denote the function which maps z € B to
|l ={y € B: y < z}. If we want to stress the relation with which B is
equipped, then we write D(B, <) for the lower completion.

Recall that, in the following, if we have both < and < on a set B, we shall
always understand by |(z) theset {y € B: y < x}.

PROPOSITION 4.3. Let (B, <) be an abstract basis.

1. The lower completion of B is a complete lattice.

2. A A" holds in D(B) if and only if there are * <y in B such that
ACi(x) Cily) C A",

3. A< A" holds in D(B) if and only if there are z; <y;, j =1,....n,

n n
in B such that A C | I(.TJ) cy i(yj) C A
Jj=1 Jj=1 |

1. D(B) is a supercontinuous frame and a basis of D(B) is given by i(B).
5. If < is reflexive, then D(B) is superalgebraic.
6. If (B, <) is a poset, then B, SK (D(B)) , and i(B) are all isomorphic.

Proofl. (1) holds because, clearly, the union of lower Scott-clesed sets is a
lower Scott-closed set. Roundness implies that every A € D(B) can be written as
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U | z. This proves (2), (3), and also (4). The fifth observation follows from the
€A

characterization of the order of approximation. The last part holds because of 2

and that there is only one basis of supercompact elements for a superalgebraic
frame. -

Our ‘completion’ has a weak universal property:

PROPOSITION 4.4. Let (B, <) be an abstract basis, and let D be a complete
lattice. For every monotone fmu tion f B — D there is a largest \/-preserving
morphism f: D(B) — D such that foi is below f. It is given by f(.

\ f(A). If the relation < is reflexive, then foi equals f. Morcover. if l) Is
frame, and f such that the following holds:

f@) = f(z) = Fa<y, 2=z fl0) = f(y) = f(2). (P

then there is a largest frame morphism f: D(B) — D such thal foi is below
[ given by the same formula as above.

Proof. Let us first check that f is a morphism of \/-semilattices ({rames).

Let (A;);c; bea collection of lower Scott-closed sets. We can calculate: f( \ A,j

- f(_gAi) =V{f@@)| = e U4, } = V(7@ | e ed} = V)
1 1 1€ S
Now, let A, B € D(B). Evidently, f(A4; N A,) C f(A)) N f(4,). Assume
a€ f(A))N f(A,). Then there are y € A, z € A, such that f(y) = j(w) =a.
L.e., there is # € B such that « < y, z < 2z, f(z) = f{y) = fiz
r €A NA,.
Since f is assumed to be monotone, f(z) is an upper bound for f(|r).
This proves that foi is below f. If, on the other hand, ¢: D(B3) — D
is another \/-semilattice (frame) morphism with this property. then we have

—g( U ta) =V g(le) =V alilr)) < V fla) = f(A).

TEA rzeEA reA
If < is a preorder, then we can show that foi = f: fli(r) = fr) =
VI(lz) = f(x). 0
Assume that B and B’ are two abstract bases, and f: B — B’ is a monotone

map.
By the extension of f to D(B), we mean the map i’ o f: D(B) — D(DB).
PROPOSITION 4.5. Let D be a supercontinuous frame with basis 3. i.c.. for

cvery element x of D the set B, = {y << «: y € D}YN B confains a subsct
with supremum. x .
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Viewing (B, <&) as an abstract basis, we have the following:

1. D(B) s isomorphic to D. The isomorphism o: D(B) — D is the ex-
tension € of the embedding of B into D . Its inverse 3 maps elements
reD toB,.

2. For every frame E and frame morphism f: D — FE such that g satisfies
(MP) we have f = go 3, where g is the restriction of f to B.

Proof. First, let us prove that (B, <) is an abstract basis. Evidently, the
relation < is transitive and we can always interpolate. Now, we have to check
the isomorphism. In a supercontinuous frame we have z = \/ B, for all elements,
so 00,3 = id,,. Composing the maps the other way round we need to see that
every ¢ € B which totally approximates \/ A, where A is an lower Scott-closed
set in (B, <), actually belongs to A. We interpolate: ¢ < d <« \/ A, and
using the defining property of the totally bellow property, we find a € A above
d. Therefore ¢ totally approximates a and belongs to A.

The calculation for (2) is straightforward:

1) =£(\V/ B.) =\ £(B,) = a(B,) = 3(8(x)

Let us introduce the morphisms between approximable bases.

DEFINITION 4.6. A relation R between abstract bases B and C is called
approximable relation if the following conditions are satisfied:

1. VeeB Vy,y'eC (zRy >y = zRy');

2. VeeB VyeC (zRy = (32€C zRz and z - y));

3. Va,2’eB VyeC (2’ = 2Ry = 2'Ry);

1. VreB YyeC (zRy = (3z€B = = zRy)).

Recall that it is well known that abstract bases and approximable relations
form a category with respect to composition of relations. We thken have the
following,.

THEOREM 4.7. The category of abstract bases and approximable relations
is cquivalent to SUPERCONT, the category of supercontinuous frames and

\/-preserving mappings.

