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ABSTRACT. We enrich the category Trm of frames and frame homomorphisms 
with the important concept of approximation by specifying a full subcategory of 
linear FS-frames. We show tha t this subcategory is equivalent with the subcat­
egory of linear FS-domains via the s tandard Stone duality. The Stone duality 
for sober spaces tells us tha t a distributive continuous lattice, i.e., a continuous 
frame can be viewed as the lattice of open sets of a locally compact space. The 
Stone duals of linear FS-domains considered as topological spaces, LFS-frames, 
may be replaced by their suitably taken distributive sublattices with an addi­
tional relation of approximation, thus discarding with infinitary operations. This 
is intended as a step towards the development of a domain theory in logical form 
beyond the standard algebraic world. Moreover, since any linear FS-frame is stably 
continuous and supercontinuous, we can characterize the full category of stably 
continuous supercontinuous frames to be equivalent to the subcategory of stable 
prelocales (distributive lattices with an approximation relation and stable ap­
p r o x i m a t e relations between them). Similarly, we may introduce the notion of 
a lineal- FS-preframe in the setting of the category of preframes and preframe 
homomorphisms. We can show tha t the category of linear FS-preframes is self-
dual, and tha t any linear FS-preframe is a stably continuous complete lattice. A 
characterization of algebraic LFS-frames is given. The Stone duality in terms of 
abstract A-semilattice bases is established. 
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1. Introduction 

In recent years, a new class of objects of Domain Theory now commonly 
referred to as "FS-domains" - was extensively studied ([13], [1] and [2]) together 
with its counterparts in the categories of \/-semilattices ([8], [9]) and Scott 
domains ([10]). 

The present paper is an investigation on this subject in the category of 
frames and in the category of preframes. A good source of information about 
frames and domains are the classic text by J o h n s t o n e [12] and the book by 
A b r a m s k y and J u n g [2], where the interested reader can find unexplained 
terms and notation concerning the subject. Our terminology and notation agree 
with the book of J o h n s t o n e [12]. 

In Sections 2 and 5, we summarize some well-knowrn results for supercon-
tinuous frames and preframes. Section 3 is devoted to the study of the Stone 
duality for LFS-domains. We enrich the category Trm of frames and frame ho-
momorphisms with the important concept of approximation by specifying a full 
subcategory of linear FS-frames. We show that this subcategory is equivalent 
with the subcategory of linear FS-domains via the standard Stone duality. 

The Stone duals of linear FS-domains considered as topological spaces. 
LFS-frames, may be replaced by their suitably taken distributive sublattices 
with an additional relation of approximation, thus discarding with infinitary 
operations. This approach is studied in Section 4. It is intended as a step to­
wards the development of a domain theory in logical form beyond the standard 
algebraic world. Moreover, since any linear FS-frame is stably continuous and 
supercontinuous, we can characterize the full subcategory of stably continuous 
supercontinuous frames to be equivalent to the subcategory of stable prelocales 
(distributive lattices with an approximation relation and stable approximable 
relations between them). 

In Section 6, we investigate the category of LFS-preframes. We show that it 
is selfdual and give some sufficient characteristics of the LFS-property for pre­
frames. The Stone duality in terms of abstract A-semilattice bases is established. 

Now, we begin by stating the definitions and basic properties of them, most 
of them well-known, which will be needed in the remainder of the article. 

A poset D in which every directed subset has a supremum we call a dii-ecfcd-
complete partial order, or dcpo for short. We write directed suprema as [J1" x t . 
Let D and E be dcpo's. A function / : D —> E is (Scott-) continuous if it is 
monotone, and if for each directed subset A of D we have /(L_T A) = U / ( ^ ) -

Let x and y be elements of a dcpo D. We say that x approximates y if for 
all directed subsets A of D, y < \_§ A implies x < a for some a G .4. This 
concept arose in the theory of continuous lattices ([6]), but it is also present in 
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many a rgument s from topology and analysis, t hough not always fully explicit. 
We say t h a t x is compact if it approx imates itself. 

We in t roduce t he following no ta t ion for x,y G D and AC. D: 

x <C y -£=> x approx imates y, 

ix = {y e D\ y <<x}, 

f x = {y e D | x < y} , 

? A = ( J ? a , 

K(D) = {x G D | x compac t} . 

T h e relation << is t radi t ional ly called "way-below rela t ion". 

Now, we observe t he following basic proper t ies of approximat ion . Let D be 

a dcpo. T h e n the following is t rue for all x,xf,y,yf £ D: 

1. x << y ===> x < y\ 
2. xf < x << y < yf ===> x ' « t / ' . 

We say t h a t a subset B of a dcpo D is a basis for D if for every element x 

of D the set Bx = I x C\ B conta ins a directed subset wi th s u p r e m u m x. We 
call e lements of Bx approximants to x relative to B. 

A dcpo is called continuous or a continuous domain if it has a basis. It is 

called algebraic or an algebraic domain if it has a basis of compact elements . 

Let D be a cont inuous domain , and let M C D be a finite set each of 

whose elements approx imates y. T h e n there exists yf G D such t h a t M << yf 

<C y holds. If B is a basis for Z), t hen yf may be chosen from B. We say, yf 

interpolates between M and y. 

Let D be a dcpo. A subset A is called (Scott-) closed if it is a lower set and is 

closed under sup rema of directed subsets . Complements of closed sets are called 

(Scott-) open; they are the elements of aD, t he Scott-topology on D. 

A Scot t -open set O is necessarily an upper set such t h a t every directed set 

whose sup remum lies in O has a non-empty intersect ion wi th O. 

We have for a dcpo D: 

1. For elements x,H 6 D t he following are equivalent: 

(a) x < y. 

(b) Every Scot t -open set which contains x also contains y. 

(c) xeci({y}). 
2. T h e Scot t - topology satisfies t he T 0 separa t ion axiom. 
3. (vD, aD) is a Hausdorff (== T 2 ) topological space if and only if t he order 

on D is tr ivial . 

So we can reconst ruct the order between elements of a dcpo from the Scott-
topology. T h e same is t rue for l imits of directed sets. 
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For dcpo's D and A, a function / from D to A is Scott-continuous if and 
only if it is topologically continuous with respect to the Scott-topologies on D 
and A. 

Let D be a dcpo and / : D —> D be a Scott-continuous function. We say that 
/ is finitely separated from the identity on D if there exists a finite set M such 
that for any x G D there is m ~ M with f(x) < m < x. We speak of strong 
separation if for each x there are elements ra,m' E M with f(x) < m <C m' 
< x. 

A pointed dcpo L) (a dcpo with a bottom element) is called an FS- do main if 
there is a directed collection (ft)ieI of continuous functions on D, each finitely 
separated from id D , with the identity map as their supremum. 

It is relatively easy to see that FS-domains are indeed continuous. Thus it 
makes sense to speak of FS as the full subcategory of C O N T , the category of 
continuous domains, where the objects are the FS-domains. The category FS 
is closed under the formation of products, retracts and function spaces. It is 
cartesian closed. 

Let us turn to the category of frames. A fram.e (or locale) is a complete 
lattice A in which x A \J x% = \J x A x% for binary meet A. arbitrary join \J. 
and any x^xi ~ A, and a frame homomorphism h: LJ —» 71/ is a map between 
frames preserving finite meets, including the top element 1 and arbitrary joins. 
including the bottom element 0. The resulting category is denoted Trm. A 
frame L is called spatial if for every a, 6 ~ L, a ^ b implies there is a frame 
morphism (point) p: A —> 2 such that p(a) = 1 and p(b) = 0: here 2 is the two-
element Boolean algebra. Recall that the set pt L of all points can be equipped 
with the topology such that open sets are of the form {p ~ pt L : p(a) = I 
for some a ' A} . Spaces isomorphic to a space of this form are called sober, i.e.. 
a sober space is defined as one which can be recovered from its lattice of opens in 
Stone duality. Moreover, continuous domains equipped with the Scott-topology 
are sober spaces. Now, let p be a point of L, g: K —* L a frame homomorphism. 
Then pt g(p) = po g is a point of K and pt g is a continuous map from pt L 
to pt A . Note that, for each topological space AT, we have a frame fi(A') of all 
open subsets of X and, for each continuous map / : X —> Y, wTe have a frame 
homomorphism Qf = f~l : HY —> QX. Then the functors il and pt restrict to 
a dual equivalence between C O N T and the category of completely distributive 
lattices. 

Let A be a frame, K C A. We shall say that K is a sub frame of L if A is 
closed wrt. arbitrary suprema and finite infima. Especially, 0,1 ' K. A frame 
L is said to be compact if 1 is a compact element of L. 

460 



LINEAR FINITELY SEPARATED OBJECTS OF SUBCATEGORIES OF DOMAINS 

2. Supercontinuous frames 

DEFINITION 2.1. For a complete lattice L define a relation « totally bellow 

on L by 

x « y if VACL [y <\JA = > 3aeA x < a) . 

Call L supercontinuous if for every x £ L, x = V{2/ | 2/ « %} holds. 

We shall call an element a £ L supercompact if O « a. The set of all 

supercompact elements of L will be denoted by SK(L). Call L super algebraic 

if for every x £ L, x = V{?1 — x I 2/ < ^ 2l} holds. 

Wre say that a subset B of a complete lattice D is a basis for D if for every 

element x of D the set Bx — {y £ L) : H « x} Pi B contains a subset with 

supremum x. We call elements of Bx total approximants to x relative to B. 

Recall that any superalgebraic lattice is supercontinuous. 

THEOREM 2.2. Lel L be a complete lattice. Then the following conditions are 
equivalent: 

1. L is V l\-embeddable into a powerset Boolean algebra B. 

2. L is a superalgebraic lattice. 

3. Lop is a superalgebraic lattice. 

P r o o f . 

(1) = > (2): We assume that there is an embedding e : L <--> 2M = B that 

preserves arbitrary joins and meets. So we have a left adjoint c: B -+ L which 

preserves arbitrary joins. For each atom {m} of L?, m £ M, we show that 

the element cm = c({m}) is supercompact in L. Notice that cm = /\{x £ L : 

{///} C e(.r)}. Assume 0 ^ S C L, cm < V-5. Then {m} < e(cm) < Ve(5), i.e., 

there is .s £ S such that {ra} < e(cm) < e(s). By an elementary computation, 

we can verify that the set {c
m}mG/vL 'ls V"°^ense m L. 