Proof. Following 4.3 and 4.5, we have established the equivalence on the
corresponding objects. Now, let (B, <;), (B,,<,) be abstract bases, R C
I3, x I3, an approximable relation. Then we shall define a frame morphism

[ D(B,) — D(B,) as follows:
frU)={be B,: (JacU)(aRb)} .
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Evidently, f is correctly defined and f,(0) = 0. Let us prove that f,
preserves arbitrary nonempty suprema (unions). Evidently. f,, is monotone.

ie., U CV implies f,(U) C f,(V). Now, let b € fR< U U/‘) . Then there is an
JET

element a € |J UJ-, alh. So we can choose an index j, € J such that « € ('/ .
J€J

The rest is evident.

Now, let g: L, — L., be any \/-preserving function between supercontinuous
frames. Let (B, <,), (B,, <,) be the corresponding bases. We shall define R, <
I3, %< B,. We put aR? b if and only if there is an element u € L, such that u < a
and b <« g(u). Let us show that Ry is an approximable relation. It is enough to
check the property 2, the rest is easy. Let x € B, y € B, such that for .I'If!’g/.
ie, there is u € Ly such that v << = and y < g(u). Then evidently. since
13, is a base of L, there is an element w € B, such that v < w <+ and
y << g(w), i.e., by (INT), there is an element z € B, such that y << = << g(uw).

C

[n particular:

THEOREM 4.8. The category of preorders and approximable relations is equir-
alent to SUPERALG, the category of superalgebraic frames and \[-preserving
mappings.

Stone duality for stable prelocales.

First, we shall need some new notions.

DEFINITION 4.9. A stable prelocale (B, <,V,A,0.1) is given by a set B to-
gether with a transitive relation < on B and lattice operations v and A on 3.
least element 0 and largest elernent 1 with respect to the lattice ordering. such
that < is an abstract base on 3, and the following conditions are satisfied:

(LAT1) M <o == \JM <,
(LAT2) y <N => y < AN,
(LAT3) o <\ M = thercis M’ CC B such that

for all n € M’ there is m € M satisfving n < m. o < \/ 1",
(LAT4) <o<o<C <C <and [: B — 2" isan injective mapping.
(LATS)  (B.V.A.0.1) is a distributive lattice.
(LATG) <y =3 thereis M CC Sp(B) such that o < \/ M ~ y.

holds for all elements . y and finite subsets M. N of 3.
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DEFINITION 4.10. A relation R between stable prelocales B and C is called
stable approximable relation if the following conditions are satisfied:
1. YeeB Vy,y'eC (zRy -y = zRy');
2. YeeB VMCCC (Vye]\l xRy = there is an element z € C
such that zRz = \/ M);
3. Va,2'€B VyeC (2’ - zRy = 2'Ry);
1. YyeC VNCCB (V:CEN xRy = there is an element w € B
such that AN = wRy);
5. VxeB Vyel (mRy = there are subsets M = {m, : 1 € I} CCSp(B),
N ={n,: ielI} CCSp(C), m;Rn, forall iel
and x - \/M R\/N > y).

Ividently, any directed union of stable approximable relations is a stable
approximable relation. Similarly as in [1] for domain prelocales we shall show
that stable prelocales and stable approximable relations form a category.

PROPOSITION 4.11. Stable approxzimable relations are closed under composi-
tion.

Proof. Let R: A — B, S: B — C are stable approximable relations.
We shall show that R o S is again a stable approximable relation. Evidently,
the properties 1 and 3 are satisfied. Let us prove the condition 2. Let = € A,
M CC (', rRo SM. Then there is a subset N CC B, N = {rL y € M},
rin /Sl/ for all y € M. We can find an element z € B such that .TR7 =V N,
i.e.. zSy for all y € M. Again, we can find an element w € C such that
Ruw = \/ M and xRzSw. The condition 4 may be proved dually. Let us prove
the condition 5. Assume xRzSy. Then there are sets M, = {m} el } CC
Sp(A), N, = {n! : i e I,} CC Sp(B). miRn} for all i € I, and = -
VM, R\ N, > zand M, = {mf i j €L} CCSp(B), Ny={n?: jel,} CC
Sp(C). 71125'712 forall jel, and z>\/ M, S VN, > y.

Then for oach J € I, there is an index i; € I, such that m,] Rm bn ) le.,
m! Ro Sn . Evidently, then z =~ \V M| RoS \/N, - y, here M {m,-/
Je L}, O

[dentities with respect to this composition are given by
aid, b <= a>b.

So we may define a category StPre of stable prelocales and stable approx-
imable relations.

Now, let us describe the passage from a stable prelocale to a stably continuous
supercontinuous frame.
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PROPOSITION 4.12. Let B be a stable prelocale. Then, if we put Td(B) to
be the set of all lower Scott-closed subsets closed under finite suprema — the
Scott-closed ideals, Td(B) is a stably continuous supercontinuous frame.