(2) = > (1): Put B — 2s ^ where S is the set of all nonzero supercompact 

elements of L, and define a map e: i -> S by the prescription e(a) =- {e £ 6" : 

r < O}. Obviously, e is injective, preserves arbitrary meets and the bottom 

element. We show that it preserves arbitrary nonempty joins. Namely, for e £ S 

we have c £ e( V a
l) ^ ^ c — ai0 f°r s o m e ?u ^ ^ ^ ^ r e U e(°i)-

^iei l ' ° 2<E/ 

(1) <=> (3): By the duality argument. • 

COROLLARY 2.3. Lel L be a complete lattice. L is superalgebra^c if and only 

if it is isomorphic to the lattice V(P) of all down-sets of som,e poset P. 

P r o o f . 

=> : We put P to be the poset of all nonzero supercompact elements. 

4== : Clearly, the supercompact elements are exactly the principal ideals. 

The rest is evident. • 
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COROLLARY 2 .4 . Every superalgebraic lattice is a spatial frame. 

THEOREM 2 .5 . Let L be a complete lattice. The following conditions are equiv­
alent: 

1. L is a \J / \ - image of a superalgebraic lattice. 

2. L is supercontinuous. 

3. Lop is supercontinuous. 

P r o o f . 

(1) ==-=> (2) : Le t / : S —• L be a \J / \ - homomorph i sm of a superalgebraic 

lattice S on to L. Then / has a right adjoint u and a left adjoint / , i.e., for each 

x G L we have u(x) = \)'{s G S : f(s) = x } , l(x) = /\{s G 5 : f(s) = T} , 

/ o u(x) = x and / o l(x) = cr. Deno te Cx := {c G S : c < l(x) and c « c} . 

We show that f(c) « x holds for each c £ Cx. Suppose x < \J x •. Since 

f(l(x) A V <xi)) = f(Kx)) A V / K - r J ) = x A V x - i r , w e have c < 
i<EI i<EI i G I 

/ (x) < \J H(x2), and, by the supercompac tness of c, we ob ta in c < u(x •) for an 
^GI 

elemen t j G I. Bu t then / ( c ) < f(u(x-)) = x . Consequen t ly, / ( c ) « J \ Now 

^ = / ( ^ ) ) = / ( V C j = V{/(«): cecx}. 
(2) = > (1) : Take \J: T>(L) —» F assigning to each down-se t its join. 

T>(L) is superalgebraic , and V is a V / \ -homomorph i sm. Indeed. \J ( | J A'y 

S'eI 

V \ / ( A z ) , a n d > for a 1 1 J £ f, \ c '• c < ^ A V ( ^ z ) ) = ^ p which immediately 
tei l

 l G I ) J 

yields \ / ( n ^ ) = A V ( ^ ) -

(1) 4=> (3) : By the duali ty argumen t . D 

We recall the following lemma. 

LEMMA 2 .6 . Let L be a supercontinuous lattice, e: L —> L an idem/potent 

\J-preserving mapping. Then e(L) is a supercontinuous lattice. 

P r o o f . It follows from [12; Chap te r VII , L e m m a 2.3]. D 

T H E O R E M 2.7 . A complete lattice L is supercontinuous if and only if it is a 

retract of a superalgebraic lattice by \J-preserving maps. 

P r o o f . 

= > : Le t L be a supercon t inuous la t t ice, T>(L) the la t t ice of its down-se ts . 

T h e n the mappings \J: T>(L) —> L and t: L —> T>(L) defined by the prescrip t ion 

t(a) = {x : x « a} for all a G L are \ / " P r e s e r v m g ? l(^L = \J o t. 

4 = : T h e converse direc t ion follows from the l emma and the fact that any 
superalgebraic la t t ice is supercon t inuous . D 

462 



LINEAR FINITELY SEPARATED OBJECTS OF SUBCATEGORIES OF DOMAINS 

COROLLARY 2.8. A complete lattice L is supercontinuous if and only if it is 
a retract of a power set Boolean algebra by \J -preserving maps. 

Recall that, in the presence of the Axiom of Choice, supercontinuous lattices 
are exactly completely distributive lattices. 

THEOREM 2.9. A complete lattice L is supercontinuous if and only if for any 
diagram 

L 

+ C A 

of \/ -preserving mappings between complete lattices such that there is an order-
preserving map s: C —> A, \dc = q o s, we have a \J-preserving morphisms 
g: L —• A such that q o g = f, i.e., the following diagram commutes. 

P r o o f . 
=> : Let L be a supercontinuous lattice. We put g(b) = S\J{s o f(x) 

x G t(b)} . We show that g is \ / ~ P r e s e r v m g - Let X C L. We put Y = [j{t(x) 
xeX}.Then g(\jX)=g(\J Y) = \J{s of (y): y e Y} = \/\J{sof(y) 

x£X 

y G t(x)} = V g(X). The rest is evident. 

< = : We have a \/-preserving map \J: T>(L) —-> L, and since the map 
d: L —> T>(L), d(a) = {x G L : x < a} for all a £ L, is an order preserv­
ing map with idL = \J od, there is a \/-preserving map g: L —> T>(L) such that 
id7 = \J o g. The rest follows from Theorem 2.7. • 

3. Linear FS-frames 

DEFINITION 3 .1 . Let C be a subcategory of the category of dcpos and Scott-
coiitinuous mappings between them. An object A of C is said to be an LFS-object 
if id x = L_|T T> for some directed set V of C-morphisms from A to A such that 
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every d £ T> is finitely separa ted from idA , i.e., there is a finite subse t Md C C A 

suclr that for all a £ A there is ma £ M d wi th d(a) < ma < a. We shall denote , 

for all objec ts A, B from C, C(-4, 15) the pose t of all C-morphisms from A 

to J5. 

Recall that FS-domains are LFS-objec ts in the ca tegory of dcpos and Scott-

con t inuous mappings , FS-la t t ices are LFS-objec ts in the ca tegory of complete 

la t t ices and suprema-preserving mappings , and FS-frames are LFS-objects in 

the ca tegory Trm of frames. Eviden t ly, any LFS-objec t in C is an FS-domain . 

We can then use all known corresponding resul ts on FS-domains . Notice tha t , 

for all dcpos A, B, [A. —» B] is the depo of all Sco t t -con t inuous mappings 

from A to B. for all comple te la t t ices A, B. A-o B is the complete lat t ice 

of all suprema-preserving mappings from A to B , and, for all frames A. B. 

Trm(A, B) is the depo of all frame morphisms from A to B. 

[f moreover any objec t A of C is a dis tr ibu t ive la t t ice, we may assume that 
the corresponding finite subse t M(l C C A is a finite 0 1 subla t t ice of A. and 
the elemen t ma is the least one such that d(a) < m < a. 

Let us recall the following proposi t ion from [8]: 

L E M M A 3 .2 . Let A be a depo. Then: 

1. If f £ [A —>• A] is finitely separated from id A, then x < f(y) implies 

x <C y. 

2. If A is an FS-domain, then x <C y implies x < f(y) for some f in 

[A —-> A] finitely separated from id A; 

3. in particular, every FS-domain is continuous. 

We shall prove the following easy observa t ion: 

L E M M A 3 . 3 . Let A be an LFS-object. Then idA = U^ T> for some directed set 

T> of C-morphisms from A to A such that for all d £ V there is a fi,nite subset 

M(i C C A such that for all a £ A there is ma £ M(i with d(a) <C ma « a . 

P r o o f . Recall that id^ = [_§ £ for some direc ted set £ of C-morphisms 
from A to A such that all d £ £ are finitely separa ted from the identity. Then 
we have that for all d £ £ there is a finite subse t Nd C C A such that for all 
a £ A there is nn £ Nd wi th d(a) < na < a and 

idA = ldA.\dA=^£-^£ 

= U r d-e= \J d-d= U T r f 2 = U T ^ -
d.ces dee- dee dee 

So we have that d2(a) < d(na) < na < a , i.e., d3(a) < d2(ua) << d{ntl) < 
na < a. We pu t then V = {d3 : d £ £} " M(f, = {d(n) : n £ Nd\. d £ £. • 
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DEFINITION 3.4. An element p in a lattice A is called V-prime if for all 
./*,;(/ G A with p < x V y we must have p < x or p < y. We shall denote by 
Sp(/1) the poset of V-primes of A. We shall say that a complete lattice has 
enough V-primes if any its element is a supremum of V-primes below it. 

PROPOSITION 3.5. Let A be a complete lattice. Then the following conditions 
arc equivalent: 

1. A is a distributive LFS-lattice. 
2. A is supercontinuous. 

P r o o f . 
(1) => (2): Let 0 / a E A. We know that d(a) < a for each d G V. 

Moreover, there is a finite sublattice M . CC i and an element m such that 
d(a) < ma < a, am is the infimum of all such elements in Md. Let x G Sp(Md), 
0 7*= .r < ajn. Then x « a. Namely, let X C A, a < \J X. We may assume 
that N < | ( a ) . Then d(a) < d(\J X) = V div) < \l rny < a for some finite 

y£X yex0 

subset X{) CC X. Then x < a m < V m7, ? i-e-> there is H G X such that 
y£Xo 

x < my < y. 

We have that a = V d(a) < V { x £ S P ( ^ ) : ^ C P , a: < m a } < a. 
dGT> 

(2) =l> (1): We put £ = {M CC A : M is a finite distributive sublattice 
of A} and for all M E £ we shall define a map dM : A —> A as follows 

áAL(a) r= V í m G M : m "^ a) 

for all a £ A. We put X> = {dM : M G £ } . Then evidently each dM is finitely 
separated from the identity, it preserves arbitrary suprema, V is directed and 

U1 d = i d 4 . • 

PROPOSITION 3.6. Let A be a distributive LFS-lattice, a G A compact, i.e., 
there is d G T> such that d(a) = a. Then there is a finite subset F{) of super-
compact elements of A such that a = \J F(). 

P r o o f . If a = 0, we put F0 = 0. Now, let 0 ^ a G A, a = \/{x G A : 
x « a} = V t(a) • By compactness, there is an element d G V such that d(a) = a 
and a = \J{d(x) G A : x G t(a)} , i.e., a = \J{m G Sp(Md) : m G t(a)} , and 
there is a minimal finite subset F0 C {m G Sp(Md) : m G t(a)} such that 
a = VI\) = \/d(F0). We have that, for each x G F0, there is y(x) G F{) such 
that x < d(y(x)) < y(x), i.e., x = d(y(x)) = y(x), i.e., x is compact and 
•>' € ^ / / . * = rnx. Let x < u V v. Then x < d(u) V d(v) < mu V mv, i.e., 
./• < mu < a or x < mv < v, i.e., x G Sp(A), i.e., x is supercompact. • 
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C O R O L L A R Y 3 .7 . Let A be an algebraic supercontinuous lattice. Then A is 
superalgebraic. 

L E M M A 3 . 8 . Let A and B be LFS-frames. Then: 

(i) the poset Trm(A, B) is an FS-domain, 

(ii) A 0 B is a linear FS-frame, 

(iii) A is bicontinuous, 

(iv) assuming the Axiom of Choice, A has enough coprimes, 

(v) A is stably continuous, i.e., A is compact, and a << b, a <C c implies 

a <C b A c, 

(vi) assuming the Axiom of Choice, A is linked, i.e., the Lawson topologies 

on A and Aop coincide. 

P r o o f . 

(i): T h e proof follows the proof of L e m m a 5 in [8]. We have: let D C 
Trm(A,A) and £ C Trm(B,B) be direc ted sets wi th LJF> = id .4 and 

\J£ = id B such that all / E T> and g E £ are finitely separa ted from 

the respec t ive iden t i t ies. If M P , respec t ively M , is a finite set separa t ing 

/ E T> from idy l , respec t ively g E £ from id J5 , we are done if (f—° g)2. 

where / —o g = Xh . g o h o f: Trm(A1 B) —> Trm(A1 B), is separa ted from 
[dTrrn(A,B) hY S O m e finite s e t : t h e n [dTrrn(A,B) = ^ { ( / ~ ° g ) 2 I / ^ V * 9 ^ £} 
as composi t ion of frame morphisms is again a morph ism of frames. We define 

an equivalence rela t ion ~ on Trm(A1 B) by 

hx~h2 :<=> VmeMf ] g{hx(m)) D Mg = ] g{h2{m)) D jA/; . (1) 

As A/r and M are finite, there are only finitely many equivalence classes on 

Trm(A, B). Le t M be a non- redundan t and comple te set of representa t ives of 

these classes . We claim that the finite set / - o g(M) separa tes (/'—o g)2 from 

idA_^B. Given h E Trm(A,B), let h be the corresponding represen tat ive in 

M. For a G /4, we compu te 

h(a) > h(rrir) for some m , E M , wi th / ( a ) < m , < a , 

> m for some in E 71/ wi th g(h(mA) < m < h(m ,) , 

> g(h(rrir)) as g(h(mr)) < m( and // ~ l?, 

> l 9 ( / i ( / ( a ) ) ) as f(a)<mf. 

By symme t ry , we ob ta in /! > ( /—°g ) ( / i ) , so tj > f-^ g(h) > (f -^ g)2(h). 

(ii): Le t F> C f r m ( / l , i ) and £ C Trm(B,B) be directed sets with 

[J1 £> - i d 4 and | J r £ = '^n s u c h t l i a t a11 / G P a n d <1 G f a i v finitely 
separated from the respec t ive iden t i t ies. We pu t Q = {/ a : / E P . 
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g G £} C Trm(A@B, A@B). T h e n | JT Q = i d A 0 B . For all / G £> and O G £ we 

put Nr^ = {m(&n : m G M , , n G M } , and let M^ be t he finite subframe 

generated by TV,~ . It is easy to see t h a t Mr^ separa tes / 0 g from i d A 0 B . 

(iii): It follows from 3.5 and 2.5. 

(iv): Assuming the Axiom of Choice t he proposi t ion follows from (iii). 

(v): We have 1 = f(l) <C 1 for all / G X>, i.e., A is compact . Let a <: b and 
a <C c. T h e n there are / , O G 2> such t h a t O < / ( b ) , O < g(c). T h e n there is 
h G X> such t h a t a < h(b), O < h(c), i.e., O < h(b) A b(c) = h(b A c) < b A c. 

(vi): It follows from L e m m a 5 in [8]. • 

COROLLARY 3 .9 . Let A be an algebraic LFS-frame. Then A is superalgebraic 

and coherent. 

So we may for any compact supercont inuous frame A define a set Ascrn 

of maximal supercompac t elements . Recall t h a t Ascni is finite and Sp(A) = 
Sp( / i ) H j - 4 t S C . m . Moreover, in any LFS-frame A, the re is a finite subla t t ice of 
compac t e lements of A containing Ascm such t h a t it is genera ted as a join 
semilatt ice by a finite subset of supercompac t elements. Let us denote this finite 
subframe of A as T(A). 

P R O P O S I T I O N 3 . 1 0 . Let A be a stably continuous frame, B be a continuous 

frame, and the dual B^ be a frame. Let F C Trm(A, B) be a filtered family of 

frame morphisms. Then the infimum of F in Trm(A, B) equals the infimum of 

F in A ^ B . 

P r o o f . T h e descript ion of infima in [A —> B] is well known (see [13]). 

If F C Trm(A,B) is given, t hen g := AO . /V f(o) • A —> B is monotone , 
f£F 

so cf := AO . U g(b): A —> B is t he greates t Scot t -cont inuous function on A 

below g; therefore, Oc is t he infimum of F in [A —> B]. Moreover, we have t h a t 
O(0) = 0, O(l) = 1, O preserves finite infima and finite suprema. Namely , let 
a, be A. T h e n 

O(O) A g(b) = A j f(a) A ^ f(b) = A1 f(a A 6) = O(O A 6) . 
/GF /GF f£F 

Similarly, using the fact t h a t F is filtered and B1^ is a frame, we have 

g(a) V 5(6) = A1 /(«) V A1 M&) = A1 d(a V 6) = ff(a V 6). 
/GF /jGF d<EF 

We obta in t h a t gc(0) = 0, gc(l) = 1 ( 1 < 1 ) and Oc is monotone . 

Nowr, we show t h a t gc: A —> .B is in A^> B if t he function g: A -^ B 
preserves finite suprema: Since Oc is the infimum of F in [AL —> J5] , and since 
4 - o 5 is a subset of [A —> B], we are done if Oc preserves finite suprema. 
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Given x <C gc(O V b) = U g(y), we have x < g(y) for some y << a V b. The 

set {a ' V b' | O' <C O and b' <C b} is direc ted in yl wi th sup remum O V b. so 

H < O' V b' for some a' <C O and b' < b. Then , x < O(H) < O(O/ V b'); the lat ter 

equals g(a') V O(b') by assump t ion , and it is a lower bound of .O((O) V gc(b). 

Hence, gc(O V b) = gc(O) V gc(b) as B is con t inuous. 

Le t us show that Oc preserves finite infima. We easily have gc(a A b) < 

Oc(O)AOc(b). Let u <C OC(O) AOc(b). Then there are a' < O and 6' < b such that 

u < O(O/)AO(b/) = g(af Ab') and O'A b' < OAb. Then u < g(a' Ab') < (f(aAb). 

i.e., gc(aAb) = OC(O) A Oc(b) • • 

COROLLARY 3 . 1 1 . Let A be a stably continuous frame. F = pt .4 be a depo 

of points of A. Fhen P has all filtered infima. 

P r o o f . Let F C P be a filtered subse t . We may assume tha t F C 
Trm(A, 2 ) , and 2 eviden t ly satisfies assump t ions from 3.10. Then there is 
an elemen t p <E Frm(A. 2) such that p = /V O. • 

</eF * 

PROPOS IT ION 3 . 1 2 . Lel A be a linear FS-frame. Fhen the poset P t ( T ) of 

all points of A (prime elements) is an FS-domain. 

P r o o f . It follows immedicitely from 3.8 (i) applied on B = 2 . We shall 

show how the way from LFS-frames to LFS-domains may be realized directly. 

Let T*t(A) be the set of all pr ime elemen ts of A equipped with the reverse 

ordering . Recall that, for any frame m a p / : A —> A, we shall define a Scott-

cont inuous m a p P t ( / ) : T?t(A) —> Pt(^L) as follows: 

Pt(/)(p) = \{y e A : f(y) < p) = f*(p). 

Eviden t ly, Pt(f)(p) is a pr ime elemen t of A. Recall that if / is finitely sepa­

ra ted from id A by M in the ca tegory of \ / - la t t ices , then / * is finitely separa ted 

from id A ^ by the set f*(M). By 3.3, we know that f*(p) <<A<ll> f*(m) « 4 ( i ; i /;. 

Let us take the set V as in 3.3. We have that d2(a) < d(n(i) <C na < a 

for all d G T>, a G A, and for sui table elemen ts na G N(j. This implies 

d(p) < n < d*(np) < d*(p). Applying d* again we ob ta in p < d* (d(p)) < 

d*(np) < d*(d*(np)) < d*(d*(p)). Observe that d*(d*(np)) <<op d*(np) = 

/\{q G Pt(L) : q > d*(np)}. Then there is a finite subset Mdp such that 

M(Lp C C {q G P t ( L ) : q > d*(np)} and d*(d*(np)) <op t\Mdp. This im-

P 1 ^ A ^ , P < d * ( ^ * K ) ) < d*(d*(p)), i.e., p < qdp < d*(d*(p)) for some 

qdv G Md . So we have, for all n , a pr ime elemen t q(ip, he., we may put 
Pd = iad,P

 : n
P

 e Nd}- Eviden t ly , this subse t finitely separa tes Pt(V/2) = (d2)* 

from the iden t i ty in Pt(A). Q 
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PROPOSITION 3.13. Let A be an FS-domain. Then the lattice a (A) of all 
Scott-open subsets of A is a linear FS-frame. 

P r o o f . Let A be an FS-domain, and let V C [A —> A] be the directed 
system of U^~P r e s e r v m S maps which are finitely separated from the identity 
id { on A. Let / G D , and let M , be the corresponding finite subset of A. We 
shall show that f~1 is finitely separated from the identity id^/^x on o~(A). 

Evidently, f~~A is a frame morphisms. For each a E A we put m(a) — 

U{ f in • in E Mf , 3H a <C f(y) < ra}. We have ra(a) - f a. Now, let 

y E / ~ J (f a) . Then there is z E -4 such that z <C H and z E / _ 1 ( f a ) , i.e., 

f(z) E f a. Then there is an element ra E M , such that a <C / ( z ) < m < z <C H, 

i.e., /y E f ra C m(a). We have, for all a E -A, that / _ 1 (f a) C ra(a) C f a . 