Proof. Evidently, any intersection of Scott-closed ideals is a Scott-closed
ideal, i.e., Zd(B) is a complete lattice. So we may define a map \: D(I3) — D(13)
such that x(U) = {z € B: x < \/M, M CC U}. Evidently. \ is an
idempotent, extensive and order preserving map. We shall prove that (7)) ™
(V) = x(UnV). Let « € x(U) N (V). Then there arc finite sets M. N
M CCU, NCCV, suchthat @ <\/ M, r <\/N.Since B is distributive. we
have that M AN CUNV and 2 <\ M AN. Then x is a nucleus on D(13).
and its image is exactly the frame of Scott-closed ideals.

We shall prove that Zd(B) is a stably continuous supercontinuous frame.
Recall that by (LAT4) and roundness, any Scott-closed ideal [ satisfies 1 € [.
y < x implies y € I, and by (LAT3) and (LLAT6), any Scott-closed ideal [ is
a supremumn of all principal ideals | a, a € INSp(3). Let a € TN Sp(3. We
shall prove that | a Lz4p) 1.

First, note that \/ [ ={e <y V...y, : y, €1, ..., y, €1, . nell.
e
e, V I, = U{l(yl\/. Y)Yy € [ ooy, €I, . ne N} by the property

a€eA
(LAT1), (LAT2), (LAT4) and the definition of a Scott-closed ideal. Then we have
that a < Yy V.o.y,, e, a< Y, for some j,i.e., a € [”/ e Ja C I“, . So we
have proved that Zd(B) is supercontinuous. Let us prove the stable continuity.
Evidently, B = |1 is a compact clement of Zd(B). Recall that [ <, ./
if and only if I C |a C J for some element a € J. Now, let [, C | a & J

J

i=1,2. Then I, NI, C |a, N |a,=[(a, Na,) CJ, N.J, by (LAT2). Cl

PROPOSITION 4.13. Let L be a stable continuous supercontinuous frame.
Then, if we put B(L) = B to be the distributive sublattice of L generated by
Sp(L)., B(L) = (B,<) is a stable prelocale.

Proof. We know that any stably continuous supercontinuous frame is to-
tally bellow generated by its V-prime elements. We shall define on B a relation
< such that

r=py <= rLy.
Recall that < is transitive and satisfies the interpolation property (both is
evident).

Now, we shall prove that B is a stable prelocale. (LAT1) is satisfied by the
fact that the relation < preserves finite suprema, and (LAT2) holds trivially
by stable continuity. (LAT3) follows from the fact that the V-prime clements of
L form a basis for L. The fourth clause follows from the fact that < o <« o <
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C<kC<. (LAT5) and (LATS6) follow from the definition of B and the fact that
the V-prime elements form a basis of L. O

THEOREM 4.14. The category of stable prelocales and stable approzimable re-
lations is equivalent to STSUPERCONT, the category of stably continuous
supercontinuous frames and frame morphisms.

Proof. Let us show that our construction from 4.12 and 4.13 is functorial.

Now, let g: L, — L, be any frame morphism between stably continuous su-
percontinuous frames. Let (B(L,), <,), (B(L,), <) be the corresponding bases,
we put By = B(L,) and B, = B(L,). We shall define B(g) = R, C B, x B,.
We put aR b if and only 1f there is an element v € L; such that U << a and
b< g(u).

Let us show that Rg is a stable approximable relation.

1. We have u < a, and b < b < g(u) implies v < a and b/ < g(u),
ie., aRgb'.

2. If M is empty, we have always that 0 < ¢(0), 0 < z, i.e., for all zR,0>
\V M for all z € B;. Let us assume that M is nonempty, i.e., let z € B, such
that for all y € M we have zR oY) i.e., there are u, € L, such that u, Lz and
y < g(u,). Then evidently, by (INT) and (LAT1), there is an element w € B,
such that u, < w < z and y < g(w), i.e., again by (INT) there is an element
z € B, such that y K z K g(w) for all yeM Le, VM <z < g(w), zR,2.

3. Wehave u<Kz <Kz, y<g(u) implies u<<x y <K g(u),ie 'R y

4. If N is empty, we have always that y < g(1) =1 for every y € B27 ie.,
for all 1R y for all y € B,. Let us assume that N is nonempty, i.e., let y € B,
such that for all z € N we have zR y, i.e., there are u, € L, such that u, L
and y < g(u,). Then evidently, by stable continuity of L and L,, we have
that v = A{u, : z € N} K AN and y < g(u), ie., by (INT) and (LAT2)
there is an element w € B, such that u <K w K AN, ngy.

5. Let v <« z, y < g(u). Then there is a set N CC Sp(L,) such that
y < VN < g(u). Then there is, for all n € N, an element z, € Sp(L,) such
that n < g(2,,) and z, < v < «, i.e., there is an element w,, € Sp(L,) such
that z, <K w, < z, i.e, ananda:>>Vw s Vn>y.

Now let (Bl,—<1) (B2,-< ) be stable prelocales R C B, xB,, a stable

approximable relation. Then we shall define a frame morphlsm fr:Zd(B,) —
Zd(B,) as follows:

fr(U) =x({be B,: (3acU NSp(B,))(aRb)}).