Now, let U be a Scott-open subset of A. We put ra(U) = U{ f m : m £ ^U > 
3OEU 3y a < /(H) < ra},i.e., ra(U) = \J{m(a) : a E U}. We have f~[(U) C 
!!l(U) C U, i.e., f~l is finitely separated from the identity. Here we put M/--1 = 
|ra(U) : UEa(A)}. 

Recall that / < g if and only if / " l C a"1 , i.e., the set C = j / " 1 : / E £>} 
is a directed subset of Trm(A, A). We have to prove that, for all a E A, f a = 
U^ / _ 1 (f a ) . Namely, let HE f a , i.e., there is / E P and 2: E A such that 

lev 
a <C c < /(H) < H, i.e., 1/ E / _ 1 ( f a) for some / E P . We have that, for all 
Scott-open subsets U of A, U = \J / - 1 ( ^ ) > --e., i d , A ) = UT / _ 1 • D 

lev fev 
T H E O R E M 3.14. ( S T O N E D U A L I T Y F O R F S - D O M A I N S ) The functors Q 

and pt restrict to a dual equivalence between the category of FS-domains and 
the category of LFS-frames. 

P r o o f . Apply 3.12, 343 and [2; Theorem 7.2.28]. • 

P R O P O S I T I O N 3.15. ( S T O N E D U A L I T Y F O R A L G E B R A I C F S - D O M A I N S ) 

The functors O and pt restrict to a dual equivalence between the category of 
algebraic FS-dom.ains and the category of algebraic LFS-frames. 

P r o o f . Apply 3.14 and the fact that a domain is algebraic if and only if 
its lattice of Scott-open subsets is algebraic. • 

So we have the following interesting fact. 

PROPOSITION 3.16. Let A be a FS-domain. Then A has all filtered infima. 

P r o o f . We put L = cr(^4). Apply 3.11 on L (by 3.8, we know that L is 
stably continuous). • 

469 



JAN PASEKA 

L E M M A 3 . 1 7 . Let A be a frame, a G A. Then: 

(i) if A is a continuous frame, then [(a) is continuous, 

(ii) if A is a continuous frame, then ](a) is continuous, 

(iii) if A is an algebraic frame, then [(a) is algebraic, 

(iv) if A is an algebraic frame, then ](a) is algebraic, 

(v) if A is a linear FS-frame and a is a compact element, then [(a) is a 

linear FS-frame, 

(vi) if A is a linear FS-frame, then | (O) is a linear FS-frame. 

P r o o f . 

( i - i v ) : It is trivial. 

(v): Le t a be a compac t elemen t , V be the corresponding direc ted set of 

frame morphisms which are finitely separa ted from the iden t i ty id 4 on A and 

id A = U ^ ^ - T h e n there is, by compac tness of O, an element g G T> with 

a = g(a). We pu t £ = {/ G V : f > g) . Eviden t ly, idA = U l £• W e d e f i l u > 

H = {h G Trm([(a),i(a)) : h = f\ua\ , / G £} . Eviden t ly, H is a directed 

set of frame morphisms finitely separa ted from id,/ N. Namely, any h G H 

is well-defined, preserves a rb i t ra ry suprema and finite infima, and h(0) = 0. 

h(li{a)) = / (O ) = O = l | ( a ) for any / G V. We pu t Mh = {m G Mf : O> < O}. 

and let x G 1(O). T h e n there is m G Mf such that /i(x) = f(x) < m < x < a . 

i.e.., there is m G Mh such that h(x) <m<x. 

It remains to show that id, (ax = U ^ ^ - ^ e n a v e 7 f ° r a u J ' ^ 1 ( ( 7 ) - J" = : 

[JT / ( x ) = U^ lM^) 5 i.e., | ( a ) is a linear FS-frame. 
fee hen 

(vi): Le t O G A, £> be the corresponding direc ted set of frame morph isms 

which are finitely separa ted from the iden t i ty id A on A and i d A = [_\ F>. W e 

define H = {h G .Frm(T(O), T(O)) : h = / | | / f l x V O , / G P } ' . Eviden t ly. W 

is a direc ted set of frame morphisms finitely separa ted from idf( a)- Namely, 

any h G H is well-defined, preserves a rb i t ra ry suprema and finite infima and 

M°T(a)) = / ( « ) V O - O = 0 r ( Q ) , ft(li(a)) = / ( l ) V a = l i ( a ) for some / G .5. 

We pu t iVh = {n E 1(a) : n = rn V a , m ^ ^ ^ / } , and let x G ](a). Then there 

is m G M / such that /i(x) = / ( x ) V a < mV < x V a = x , i.e., there is n G J1I,. 

such that h(x) < n < x. 

We show that i d | ( a ) = \JH. We have, for all x G ](a), x = U 1 f(x) '= 

UT f(x) V a = UT h(x), i.e., | ( a ) is a linear FS-frame. Q 
Ie<^ hen 
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4. Abstrac t bases and the Stone duality 

First, let us recall some definitions from [2]. 

DEFINITION 4 . 1 . An (abstract) basis is given by a set B together with a 
transitive relation -< on B, such that 

z -< x = > 3yEB z -<y -< x (INT) 

holds for all elements x, z E B. 

Examples of abstract bases are concrete bases of continuous domains, of 
course, where the relation -< is the restriction of the order of approximation. 
Axiom (INT) is satisfied because of the interpolation property of <C. Similarly, 
any basis in the sense of Definition 2.1 equipped with the relation <̂ C is an 
abstract base. 

Other examples are partially ordered sets, where (INT) is satisfied because of 
refiexivity. We may identify posets as being exactly the bases of supercompact 
elements of super algebraic frames. 

Note that a subset U C B is lower Scot-closed if 

1. x £ U, y -< x implies y £ U, 
2. x £ U implies there is y £ U such that x -< y ("roundness"). 

DEFINITION 4.2. For a basis (J3, -<) let V(B) be the set of all lower Scott-
closed subsets ordered by inclusion. It is called the lower completion of B. 
Furthermore, let i: B —> V(B) denote the function which maps x £ B to 
| x — {y £ B : y -< x}. If we want to stress the relation with which B is 
equipped, then wre write V(B,^[) for the lower completion. 

Recall that, in the following, if we have both -< and < on a set L?, we shall 
always understand by l(x) the set {y £ B : y -< x}. 

PROPOSITION 4 .3 . Let (B, -<) be an abstract basis. 

1. The lower completion of B is a, complete lattice. 
2. A <̂ C A! holds in V(B) if and only if there are x -< y in B such that 

A C i(x) C i(y) C A'. 
3. A <C A' holds in V(B) if and only if there are x- -< y-, j = 1 , . . . , n, 

in B such that A C (J i(Xj) C \J i(y.) C A!. 

4. V(B) is a supercontinuous frame and a basis of V(B) is given by i(B). 
5. If -< is reflexive, then V(B) is superalgebraic. 
(>. If (B.-<) is a poset, then B, SK(I9(y3)) , and i(B) are all isomorphic. 

P r o o f . (1) holds because, clearly, the union of lower Scott-closed sets is a 
lower Scott-closed set. Roundness implies that every A £ V(B) can be written as 
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(J [ x. This proves (2), (3), and also (4). T h e fifth observat ion follows from the 
xeA 
character izat ion of the order of approximat ion . T h e last pa r t holds because of 2.3 

and t h a t there is only one basis of supercompac t elemen ts for a superalgebraic 
frame. C 

Our 'comple t ion ' has a weak universal proper ty: 

P R O P O S I T I O N 4 . 4 . Let (B, -<) be an abstract basis, and let D be a complete 

lattice. For every monotone function f: B —» D there is a largest \j-preserving 

morphism f: V(B) —» D such that f o i is below f. It is given by f(A) = 

\ / f(A). If the relation -< is reflexive, then foi equals f . Moreover, if D is u 

frame, and f such that the following holds: 

f(y) = f(z) => 3x<y, x<z f(x) = f(y) = f(z). (MP) 

then there is a largest frame morphism f: V(B) —> D such thai f o / is below 
f given by the same formula as above. 

P r o o f . Le t us first check that / is a morphism of \ / - semila t t ices (frames). 

Let (Ai),ieI be a collection of lower Scott-closed sets. We can calculate: / f \ / A; 

= / ( U A,) = v{/(*') I x e U A\ = V V{f(x) I x G A,} = V /(-•!,)• 
yiei ; v iei J iei iei 

Now, let A,B e V(B). Evidently, f(AinA2) C f(A}) D f(A2). Assume 
a G f(A^) n f(A2). Then there are y E Al, z G A2 such t h a t f(y) = f(z) = a. 

i.e., there is x G B such t h a t x -< y, x -< z, f(x) = f(y) = f(z). i.e.. 

x e A1nA2. 
Since / is assumed to be monotone , f(x) is an upper bound for f ([ x) . 

This proves t h a t / o i is below / . If, on the other hand , g: V(B) —* I) 

is another Y-semilat t ice (frame) morphism with this property, then we have 

g(A) = g( U ix) = V g{lx) = V •?(.(*)) < V f(x) = f(A). 
y xeA J x£A x£A TEA 

If <̂ is a preorder, t hen we can show t h a t foi = f: f(i(x)) = f([ x) = 

V / ( | x ) = / ( x ) . • 

Assume t h a t B and B' are two abs t rac t bases, and / : B —> B' is a monotone 

m a p . 

By the extension of / to V(B), we mean the m a p i' o / : V(B) —> V(B). 

P R O P O S I T I O N 4 . 5 . Let D be a supercontinuous frame with basis B . i.e.. for 
every element x of D the set B = {y <̂ C x : y G D} n B contains a subset 
with supremum x . 
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Viewing (I?, <^c) as an abstract basis, we have the following: 

1. V(B) is isomorphic to D. The isomorphism a: V(B) —> D is the ex­
tension e of the embedding of B into D. Rs inverse j3 maps elements 
x £ D to Bx. 

2. For every frame E and frame morphism f: D —> E such that g satisfies 
(MP) we have f — g o (3, where g is the restriction of f to B. 

P r o o f . First, let us prove that (13, <̂ C) is an abstract basis. Evidently, the 
relation <̂ C is transitive and we can always interpolate. Now, we have to check 
the isomorphism. In a supercontinuous frame we have x = \J Bx for all elements, 
so a o tj — idD . Composing the maps the other way round we need to see that 
every c £ B which totally approximates V A, where A is an lower Scott-closed 
set in (H,<^C), actually belongs to A. We interpolate: c <$<C d <̂ C \/ A, and 
using the defining property of the totally bellow property, we find a £ A above 
d. Therefore c totally approximates a and belongs to A. 

The calculation for (2) is straightforward: 

f(x) = f(\/Bx)=\/ f(Bx) = g(Bx) = g(fi(x)) . 

• 

Let us introduce the morphisms between approximable bases. 

DEFINITION 4.6. A relation R between abstract bases B and C is called 
approximable relation if the following conditions are satisfied: 

1. VxtB Vy,y'eC (xRy >- y' =-> xRy')\ 
2. Vx£13 VH£C (xRy => (3z(EC XRZ and z y y)); 
3. Vx,x'£B VH£C7 (x'y xRy ==> x'Ry); 
4. VxeB VyeC (xRy =$* (3ztB x y zRy)) . 

Recall that it is well known that abstract bases and approximate relations 
form a category with respect to composition of relations. We then have the 
following. 

THEOREM 4.7. The category of abstract bases and approximable relations 
is equivalent to S U P E R C O N T , the category of supercontinuous frames and 
\/ -preserving mappings. 

P r o o f . Following 4.3 and 4.5, we have established the equivalence on the 
corresponding objects. Now, let (Bl,-<1)1 (B2l -<2) be abstract bases, R C 
73, x B.} an approximable relation. Then we shall define a frame morphism 
fH: V(B{) -> V(B2) as follows: 

fii(u) = ib G B2 '• (3aeU)(aRb)} . 
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Evidently, fR is correctly defined and fR($) = 0. Let us prove t ha t fR 

preserves a rb i t ra ry nonempty suprema (unions). Evidently, fR is monotone . 

i.e., UCV implies fR(U) C fR(V). Now, let b £ f J U U.) . Then there is < 

element a £ (J U , ait 'b . So we can choose an index j{) £ J such tha t a £ U . 
jeJ 

The rest is evident. 

Now, let g: Li —+ L2 be any \ / -preserving function between supereont inuous 
frames. Let (J? p -<x), (L?2, -<<9) be the corresponding bases. We shall define R( C 
B{ x B2 . We put a i t b if and only if there is an element u £ Ll such tha t u <$<C a 

and 6 <̂ C g(^) • Let us show t h a t R is an approximable relation. It is enough to 
check the proper ty 2, t he rest is easy. Let x £ Bx, H £ i?2 such tha t for xR y. 

i.e., there is u £ L t such t h a t II <̂ C x and y <̂ C g(H). T h e n evidently, since 
Bx is a base of Ll , there is an element ID £ Bx such t h a t a <$<C w <̂ C .r and 
?/ <̂ C g(w) 7 i-e-7 by ( INT) , there is an element z £ B2 such that y <<̂C z <<t^ g{ir). 

• 

In par t icular : 

T H E O R E M 4 . 8 . The category of preorders and approximable relations is equiv­

alent to S U P E R A L G . the category of superalgebraic frames and \]-preserving 

mappings. 

S t o n e d u a l i t y for s t a b l e p r e l o c a l e s . 

First , we shall need some new notions. 

D E F I N I T I O N 4 . 9 . A stable prelocale ( B , -<<, V, A,0, 1) is given by a set B to­
gether writh a t ransi t ive relation -< on B and lat t ice opera t ions V and A on B. 
least element 0 and largest element 1 wi th respect to the lat t ice ordering, such 
t h a t -< is an abs t rac t base on B, and the following condit ions are satisfied: 

(LAT1) M -< x =^ \/ M -<x, 
(LAT2) y -< N = » y -< /\N, 
(LAT3) x -<\f M => there is \I' C C B such that 

for all n £ M' there is m £ M satisfying // -< m . x -< \J \I'. 
(LAT4) < ° <̂ ° < ^ <̂ ^ < and j : B —> 2n is an inject ive mapping . 
(LAT5) (Zi, V, A,0. 1] is a dis t r ibut ive lat t ice. 
(LAT(>) x -< y = > there is \f C C Sp(ft) such that ./• -< V -^ - !h 

holds for all elements x, y and finite subsets M. N of B. 
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DEFINITION 4.10. A relation R between stable prelocales B and C is called 
stable approximable relation if the following conditions are satisfied: 

1. MxeB Vy,y'eC {xRy y y' => xRy')-
2. \/xeB VA/CCC (yyeM xRy => there is an element z G C 

such that xRz y V/ M); 
3. \Jx,x'eB VHGC (xf y xRy => x'Ry); 
4. VHGC VjVCCE (VzGjV xRy => there is an element w G B 

such that f\ N y wRy); 
5. \/x<EB \/yeC (xRy =t> there are subsets M = {mz : i G / } CC Sp(B), 

N = {nz : i G / } CC Sp(C) , m-Bra^ for all z G / 
and x >- \ / M R\/N y y) . 

Evidently, any directed union of stable approximable relations is a stable 
approximable relation. Similarly as in [1] for domain prelocales we shall show 
that stable prelocales and stable approximable relations form a category. 

PROPOSITION 4 .11 . Stable approximable relations are closed under composi­
tion. 

P r o o f . Let R: A —> /? , S: B —> C are stable approximable relations. 
We shall show that R o S is again a stable approximable relation. Evidently, 
the properties 1 and 3 are satisfied. Let us prove the condition 2. Let x G -A, 
M CC C, xR o SM. Then there is a subset N CC B, N = {ny: y G A/}, 
xRn Sy for all H G 71/. We can find an element z G B such that xR? y \/ N, 
i.e.. £#;(/ for all H G A/. Again, we can find an element w G C such that 
:/?lr y \/ M and xRzSw. The condition 4 may be proved dually. Let us prove 
the condition 5. Assume xRzSy. Then there are sets M{ — {mj : i G Ij} CC 
Sp(,l) , /V. = {n? : i G / J CC Sp(B), m j ^ n j for all I G ^ and x >-
V Mx R \/ N,y z and M2 = {m* : j G I2} CCSp(.B), N2 = {n> : j G I2} CC 
Sp(C), nrSnj for all j G / 2 and z y \J M2 S \j N2 y y. 

rrhen for each j G /9 there is an index i- G /-. such that m) Rm^Snj. i.e., 
z j -L lJ J J 

m) RoSn?. Evidently, then x y \J M[ R o S \J N2 y y, here M[ = {m) : 
j el.,}. ' n 

Identities with respect to this composition are given by 

a id^ b <̂ =̂> a y b. 

So we may define a category StVre of stable prelocales and stable approx­
imable relations. 

Now, let us describe the passage from a stable prelocale to a stably continuous 
supercontinuous frame. 
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P R O P O S I T I O N 4 . 1 2 . Let B be a stable prelocale. Then, if we put Td(B) to 

be the set of all lower Scott-closed subsets closed under finite suprcma fh( 

Scott-closed ideals, Td(B) is a stably continuous supercontinuous frame. 

P r o o f . Evidently, any intersection of Scott-closed ideals is a Scott-closed 
ideal, i.e., Td(B) is a complete lat t ice. So we may define a m a p \ : 'D(B) --+ V{ B) 

such t ha t x(U) = {x e B : x < \J M , 71/ C C U}. Evidently. \ is an 
idempotent , extensive and order preserving map . We shall prove that \{U) ^ 

X.(V) = x(u n v)- L e t x G X(U) n \(V). Then there are finite sets M . X. 
M C C U, N C C V, such t ha t x <\J M, x < \J N. Since B is dis t r ibut ive, we 
have t h a t M A N C U n V and x < \J M A N. Then x i s * nucleus on V( B). 

and its image is exactly the frame of Scott-closed ideals. 

We shall prove t ha t Td(B) is a s tably continuous supercont inuous frame. 

Recall t h a t by (LAT4) and roundness , any Scott-closed ideal / satisfies ./ £ / . 

y < x implies y £ 7 , and by (LAT3) and (LAT6), any Scott-closed ideal / is 

a sup remum of all principal ideals JO , a £ I n Sp(B). Let O £ / n S p ( / i A We 

shall prove t h a t [a <^xd(B) ^' 

Firs t , note t h a t V I(y = {x < y{ V . . . yn : y{ £ f n , . . . , yn £ I ^ . !!£[!}. 
rvGA 

••e-, V f» = U { K ? / i V . . . i / J : j/j G / „ , , . . . , J / „ € / „ „ . n G N} by the proper ty 

(LAT1), (LAT2), (LAT4) and the definition of a Scott-closed ideal. Then we have 

t h a t a < y, V . . . y . i.e., O < y for some j . i.e., O £ I . i.e.. I O C / . S o we 

have proved t h a t Td(B) is supercont inuous . Let us prove the stable continuity. 

Evidently, B = { 1 is a compact element of Td(B). Recall that / ^xdiH) '^ 

if and only if / C | O C J for some element O £ J. Now, lei f C [ta C J^ . 

v; = 1,2. Then / , n 72 C j a. n | O2 = |(OL A O2) C J{ n J2 by (LAT2). D 

P R O P O S I T I O N 4 . 1 3 . Let L be a stable continuous supercontinuous franu . 

Then, if we put B(L) = B to be the distributive sublatticc of L generated by 

S p ( L ) , B(L) = ( £ , < ) is a stable prelocale. 

P r o o f . We know t h a t any stably continuous supercont inuous frame is to­
tally bellow generated by its V-prime elements. We shall define on B a relation 
-<B such t h a t 

x -<B y <=> x << y . 

Recall t h a t -<B is t ransi t ive and satisfies the interpolat ion proper ty (both is 
evident) . 

Now, we shall prove t h a t B is a s table prelocale. (LAT1) is satisfied by the 
fact t h a t the relation << preserves finite suprema, and (LAT2) holds trivially 
by stable continuity. (LAT3) follows from the fact t ha t the V-prime elements of 
L form a basis for L . T h e fourth clause follows from the fact tha t < o << o < 
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C < C < . (LAT5) and (LAT6) follow from the definition of B and the fact that 
the V-prime elements form a basis of L. • 

THEOREM 4.14. The category of stable prelocales and stable approximable re­
lations is equivalent to S T S U P E R C O N T , the category of stably continuous 
supercontinuous frames and frame morphisms. 