Evidently, f5({0}) = {0} and fL(B,) = B, by the condition 5. Let us prove
that fp preserves arbitrary nonempty suprema. Evidently, fr is monotone, i.e.,

U C V implies fr(U) C fr(V). Now, let b € fR( V U) Then b < \"/L by
jeJ k=1
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such that for each b, there is an element a, € Sp(B;) N \/ U;, a;Rb; . Then

by V-primeness of a,, there is an element u, € U, such ‘chat a, < uy, ie.,
by, € fr(U,,)- This gives us that b < \/ b, € V fR(U)

We have to prove that fr(UNV) =fR(U)ﬂfR(V). Now, let y€ fr(U)Nfr(V).

m
Then b < \/ b} such that for each b} there is an element a} € Sp(B;)NU,
k=1

apRb},and b < l\—/l b? such that for each b7 there is an element a} € Sp(B;)NV,

a?Rb?. By the property 4, we have that ai A a?Rb; A b7 for all k,l. Applying
the property 5, we obtain finite subsets M,;;, = {m, : i € I,;} CC Sp(B,),
Ny, = {n, : i€ I;} €C Sp(B,), m;Rn, for all i € I,;, and a} A a} >
VM, R \/ N, = bi Ab}. Then evidently, M, CC U NV nSp(B,), ie,
N, CC frUNV),ie, b< Vb Ab; <V N,

Kyl k,l

It is easy to see that Zd(B(L)) = L. O

COROLLARY 4.15. The category of reflexive stable prelocales and stable ap-
prozimable relations is equivalent to STSUPERALG, the category of coherent
superalgebraic frames and frame morphisms.

Proof. Evidently, for a reflexive stable prelocale B, Zd(B) is a coherent
superalgebraic frame (I € SK(Zd(B)) if and only if I = |a for some a €
Sp(B)). The other direction is evident. i

DEFINITION. A stable approximable relation R C>5 on a stable prelocale
B is said to be finitely separated from the identity if there is a finite subset
M CC B such that aRb implies that we can find an element m € M such that
a>m>b.

A stable prelocale B is said to be an LFS-prelocale if > is a directed union
of stable approximable relations finitely separated from the identity.

THEOREM 4.17. The category of LFS-prelocales and stable approzimable re-
lations is equivalent to the category of LFS-frames and frame morphisms.

Proof. It follows immediately from the definitions and 4.14. a

COROLLARY 4.18. The category of reflexive LFS-prelocales and stable approz-
tmable relations is equivalent to the category of algebraic LFS-frames and frame
morphisms.
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5. The category of preframes

Recall that a preframe (see [3], [11]) is a partially ordered set A in which all
finitary infima and all directed suprema exist, and for any © € A and directed
subset D C A

sAL"D =] {zAt: teD}.

Note that a preframe need not have the smallest element although it has
a largest one, the infimum of the empty set. A preframe morphism is a map
between preframes preserving all finitary infima and all directed suprema. The
resulting category will be called PreFrm. Evidently, PreFrm is then a sub-
category of the category of decpos and Scott-continuous mappings and Frm is a
subcategory of PreFrm. An LFS-object in PreFrm is called an LFS-preframe.
Iovidently, any LES-preframe is an FS-domain.

For A, B € PreFrm,let A—e B bethe poset of all preframe maps f: A — B,
ordered pointwise. Define 1:= {1} and 1L :={0 <1} (L = 2).

LEMMA 5.1. The category PreFrm is closed under 1, 1 and —e .

Proof. Let A, B be objects in PreFrm. We know that A— B C
[4 — B, and the supremum s in [A — B] of a directed subset D of A— B
exists and is the pointwise one. We have to show that s preserves finite infima.
Lvidently, s(1) = 1. Now, let x,y € A. Then

s(x)yAs(y) = | d@)A L] e(y) = LT d(z Ay) =s(z hy)
deD ecD deD

by the preframe distributive law and the directness of D. The function Az .1 ,:
A — B is the top of A— B. Now. let f,g € A— B. Then evidently f A g

preserves finite infima, and we have
(FAgUrs) = s)Agd s) = F(S) Al g(5)
= U fs)Agt) =U"(F A g)(S),

seSteS

e, fAgEe A— B Finally, 1T and L are preframes. |
The following propositions are well known (see [3], [11}).

LEMMA 5.2. The category PreFrm has arbitrary products and coproducts.

Proof. Evidently, a cartesian product of a system of preframes is a pre-

frame as well. Let (A;);.; be any family of preframes, A C I[IA,» a subset
S

consisting of all those a = (a;),.; whose support spt(a) = {t € [ : a; < 1,}.

I, the top element of A, is finite. A is closed under finite infime and directed
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suprema in [[ A, and hence a subpreframe of the latter. We have preframe
el
maps k;: A, — A defined by

x if g =1,
hie), = {

11. otherwise ,

and it is easy to see that they are the coproduct injections. 0
COROLLARY 5.3. Finite products and finite coproducts coincide in PreFrm .

LEMMA 5.4.
1. The forgetful functor from PreFrm to Set has a left adjoint. Morcocer.
the monadic length of the adjunction is 2.
2. The free preframe over a meet-semilattice S is the ideal completion

1d1(S) .