P r o o f . Let us show that our construction from 4.12 and 4.13 is functorial. 
Now, let g: L1 —> L2 be any frame morphism between stably continuous su­

percontinuous frames. Let (S(L1) , -<x), (B(L2),-<2) be the corresponding bases, 
we put Bx = B(LX) and B2 = B(L2). We shall define B(g) = Rg C Bxx B2. 
We put aR b if and only if there is an element u e Lx such that u <C a and 
b<^g(u). 

Let us show that R is a stable approximable relation. 
1. We have u <C a, and b' <C b <C g(u) implies u <C a and b' <C g(u), 

i.e., aR V. 

2. If M is empty, we have always that 0 <C g(0), 0 <^ x, i.e., for all xRg0 > 
\J M for all x e Bx. Let us assume that M is nonempty, i.e., let x e B± such 
that for all y e M we have xRgy, i.e., there are uy e L1 such that uy <C x and 
y ^ g(u

y)' Then evidently, by (INT) and (LAT1), there is an element w G Bx 

such that u <^w <^x and y <C g(w), i.e., again by (INT) there is an element 
z e B2 such that y < z < g(w) for all y G M , i.e., \f M <^ z <^ g(w), x i ^ z . 

3. We have i z < x C x / , y <C g(u) implies u <C x ' , ty ^C g(^)5 i.e. x'Rgy. 
4. If TV is empty, we have always that y <C g(l) = 1 for every y e B2, i.e., 

for all lRgy for all y e B2. Let us assume that N is nonempty, i.e., let y e B2 

such that for all x G N we have xi? y, i.e., there are ^ G L1 such that iix <C x 
and y <C g(ux). Then evidently, by stable continuity of L± and L2, we have 
that u = /\{ux : x G jY} < f\N a n d 2/ < ^ w ) , i.e., by (INT) and (LAT2) 
there is an element w G B1 such that u <^w <^ f\N^ wR y. 

5. Let u <C x, y <C g(w). Then there is a set N CC Sp(L2) such that 
y <^. \f N <C g('u). Then there is, for all n G JV, an element zn G Sp(L1) such 
that n <C g(^n) and z n < w < x , i.e., there is an element wn G Sp(Lx) such 
that zn < uvn < x, i.e., wnRgn and x > V ^ n ^ g V n » 2/• 

Now, let (-Bj,-<-_), ( B 2 , ^ 2 ) be stable prelocales, R C B1 x B2, a, stable 
approximable relation. Then we shall define a frame morphism fR: Xd(B1) —> 
Xd(B2) as follows: 

/ # ) = x({> e £ 2 : (3aGU H S p ^ ) ) ( a R b ) } ) . 

Evidently, fR({0}) = {0} and fR(Bx) = B2 by the condition 5. Let us prove 
that fR preserves arbitrary nonempty suprema. Evidently, fR is monotone, i.e., 

V UA. Then b < V h 
j€J ' fc=l 
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such that for each bk there is an element ak E Sp(5 1) n V U-, akRbk. Then 
jeJ 

by V-primeness of afc, there is an element uk E U- such that ak -< uk, i.e., 
6k E fniUju)- T h i s S i v e s u s t h a t b<Vb

k£ V / H ( ^ ) -
j € J 

We have to prove that fR(UnV) = fR(U)nfR(V).Now,let yEfR(U)nfR(V). 
m 

Then 6 < V bk s u c n ^na^ ^or e a c n f̂c there is an element a\ E Sp(5 1 ) n U, 
k=i 

n 
akRbk, and b < \J bf such that for each 6̂  there is an element af E S p ( B 1 ) n F , 

z=i 
afRbf. By the property 4, we have that a£ A afRbk A 6̂  for all k,/. Applying 
the property 5, we obtain finite subsets Mkl = {mi : i E Ikl} CC Sp(B1) , 
Nki = ini : i G hi} - - S P ( 5 2 ) ' rniRni f o r a11 * ^ hi> a n d afc A al y 

\J Mkl R \jNkl >- blAbf. Then evidently, Mkl CC U nV H Sp(B 1) , i.e., 
-V fcZcc/^(Uny),i.e., 6< V ^ A b ^ yNkl. 

It is easy to see that Td(B(V)) = L. D 

COROLLARY 4 .15. 27ie category of reflexive stable prelocales and stable ap-
proximable relations is equivalent to S T S U P E R A L G , the category of coherent 
superalgebraic frames and frame morphisms. 

P r o o f . Evidently, for a reflexive stable prelocale B, Td(B) is a coherent 
superalgebraic frame (I E SK(Td(B)) if and only if / = j a for some a E 
Sp(B)). The other direction is evident. D 

DEFINITION. A stable approximable relation i? C)^B on a stable prelocale 
B is said to be finitely separated from the identity if there is a finite subset 
M CC B such that aRb implies that we can find an element m E M such that 
a >- m >- b. 

A stable prelocale B is said to be an LFS-prelocale if ) ^ B is a directed union 
of stable approximable relations finitely separated from the identity. 

THEOREM 4 .17. The category of LFS-prelocales and stable approximable re­
lations is equivalent to the category of LFS-frames and frame morphisms. 

P r o o f . It follows immediately from the definitions and 4.14. D 

COROLLARY 4.18. The category of reflexive LFS-prelocales and stable approx­
imable relations is equivalent to the category of algebraic LFS-frames and frame 
morphisms. 
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5. The category of preframes 

Recall t h a t a preframe (see |3], [11]) is a part ial ly ordered set A in which all 

Unitary infima and all directed suprema exist, and for any x G A and directed 

subset D C A 

x A\Jn = J{xAt: ten}. 

Note t h a t a preframe need not have the smallest element a l though it has 

a largest one, the infimum of the empty set. A preframe morphism is a m a p 

between preframes preserving all finitary infima and all directed suprema. T h e 

resulting category will be called VrcTrm. Evidently, VreTrm is then a sub­

category of the category of dcpos and Scot t -cont inuous mappings and Trm, is a 

subcategory of VreTrm. An LFS-object in VreTrm is called an LFS-preframe. 

Evidently, any LFS-preframe is an FS-domain . 

For A, B G VreTrm, let A —• B be the poset of all preframe maps / : A —> B, 
ordered pointwise. Define 1 : = {1} and _L := { 0 < 1} (JL = 2 ) . 

L E M M A 5 . 1 . The category VreTrm is closed under 1 . _L and —• . 

P r o o f . Let A, B be objects in VreTrm. We know t h a t A-+B C 

[.4 —> B|, and the s u p r e m u m s in [A —» B] of a directed subset D of A—• B 

exists and is the pointwise one. We have to show t h a t s preserves finite infima. 

Evidently, s(l) = 1. Now, let x , y <E A. T h e n 

s(x) A s(y) = \J d(x) A UT e(y) = UT d(x A y) = s(x A y) 
deD e£D dED 

by the preframe dis t r ibut ive law and the directness of D . T h e function Ax. 1B : 

A —> B is the top of A—B. Now. let f,g <E A—B. T h e n evidently / A g 

preserves finite infima, and we have 

(/ A 5)(UT S) = / (UT S) A g(U] S) = UT /(5) A [JT g{S) 
= UTUT / («)Af l ( t ) = UT(/Aff)(S), 

. s G S t G S 

i.e.. / A (y £ A -+ B. Finally, 1 and _L arc preframes. D 

T h e following proposi t ions are well known (see [3], |11]). 

L E M M A 5 .2 . The category VreTrm has arbitrary products and coproducts. 

P r o o f . Evidently, a car tes ian p roduc t of a sys tem of preframes is a pre­

frame as well. Let (-4?:).,;e/ be any family of preframes, A C Y[ A, a subset 

consisting of all those a = (a-).iej whose suppor t spt(O) = {i G I : a,- < 1-}, 
1; the top element of A-;, is finite. A is closed under finite infiuicu and directed 
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suprema in f ] Ai and hence a subpreframe of the la t ter . We liave preframe 
iei 

maps ki: Ai —> A defined by 

{ x if j — i, 
:J { 1- o therwise , 

and it is easy to see t h a t they are the coproduct injections. • 

COROLLARY 5 .3 . Finite products and finite coproducts coincide in VrcJ-nn . 

L E M M A 5 .4 . 

1. The forgetful functor from VreTrm to Set has a left adjoint. Mori occr. 

the monadic length of the adjunction is 2 . 

2. The free preframe over a meet-semilattice S is the ideal completion 

Icll(S). 

3. The free frame over a meet-semilattice S is the set T>(S) of lower closid 

sets of S. 

4. The free frame over a preframe A is the set T(A) of Scott-closed subsets 

of A. 

P r o o f . See [3] and [11]. • 

PROPOS IT ION 5 .5 . Let S be a meet-semilattice, and let R be a set (coverage) 

each of whose elements has the form (X, a) where X = (x?)ieJy is a monotone 

net in S, and a is an upper bound in S for {xt- : i G P} . Then the preframe 

presentation 

VreJ-rm(S(qua meet-semilattice) | [_^ X = a ((N , a) G /?)) 

exists. 

P r o o f . See [11]. • 

So we have the following 

T H E O R E M 5.6 . 

1. VreTrm has equalizers and coequalizers. 

2. VreTrm has arbitrary limits and colimits. 

The category SF7F of sets and set- theoret ic functions is cartesian closed, and 
the functions 

curry: CAxB -> (CB)A , curry := Xf . Xa . Xb . f(a. b) 
4 v *- ! 

uncurry: (C ) —> C x , uncurry := Xg . X(a,b) . g(a)(b) 

are mutua l ly inverse bijections. This provides us with the concept of a bimor-

phism if we characterize the set uncurry(A-^ (B—• C)) in CAxB . 
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DEFINITION 5.7. For objects A, B and C in VreTrm, a set-theoretic func­
tion / of type / : A x B —> C is a bimorphism if and only if 

VaG-4 : \b . f (a,b): B — -» C is a preframe morphism, 
VbE17 : AO . /(O, b): 4̂ —• C is a preframe morphism. 

We denote by B'\\(AxB, C) the poset of all bilinear functions / : A x B —> C in 
the point/wise order. 

LEMMA 5.8. For objects A, B and C in VreTrm, B\\(AxB,C) is indeed 
an objeet in VreTrm . 