3. The free frame over a meet-semilattice S s the set D(S) of lower closcd
sets of S.
4. The free frame over a preframe A is the set Y(A) of Scott-closed subseis
of A.
Proof. See [3] and [11]. G

PROPOSITION 5.5. Let S be a meet-semilattice, and let R be a set (coverage)
each of whose elements has the form (X,a) where X = (,),., is a monotone
net in S, and a is an upper bound in S for {x,: i € P}. Then the preframe

presentation

PreFrm(S(qua meet-semilattice) | || X =a ((X,a) € R))
exists.

Proof. See [11].

O

So we have the following

THEOREM 5.6.
1. PreFrm has equalizers and coequalizers.
2. PreFrm has arbitrary limits and colimits.
The category SET of sets and set-theoretic functions is cartesian closed. and
the functions

curry: CVB ((73)[1 , curry = Af . Aa  Ab. f{a.b)

—
[V

A s ,
UNCUrTY ((7”) — (B uncurry := \g . Ma, by . g(a)(h)

are mutually inverse bijections. This provides us with the concept of a bimor-
phism if we characterize the set un,(:’uxr'm/(A—o (B— (,‘)) in (4B
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DEFINITION 5.7. For objects A, 3 and C in PreFrm, a set->heoretic func-
tion f of type f: A x B — C is a bimorphism if and only if

VacA: Ab. f(a,b): B — C is a preframe morphism,

vbe3:  Aa. fla,b): A— C is a preframe morphism.
We denote by Bil(Ax B, C) the poset of all bilinear functions f: Ax B — C in
the pointwise order.
LEMMA 5.8. For objects A, B and C in PreFrm, Bil(AxB,C) is indeed
an object in PreFrm.

Proof. Let f,g € Bil(AxB,C). Let a € A, b,ce B, S C B, S directed.

Then

(f ng)(a.J"S) = fla.U"S) Ag(a,UTS) = L' fla,s) A LU gla,t)

SES tcS
="' (S A g)as),
s€S
(f(a,b) A gla,b)) A (f(a,c) Ag(a,c)) = (fla,bAc)Agla,bAc))
=(fAg)a,bAc).

The rest is evident.
Similarly, let D C Bil(AxB,C), D directed. Let a € A, b,c € B, S C B,
S directed. Then

(' D) (a, 1" S) = U dla, ] S) = ' ' d(a,s)

deD deD seS

U' (' D)(a,s),

SES

(U DY(a,b) A (U D)(a,c) = | d(a,b) A ]! t(a,c) = ||' L' d(a,b) At(a,c)
deD teD deD teD
= [_JT d(a,bAc).

deD

|

Recall that a bilinear map f: A x B — C need not be a morphism in
PreFrm, nor is a map g € A x B—oC bilinecar in general. If we restrict the
maps curry and uncurry to Bil(AxB,C) and A—e (B—(C), we get a natural
order-isomorphism between Bil(AxB,C) and A—e (B-—-(C).

LEMMA 5.9. Let A, B and C be objects in PreFrm. Then the restric-
tions of curry and uncurry are mutually inverse order-isomorphisms between
Bil(AxB,C) and A—e (B—C). In particular, Bil(AxB,C) is an object in
PreFrm and the restrictions curry and uncurry are isomorphisms in PreFrm .

Proof. Given curry and uncurry as defined on all set-theoretic functions
VB and (CB)4 ) we know that they are mutually inverse functions on these
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sets; but, from the definition of bilinearity, we easily get that the curried ver-
sion of f € Bil(AxB,C) is in A—s(B—+(C), and that the uncurried version
of some g € A— (B— () is bilinear. Since curry and uncurry are monotone.
they preserve all suprema and infima which exist in Bil(AxB, ("), A— (B

—

respectively. C

L

Therefore, we obtain the natural isomorphism A ® B—-e (' = A — (B - (")

by showing

Bil(AxB,C) = A® B—-C. ()
For that, it is sufficient to have a preframe A® B and a bilinear map «: A= B —
A % B which is universal among all bilinear maps of type f: A« B — (. For
all such f, there exists a unique preframe morphism f: A © B — ' such that
fo® = f. The isomorphism is then verified by sending f to f.

Now, let us first construct, for meet-semilattices A and B. their mecet-
semilattice tensor product A®, B as
A®, B=A-S8emilat{a®, b (a € Abe B)|

AS@, b=ANa®, b: ac S} (SCC 4)
Na@, T=Naw, b: beT} (I CCB)).

Recall that, if A, B and C are meet-semilattices, and f: A B — (" is a
bimorphism with respect to finite infima, then there exists a meet-semilattice
morphism f: A® B — C such that f(a®,, b) = f(a,b).

Now, let us construct the preframe tensor product A @ B of preframes A
and B (see [11]). We take their meet-semilattice tensor product A4 =, B and
then equip it with the coverage R generated by all pairs (X ¢ b.a = b) and
(aes,,Y,a®, b), where X and Y are monotone nets in A and B. with joins «
and b, X @ _ b denotes the monotone net (x¢, b|x € X), and a=, Y denotes
the monotone net (a®,, y | y € Y). Then the preframe A % B is presented as
(Aw, BIR).

Recall the following proposition (see [11]).

m

PROPOSITION 5.10. PreFrin has a symmetric monoidal structure (. 1).
where 1 =2, and — @ A is a left adjoint to A—e —.

DEFINITION 5.11. A filter I C A, A a preframe. is called Scott-open it
|J' M € F implies F N A # () for all directed A C A.

PROPOSITION 5.12. Let A be a preframe, and let F be a subset of L. Th
Jollowing are equivalent:

1. F is a Scott-open filter.

2. X 18 a preframe homomorphism from A to 2. here

1 ofacl.
,x,»(u)v{ fac

0  otherwise.
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Proof. Let F' be a Scott-open filter. Then X preserves finite infima and
directed suprema. Conversely, for a preframe morphism x, F' = X5 ({1}) is a
Scott-open filter. O

DEFINITION 5.13. Let A be a preframe. The points of A are the Scott-open
filters of A. The collection pt(A) of all points is turned into a preframe ©(A)
by requiring all those subsets of pt(A) to be in ©(A) which are of the form

F,={Fept(d)]| z€F}, reA.
PROPOSITION 5.14. The sets F_, x € A, form a subpreframe of P(pt(A)).
Moreover, any F,_ is a Scott-open filter on pt(A).
Proof. We have ) Fe, = .7-'/\ e M finite, because points are filters
meM meM
and | f = .7"\/ because they are Scott-open. 0
el el
We may assign to a preframe A the preframe pt(4) = A— 2 of all points
of A.and, to a preframe morphism h: B — A, the map pt(h): pt(A4) — pt(B)
which assigns to a point F' the point h~!(F), we get a contravariant functor,
also denoted by pt, from PreFrm to PreFrm. Applying pt twice, we get
a covariant functor X, from PreFrm to PreFrm, i.e., a preframe A can be
mapped into the preframe of points of pt(A). We map a € A to the Scott-open
lilter F, of all Scott-open filters containing a. This assignment, which we denote
by n,: A— pt,(pt(A)) , is a preframe morphism: Let a € A, F' be a Scott-open
filter of A. Then we have: F, € F,. <= F € F, <= a € F. It also
commutes with preframe morphisms f: A — B:

ot () (14(0)) = pb(F ) (F,) = (f‘])'l({F Epi(A): ac F})
={F'ept(B): a€ f F)} ={F' ept(B): f(a)€ F'}
— ]:f(a) =ngo f(a).

So the family of all 7, constitutes a natural transformation from the identity
functor to ptopt.

We can now formulate the preframe version of the Stone Duality Theorem:

THEOREM 5.15. The functor pt: PreFrm — PreFrm is selfadjoint. The
unit and counit is 7.

Proof. It remains to check the triangle equality

TIpt(A)

pt(A) — pt*(A)

» lpt(m)

pt(A)
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Let F' be a Scott-open filter in A. Then

pt(nA)(an)(F)) =0, (Fp) = {re Al n,(x)eF,.}
={xcA| F, eF.)
:{.‘I,‘EA‘ FE}—V,A}
={reA| reF}=1F.

U

LEMMA 5.16. (PIT) Let A. B be continuous complete preframes. f: 4 — 3
a preframe morphism. Then [ is a continuous map with respect lo the Lawson
topology. Moreover, [ preserves arbitrary infima.

Proof. It is an casy corollary of ([12; p. 301, Corollary]).

6. Linear FS-preframes

LEMMA 6.1. Let A and B be LFS-preframes. Then:
(1) the poset A—e B is an LFS-preframe,
(i) A® B 1s an LES-preframe,
(iii) A s stably continuous, i.e., A is compact, and a < b. a < ¢ implics
a<LbAec.

Proof.

(1): The proof follows from the proof of Lemma 5 in [8] and from 5.1.

(ii), (iil): The proof copies the proof of 3.8. =

THEOREM 6.2. (STONE DUALITY FOR LFS-PREFRAMES) The category
of LFS-preframes s selfdual.

Proof. Apply 5.15 and 6.1.

PROPOSITION 6.3.
(STONE DUALITY FOR ALGEBRAIC LFS-PREFRAMES) The category of
algebraic LFS-preframes is selfdual.

Proof. Apply 6.2 and the fact that a preframe is algebraic if and only if
its lattice of Scott-open filters is algebraic.

PROPOSITION 6.4. Let A be a LES-preframe. Then A is a complete stably
continuous lattice.

Proof. By 3.16, we know that A has arbitrary infima, i.e.. it is a complete
lattice. ]
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Recall that, for any preframe A, we have a preframe map i,: A — Y(A),
here T(A) is the lattice of all Scott closed subsets of A (lower sets closed under
directed joins), defined by i ,(a) = {z € A: = <a}. Moreover, this map is (see
[3; Proposition 1)) the universal preframe homomorphism from A to frames.