P r o o f . Let / , g e B\\(AxB, C). Let a e A, b,c£ B, S C B, S directed. 
Then 

( /A r 7 ) (O ,U T ^ )== / (a ,LJ r ^ )Ag ( a ,U T ^ ) = U T / (a , ^AL | T . g (a , l ) 
ses tes 

= U T ( / A O ) ( O , 5 ) , 
»es 

(f(a, b) A O(O, b)) A ( / ( a , c) A .O(O, c)) = ( / ( a , 6 A c) A g(O, b A c)) 

= (f Ag)(a,bAc). 
rlne rest is evident. 

Similarly, let D C B'\\(AxB,C), D directed. Let a e A, b,c e B, S C B, 
S directed. Then 

(U1 D) (a, U r S) = UT d(a, UT S) = UT UT d(«, *) 
deD deD ses 

= UT(UT^(«^), 
ses 

(J I))(a,b)A(J D)(a,c)= J d(a,b) A J t(a,c) = J J d(a,b) At(a,c) 
deD teD deDteD 

= J d(a,bAc). 
deD 

• 
Recall that a bilinear map f: A x B —> C need not be a morphism in 

VreTrm, nor is a map g £ A x L? —o C bilinear in general. If we restrict the 
maps curry and uncurry to Bil(AxL?,C) and A—• (B —• C), we get a natural 
order-isomorphism between Bi\(AxB,C) and A—• (B —• C). 

LEMMA 5.9. Let A, B and C be objects in VreTrm. Then the restric­
tions of curry and uncurry are mutually inverse order-isomorphisms between 
Bil(.4xI3,C) and A-*(B—C). In particular, B\\(AxB,C) is an object in 
VreTnn and, the restrictions curry and uncurry are isomorphisms in VreTrm. 

P r o o f . Given curry and uncurry as defined on all set-theoretic functions 
CAxH and (CB)A , we know that they are mutually inverse functions on these 
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sets; bu t , from the definition of bilinearity, we easily get t ha t the curried ver­
sion of / G B i l ( A x B , C ) is in A—•(F?—• C ) , and t h a t the uncurr ied version 
of some O G A—• (B —• C) is bilinear . Since curry and uncurry are monotone , 
they preserve all suprema and infima which exist in B i l ( A x B , C), .4 —• (B —• C) 
respectively . • 

Therefore, we obta in the na tu ra l isomorphism A 0 B — C = A-+ (B -+C) 

by showing 

Bil(AxB,C) ^A®B^C. (4) 

For tha t , it is sufficient to have a preframe A(g)B and a bilinear m a p X>: A:< B -^ 

A & B which is universal among all bilinear maps of type / : A « B —> C. For 
all such / , there exists a unique preframe morphism f:A<g)B—*C such tha t 
/ o (g) = / . The isomorphism is then verified by sending / to / . 

Now, let us first const ruct , for meet-semilat t ices A and B, their meet-

semilat t ice tensor product A ® B as 

A 0 m £ = A - SemiCat(a ® m 6 (a G A, 6 G 15) | 

AS®mb = Ma®mb: aeS] (S CC A) 

A^ ®m T = A{« ®m 6 : ^ T } ( r CC 0)) . 

Recall t h a t , if A , B and C are meet-semilat t ices , and / : A K 15 — > C is a 

b imorphism with respect to finite infima, then there exists a meet-semilat t ice 

morphism / : A <g)m B —* C such t h a t / ( a 0 m b) = f(a,b). 

Now, let us construct the preframe tensor produc t 4 ® B of preframes A 

and I5 (see [11]). We take their meet-semilat t ice tensor produc t A Cv„, B and 

then equip it wi th the coverage R generated by all pairs (A" &m b, a Cn! b) and 

(a &>m y , O ® m b), where X and y are monotone nets in A and H, wi th joins O 

and 6, X® b denotes the monotone net (xOrnb \ x G A ) , and a >)m y denotes 

the monotone net (O (g)m H | H G y ) . Then the preframe A eg) B is presented as 

{A®mB\R). 

Recall the following proposi t ion (see [11]). 

P R O P O S I T I O N 5 .10 . VreTrm has a symmetric monoidal structure ( V . I ) . 

where 1 = 2 , and — <g> A is a left adjoint to A—* — . 

D E F I N I T I O N 5 . 1 1 . A filter F C A, A a preframe, is called Scott-open if 
[J1 M G F implies F D M ^ 0 for all directed MCA. 

P R O P O S I T I O N 5 .12 . Lel ,4 bO O preframe, and let F be a subset of L. 'The 
following are equivalent: 

1. F is a Scott-open filter. 

2. XF W a preframe homomorphism from A to 2 , here 

f l ifaeF, 
A / • • ( « ) = i n , , 

[ I) otherwise. 
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P r o o f . Let F be a Scott-open filter. Then XF preserves finite infima and 
directed suprema. Conversely, for a preframe morphism XF •> F ~ X F ] ( { 1 } ) *S a 

Scott-open filter. D 

DEFINITION 5.13. Let A be a preframe. The points of A are the Scott-open 
filters of A. The collection pt(A) of all points is turned into a preframe S(A) 
by requiring all those subsets of pt(y4) to be in &(A) which are of the form 

Tx = {Fe pt(A) | x e F}, xeA. 

PROPOSITION 5.14. The sets Tx, x e A, form a subpreframe of V(pt(A)). 
Moreover, any Tx is a Scott-open filter on pt(A). 

P r o o f . We have f) Tv — T A ^ , M finite, because points are filters 
1 1 £ m / \ •£ m 

rn£M m£M 

and (J Tx = Ty x^ because they are Scott-open. • 
iei ' ' iei 

We may assign to a preframe A the preframe pt(A) = A—»2 of all points 
of A, and, to a preframe morphism h: B —> Am, the map pt(h): pt(Ai) —> pt(17) 
which assigns to a point F the point b_1(K), we get a contravariant functor, 
also denoted by pt, from VreTrm to VreTrm. Applying pt twice, we get 
a covariant functor S , from VreTrm to VreTrm, i.e., a preframe A can be 
mapped into the preframe of points of pt(.A). We map a G A to the Scott-open 
filter T of all Scott-open filters containing a. This assignment, which we denote 
by // x: A —> pt(pt(A)) , is a preframe morphism: Let a G / 4 , F be a Scott-open 
filter of A. Then we have: Ta G TF <=^ F G Ta ^=^> a G F. It also 
commutes with preframe morphisms / : A —* B: 

pt{pt(f)){nA(a)) = p tC/" 1 )^ ) = ( r 1 ) - 1 ^ ^ PtW •• a G F}) 

= {K' G pt(B) : a G / ^ ( - F ' ) } = {F' G pt(-B) : / ( a ) G F ' } 

= ^/(a) = VB ° / ( a ) ' 

So the family of all r?A constitutes a natural transformation from the identity 
functor to pt o p t . 

We can now formulate the preframe version of the Stone Duality Theorem: 

THEOREM 5.15. The functor p t : VreTrm —> VreTrm is selfadjoint. The 
unit and counit is ij. 

P r o o f . It remains to check the triangle equality 

pt(A) ^p t 3 ( .4) 

pt(A) 
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Let F be a Scot t -open filter in A. Then 

p t ^ H V u ) ^ ) ) = ^{fy) = {* e A I VA(X) G FF} 
= {xe A | Tx e .?>} 

= {x € 4̂ | F G ^ J 
= {.r G A | x G F } = /•'. 

LEMMA 5 .16 . ( P I T ) Let A. B be continuous complete prcframcs. f: A — B 

a pre frame morphism. Then f is a continuous map with respect to the Luicson 

topology. Moreover, f preserves arbitrary infima. 

P r o o f . It is an easy corollary of ([12; p. 30V Corollary]). IJ 

6. Linear FS-preframes 

LEMMA 6 . 1 . Let A and B be LFS-preframe s. Then: 

(i) the poset A-+ B is an LFS-preframe, 

(ii) A 0 B is an LFS-preframe, 

(tii) A is stably continuous, i.e., A is compact, and a <C b. a <C c implies 

a « f t A c . 

P r o o f . 

(i): T h e proof follows from the proof of L e m m a 5 in [8] and from O.V 

(ii), (iii): T h e proof copies the proof of 3.8. Z 

T H E O R E M 6 .2 . (STONE DUALITY FOR L F S - P R E F R A M E S ) The catcgori, 

of LFS-preframes is self dual. 

P r o o f . Apply 5.15 and 6.V Z 

P R O P O S I T I O N 6.3. 

(STONE DUALITY FOR A L G E B R A I C L F S - P R E F R A M E S ) The category of 
algebraic LFS-preframes is self dual. 

P r o o f . Apply 6.2 and the fact t ha t a preframe is algebraic if and only if 
its lat t ice of Scot t -open filters is algebraic . Z 

PROPOS IT ION 6 .4 . Let A be a LFS-preframe. Then A is a complete stably 

continuous lattice. 

P r o o f . By 3.16, we know t h a t A has a rb i t ra ry infima, i.e., it is a complete1 

lat t ice. Z 
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Recall tha t , for any preframe A , we have a preframe m a p iA : A —» T(A)1 

here T(A) is the la t t ice of all Scott closed subsets of A (lower sets closed under 

direc ted joins) , defined by iA(a) = {x G A : x < a). Moreover, this m a p is (see 

[,\\ Proposi t ion 1]) the universal preframe homomorph i sm from A to frames. 

P R O P O S I T I O N 6 . 5 . Let A be an LFS-preframe. Then the frame T(A) of all 

Scott-closed subsets of A is an LFS-frame in which the subset Sp( 'T(A)) is 

closed under finite infima. Moreover, the directed set of finitely separated frame 

morphisms may be chosen such that those preserve V-prime elements. 

P r o o f . Let V C A—• A be a direc ted subse t such that id^ = |__f T> and 

for all d G V there is a finite set Md C C A such that for all a. G A there is 

an clemen t m G Md such that d(a) < m < a. Eviden t ly, for all d G T> the 

composi t ion i4 o d: A —* T(A) is a preframe homomorph ism. Then , by the 

universality of i4, there is exac t ly one frame homomorph i sm d: T(A) —•> T(A) 

such tha t doi x — iAod. This gives us, for all a G A, that d(iA(a)) = iA(d(a)) < 

l \(llO < l4(a). Since any elemen t of T(A) is a join of elemen ts of the form 

/ x(a). a G A, we have, pu t t i ng Mj to be the join-subsemila t t ice genera ted 

by the set i A(Md), that d is finitely separa ted from the iden t i ty and eviden t ly 
i(1T(,\) = U r ^ h e r e V = {d: deV}. D 

Recall that, in [12], one defines a m a p / : X —> Y be tween con t inuous pose ts 

to be a Lawson map if it is con t inuous, and, in addi t ion, the m a p f~l : cr(Y) —• 

rr( A') preserves open filters, i.e., V-prime elemen ts of cr(X). So we shall say that 

a frame A is Lawson if Sp(v4) is a mee t -subsemila t t ice of A . A frame morphism 

between Lawson frames is said to be Lawson if it preserves V-prime elemen ts. 