PROPOSITION 6.5. Let A be an LFS-preframe. Then the frame Y(A) of all
Scotl-closed subsets of A is an LFS-frame in which the subset Sp(T(A)) is
closed under finite infima. Moreover, the directed set of finitely separated frame
morphisms may be chosen such that those preserve V-prime elements.

Proof. Let D C A—e A be a directed subset such that id,, = [ || D and
for all d € D there is a finite set M, CC A such that for all a € A there is
an clement m € M, such that d(a) < m < a. Evidently, for all d € D the
composition ¢, od: A — Y(A) is a preframe homomorphism. Then, by the
universality of i ,, there is exactly one frame homomorphism d: T(A) — Y(A)
such that (701',;‘ =1, 0d. This gives us, for all a € A, that J(ZA((,L)) =i, (d(a)) <
i ((m) < i,(a). Since any clement of Y(A) is a join of elements of the form
i(a). a € A, we have, putting ]‘7(, to be the join-subsemilattice generated
by the set i (M), that d is finitely separated from the identity and evidently
i(lT(:‘):uTﬁ,here D={d: deD}. O

Recall that, in [12], one defines a map f: X — Y between continuons posets
to be a Lawson map if it is continuous, and, in addition, the map f~!: o(Y) —
a(X') preserves open filters, i.c., V-prime elements of o(X). So we shall say that
a frame A is Lawson if Sp(A) is a meet-subsemilattice of A. A frame morphisin
between Lawson frames is said to be Lawson if it preserves V-prime elements.
We shall say that a frame is a Lawson LFS-frame if it is an LFS-object in the
subcategory of Lawson frames and Lawson frame morphisms.

PROPOSITION 6.6. Let A be a Lawson LFS-frame. Then Sp(A) is an
LIS-preframe and a subpreframe of A.

Proof. Let A be a Lawson LFS-frame. Then evidently, for any Lawson
map f: A — A, we have that g = f Sp(A)* Sp(A) — Sp(A) preserves directed

suprema and finite infimna. Moreover, for any finitely separated function d in A
we can always choose the set M, CC A such that M, N Sp(A) is a separating
set in Sp(A). So we have that Sp(A) is an LFS-preframe. O

THEOREM 6.7. (STONE DUALITY FOR LAWSON LFS-FRAMES) The
calegory of LES-preframes is equivalent to the category of Lawson LES-frames.

Proof. Apply 5.15 and 6.1. O
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PROPOSITION 6.8.
(STONE DUALITY FOR ALGEBRAIC LAWSON LFS-FRAMES) The cate-

gory of algebraic LFS-preframes is equivalent to the category of algebraic Lawson
LFS-frames.

Proof. Apply 6.2 and the fact that a preframe is algebraic if and only if
its lattice of Scott-open filters is algebraic. Ol

PROPOSITION 6.9. Let A be an algebraic complete stably continuous preframe
such that F' C K(A) finite implies that the sublattice (F), C K(A) generated by
FU{1} is again finite. Then A is an algebraic LFS-preframe.

Proof. Let ¥ CC K(A). We define a map dp: A — A as follows
dp(a) = UT{I e(F),: ¢ < (1}

for all a € A. Then evidently, | |'d,(a,) < d (LlT (la>- Now. let r € (F),.

< [_|T a,, . Then there is « such that » < A, e, r < |_JT d,(a, ). So we
have that dj preserves directed suprema. We shall prove li:at d . preserves
finite infima. Evidently, d.(1) = 1. We have d,.(a)Ad(b) > d,.(a Ab). Assume
that z,y € (F);, © < a, y <b. Then z ANy € (F),. r /\ y < anb.ic.
r Ay < dp(anb). So we have dy(a) Adp(b) < [z € (F), + + < a}r
U{ye(F),: y<b}<U{aAnye(F),: aAny<aAb} <d.(anb).

Evidently, dp - dp. = d,. imd, = (F), is finite. d;(a) < « and

LI dy(a) = a by the algebraicity of A. So we have that A is an LFS-preframe.
FCCK(A)

(]
Similarly as in [8], we can prove an internal description of the algebraic

LFS-preframes.

PROPOSITION 6.10. A preframe A s an algebraic LFS-preframe if and only
ifid A =||'D for some directed set D in PreFrm(A, A) such that d*> = d and
imd s finite for all d € D.

Proof. Such a preframe A is an LFS-preframe, for each d € D is finitely

separated from id A by its linage; it is also algebraic with K(A4) = |J imd.
deD
Conversely, if A is an algebraic LFS-preframe, we are done if & € K(:1) is in

the image of some d? =d <id A in PreFrm(A, A) such that imd is finite. As
A is a LFS-preframe, we have k < f(k) < k for some f separated from id A’
in PreFrm(A, A) by some finite set M = {m,,...,m;}. Then, d; := S s
in PreFrm(A, A), idempotent and below f. Its image, fix f C M is finite and
clearly contains k. O

Applying 6.9 and 6.10, we have
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THEOREM 6.11. Let A be a preframe. Then the following are equivalent

(1) A is an algebraic LES-preframe.

(ii) A is an algebraic complete stably continuous preframe such that any
sublattice of A generated by a finite subset of compact elements of A s
finite.

(iti) id A = | |1 D for some directed set D in PreFrm(A, A) such that d* = d
and imd is finite for all d € D.

(i) < (iii): By 6.10.

(ii) = (i): By 6.9.

(iii) = (ii): Let S CC K(A). Then there is d € D such that d* = d,
;) = s forall s € S,ie, S Cimd. Let a,b € imd. Then a,b € K(A) and
d(a) =a, d(b) = b. This gives us d(aVb) < aVb<d(a)Vdb) <dlaVhb),ie.,
aVb € imd. Similarly, d(a Ab) = d(a)Ad(b) =aAb,ie, aAbecimd, e, imd
is a finite sublattice of A. O

PROPOSITION 6.12. Let A be a complete stably continuous preframe such
that F C A finite implies that the sublattice (F) C A generated by F is again
finite. Then A is an LFS-preframe. Moreover, A 1is a retract of an algebraic
LFS-preframe.

Proof. We define a pair of maps e: A — Id(A4), p: Id(A) — A, Id(A)
being the lattice of all ideals of A, as follows

a)=la, play=lJ'1
for all @ € A and all I € Id(A). Then evidently, by stable continuity of A,
c(a)Ne(d) =e(anb), e(0) = {0}, e(1) = A, and, by the interpolation property
of <, |_|T = e<|_|T ) We easily see that p preserves direcred suprema

and flIlltL infima. Moreover, p-e =id ,, i.e., A is a preframe retraction of Id(A).
Since compact elements of Id(A) are principal ideals, we have that Id(A) satisfies
the condition (i) of 6.11, i.e., Id(A) is an algebraic LFS-preframe. So we have
that A is an LFS-preframe. O

Stone duality for abstract A-semilattice bases.

DEFINITION 6.13. An abstract A-semilattice base (B, <, A, 1) is given by a set
I3 together with a A-semilattice transitive relation < on B and a A-semilattice
operation A on B and a largest element 1 with respect to the semilattice or-
dering, such that < is an abstract basc on I3 and the following conditions are
satisfied:

(SLAT1) y <N = y< AN,
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(SLAT2) <o<o0<C <C<and |:B — 2" isan injective mapping.
(SLAT3) (B,A,1) is & A-semilattice,

holds for all elements y and finite subsets N of B.

DEFINITION 6.14. An approximable relation R between abstract A-scmi-
lattice bases B and C' is called A-stable approximable relation if the following
condition is satisfied:

YyeC VNCCDB (V.I'GEN rRy == there is an clement w € 3

such that AN > H‘R[/) .

Evidently, any directed union of stable approximable relations is a stable
approximable relation. Similarly as in [1], for domain prelocales. we shall show
that stable prelocales and stable approximable relations form a category.

PROPOSITION 6.15. A-stable approximable relations are closed under compo-
sitron.

Proof. It is evident. 0

Similarly as for stable prelocales we may define a category A— Asb of abstract
A-semilattice bases and A-stable approximable relations.

PROPOSITION 6.16. Let B be an abstract A-semilattice base. Then, if we put

Td(B) to be the set of all directed lower Scott-closed subsets — the Scott-closed
ideals, TZd(B) is a stably continuous preframe.

Proof. Evidently, a finite intersection of Scott-closed idecals is a Scott-
closed ideal, and a directed union of Scott-closed ideals is a Scott-closed ideal.
Moreover, for a Scott-closed ideal I, a € I if and only if | a < [. This gives us
that Zd(B) is a stably continuous preframe. -
PROPOSITION 6.17. Let L be a stable continuous preframe. Then. if we

put B(L) = B to be the A-semilattice L, B(L) = (B.<) is an abstract
A-semalattice.

Proof. Similar to 4.13.

THEOREM 6.18. The calegory A—Asb of abstract A-semilaitices and N-stable

approximable relations is cquivalent to STCONTPREF | the category of stably
continuous preframes and preframe morphisms.

Proof. The idea of the proof follows the proof of 4.14. _

COROLLARY 6.19. The category of reflexive abstract A-semilattices ard

A-stable approrimable relations is cquivalent to STALGPREF . the catcgory
of stably continuous algebraic preframes and preframe morphisms.
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DEFINITION 6.20. A A-stable approximable relation R C>-, on an abstract
A-semilattice B is said to be finitely separated from the identity if there is a finite
subset M CC B such that aRb implies that we can find an element m € Af
such that a > m > b.

An abstract A-semilattice B is said to be an LFS-A-semilattice if >, is a
directed union of A-stable approximable relations finitely separated from the
identity.

THEOREM 6.21. The category of LFS-N-semilattices and A-stable approz-
imable relations is equivalent to the category of LFS-preframes and preframe
morphisms.

Proof. It follows immediately {from the definitions and 6.18. O

COROLLARY 6.22. The category of reflexive LFS-N-semilattices and N-stable
approrimable relations is equivalent to the category of algebraic LFES-preframes
and preframe morphisms.
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