We shall say that a frame is a Lawson LFS-frame if it is an LFS-objec t in the 

subcategory of Lawson frames and Lawson frame morphisms . 

P R O P O S I T I O N 6 .6 . Let A be a Lawson LFS-frame. Then Sp(A.) is an 

LFS-preframe and a subpreframe of A. 

P r o o f . Let A be a Lawson LFS-frame. Then evidently, for any Lawson 

map / : A —» A, we have that g = / I g r ) / ^ : Sp(A) —> Sp(.A) preserves direc ted 

suprema and finite infima. Moreover, for any finitely separa ted function d in A 

we can always choose the set Md C C A such that Md H Sp(A) is a separa t ing 

set in Sp (A) . So we have that Sp(.4) is an LFS-preframe. D 

T H E O R E M 6.7. ( S T O N E D U A L I T Y F O R L A W S O N L F S - F R A M E S ) The 

category of LFS-preframes is equivalent to the category of Lawson LFS-frames. 

P r o o f . Apply 5.15 and 6.1. D 
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P R O P O S I T I O N 6 .8 . 

( S T O N E D U A L I T Y F O R A L G E B R A I C L A W S O N L F S - F R A M E S ) The cate­

gory of algebraic LFS-preframes is equivalent to the category of algebraic Lawson 

LFS-frames. 

P r o o f . Apply 6.2 and the fact that a preframe is algebraic if and only if 

its la t t ice of Sco t t -open filters is algebraic. • 

P R O P O S I T I O N 6 .9 . Let A be an algebraic complete stably continuous prcframt 
such that F C K(A) finite implies that the sublattice ( F ) L C K(A) generated by 
F U { 1 } is again finite. Then A is an algebraic LFS-preframe. 

P r o o f . Le t F C C K(A). We define a m a p d F : A —> A as follows 

dF(a) = \J{xe (F)l : x < a} 

for all a G A. Then evidently , \J] dF(an) < d F ( U T a a ) - N o w ^ l e t x e (F) I « 

x < U^ aa • T h e n there is a ( ) such that x < a , i.e., x < [_\^ dF(an). So we 

have that d F preserves direc ted suprema. We shall prove that dF preserves 

finite infima. Eviden t ly , dF(l) = 1. We have dF(a) AdF(b) > dF(aAb). Assume 

that x,y G ( F ) 1 5 x < a , y < b. Then x A y G ( F ) n x A y < a A b. i.e.. 

x A y < dF(a A b). So we have dF(a) A dF(b) < [_\] {x G ( F ) , : j - < a} A 

UT{2/ ^ <^>i = V<b} <\J{x^y£(F)i: xAy<aAb}<dF(aAb). 
Eviden t ly , dF • dF = dF, i m d F = ( F ) 1 is finite, dF(a) < a and 

U^ dF(a) = a by the algebraicity of Ai. So we have that A is an LFS-preframe. 
ECCK(^) 

• 
Similarly as in [8], we can prove an in ternal descrip t ion of the algebraic 

LFS-preframes. 

P R O P O S I T I O N 6 . 1 0 . A preframe A is an algebraic LFS-preframe if and only 

if \c\A = [^ V for some directed set V in VreTrm(A, A) such that d2 = d and 

irn d is finite for all d G V. 

P r o o f . Such a preframe A is an LFS-preframe, for each d G T> is finitely 
separa ted from id A. by its image; it is also algebraic wi th K(/L) = | J i m d . 

der> 
Conversely, if A is an algebraic LFS-preframe, we are done if k G K(.-l) is in 

the image of some d2 = d < Id A in VreTrm(A1 A) such that i m d is finite. As 
A is a LFS-preframe, we have k < f(k) < k for some / separa ted from id A' 
in VreTrm(A, A) by some finite set M = { m x , . . . , m ^ } . Then , d , :== / / + 1 is 
in VreTrm(A,A), idempo ten t and below / . I ts image, fix/ C M is finite and 
clearly con tains k. • 

Apply ing 6.9 and 6.10, we have 
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THEOREM 6 . 1 1 . Let A be a preframe. Then the following are equivalent 

(i) A is an algebraic LFS-preframe. 
(ii) A is an algebraic complete stably continuous preframe such that any 

sublattice of A generated by a finite subset of compact elements of A is 
finite. 

(iii) id A = \_§ T> for some directed set T) in VreTrm(A, A) such that d2 = d 

and im d is finite for all d £ T>. 

(i) ^ (iii): B y 6.10. 

(ii) = > ( i) : B y 6.9. 

(iii) => (ii): Le t S C C K(A). T h e n there is d £ V such tiiat d2 = d, 

d(s) = s for all s G 5 , i.e., S C i m d . Le t a, b £ i m d . T h e n a, b £ K(A) and 

d(a) = a , d(b) = b. This gives us d(a V 6) < a V b < d(a) V d(b) < d(a V b), i.e., 

a V b £ i m d . Similarly, d(a Ab) = d(a) Ad(b) = a Ab , i.e., a Ab £ i m d , i.e., i m d 

is a finite subla t t ice of A . • 

PROPOS IT ION 6 . 1 2 . Lel A be a complete stably continuous preframe such 

that F C A finite implies that the sublattice (F) C A generated by F is again 

finite. Then A is an LFS-preframe. Moreover, A is a retract of an algebraic 

LFS-preframe. 

P r o o f . We define a pair of maps e: A —> ld(A), p: ld(A) —» A, ld(A) 
being the la t t ice of all ideals of A, as follows 

e(a)=la, p(a) = \J I 

for all a £ A and all L £ I d ( A ) . T h e n evidently , by s table con t inui ty of A, 

c(a) Pie(b) = e(a A b), e(0) = { 0 } , e ( l ) = .A, and, by the in terpola t ion proper ty 

of <C, |_Ĵ  e ( a
a ) = e ( L P acc) • ^ e e a s i l Y s e e t h a t p preserves directed sup rema 

(V ^ OL ' 

and finite infima. Moreover, p-e = \dA, i.e., A is a preframe re t rac t ion of I d ( A ) . 
Since compac t elemen ts of Id(A) are principal ideals, we have that Id (A) satisfies 
the condi t ion (ii) of 6.11, i.e., Id(A) is an algebraic LFS-preframe. So we have 
tha t A is an LFS-preframe. D 

S t o n e d u a l i t y for a b s t r a c t A - s e m i l a t t i c e b a s e s . 

D E F I N I T I O N 6 . 1 3 . An abstract A-semilattice base (B, -<, A, 1) is given by a set 
B toge ther wi th a A-semila t t ice transitive rela t ion -< on B and a A-semilattice 
operat ion A on B and a larges t elemen t 1 wi th respec t to the semilat t ice or­
dering, such that -< is an abs t rac t base on 13 and the following condi t ions are 
satisfied: 

(SLAT1) y^N => y^/\N, 
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(SLAT2) < ° ^ < 0 < ^ - < ^ < and [: B —» 2 z Ms an infective mapping., 

(SLAT3) (-B,A, 1) is a A-semilattice, 

holds for all elements y and finite subsets N of £?. 

D E F I N I T I O N 6 . 1 4 . An approximable relation R between abs t rac t A-semi-
latt ice bases B and C is called A-stable approximable relation if the following 
condit ion is satisfied: 

VyEC V7VCCZ3 (VxGjV J'/tH ==> there is an element .r G /i 

such t h a t A A ' >̂  irR!j) • 

Evidently, any directed union of s table approximable relat ions is a s table 

approximable relation. Similarly as in [1], for domain prelocales. we shall show 

tha t s table prelocales and stable approximable relations form a category. 

PROPOS IT ION 6 . 1 5 . A-stable approximable relations are closed under compo­
sition. 

P r o o f . It is evident . G 

Similarly as for s table prelocales wre may define a category A —Asb of abs t ract 

A-semilattice bases and A-stable approximable relat ions . 

PROPOS ITION 6 .16 . Let B be an abstract A-semilattice base. Then, if ire put 

Td(B) to be the set of all directed lower Scott-closed subsets the Scott-closed 

ideals, Td(B) is a stably continuous preframe. 

P r o o f . Evidently, a finite intersection of Scott-closed ideals is a Scott-
closed ideal, and a directed union of Scott-closed ideals is a Scott-closed ideal. 
Moreover, for a Scott-closed ideal 7 , a € I if and only if [ a <C I. This gives us 
t h a t Td(B) is a s tably continuous preframe. • 

PROPOS IT ION 6 .17 . Let L be a stable continuous preframe. Then, if ur 

put B(L) — B to be the A-semilattice L, B(L) = (B. <C) is an abstract 

A-semilattice. 

P r o o f . Similar to 4.13. Z\ 

T H E O R E M 6 . 1 8 . The category A-Asb of abstract A-semilatticcs and A-stabh 
approximable relations is equivalent to S T C O N T P R E F , th( category of stub!g 
continuous preframes and preframe morphisms. 

P r o o f . The idea of the proof follows the proof of 4.14. I] 

COROLLARY 6 . 19 . The category of reflexive abstract A-scrnilattices and 
A-stable approximable relations is equivalent to S T A L G P R E F . th( cat ego rg 
of stably continuous algebinic preframes and preframe rnorpfiisms. 
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DEFINITION 6.20. A A-stable approximable relation R ^yD on an abstract 
A-semilattice B is said to be finitely separated from the identity if there is a finite 
subset M CC B such that aRb implies that we can find an element m G 11/ 
such that a y- in y b. 

An abstract A-semilattice B is said to be an LFS-A-semilattice if yB is a 
directed union of A-stable approximable relations finitely separated from the 
identity. 

THEOREM 6.21. The category of LFS-A-semilattices and A-stable approx­
imable relations is equivalent to the category of LFS-preframes and preframe 
morphisms. 

P r o o f . It follows immediately from the definitions and 6.18. • 

COROLLARY 6.22. The category of reflexive LFS-A-semilattices and A-stable 
approximable relations is equivalent to the category of algebraic LFS-preframes 
and preframe morphisms. 
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