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MAPS ON SURFACES AND GALOIS GROUPS 

G A R E T H A. J O N E S 

(Communicated by Martin Skoviera ) 

ABSTRACT. A brief survey of some of the connections between maps on sur­
faces, permutat ions, Riemann surfaces, algebraic curves and Galois groups is 
given. 

My aim here is to give a brief survey of some of the connections between 
maps on surfaces, permutations, Riemann surfaces, algebraic curves and Galois 
groups. Some of these connections are very well-known, some are surprisingly 
old, and others are quite new. Taken together, they provide a good illustration 
of the essential unity of modern mathematics. Indeed, there are further links 
with other topics such as Teichmuller theory and conformal field theory, which 
are beyond my capacity to explain here. 

Many people have discovered or re-discovered parts of this theory, but the first 
person with the imagination to see the whole picture was G r o t h e n d i e c k , 
inspired by a theorem proved by B e l y i [2] in 1979. In its most basic form, 
the theory asserts that Galois groups of algebraic number fields have faith­
ful representations on maps on surfaces, sometimes called dessins d'enfants. 
G r o t h e n d i e c k outlined this (and much more) in 1984, in his Esquisse d'un 
Programme [12], a research proposal full of tantalizing ideas and conjectures, 
sometimes precise and sometimes vague, but always highly original. The pro­
posal was not successful, he abandoned the project, and for a while, that seemed 
to be the end of the story. However, in recent years, researchers from a num­
ber of countries, and from a wide variety of disciplines, have started to piece 
together the various clues G r o t h e n d i e c k has left, and a powerful general 
theory is now emerging. Here, I will concentrate mainly on the combinatorial 
and algebraic aspects, with particular emphasis on embeddings of graphs, and 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C10. 
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especially bipartite graphs. The experts on dessins d'enfants should be familiar 
with the theorems stated here, but some of the examples I have provided may 
be new. For a rather more general introductory survey, see [22], and for a recent 
series of specialist papers, see [31]. 

1. Bipartite maps and permutations 

It has long been known that maps on surfaces can be represented by permu­
tations. There are many ways of doing this (almost as many as there are people 
doing it), but nevertheless, these methods all have many features in common. 
For simplicity, I will concentrate on one of the most basic situations, the embed­
ding of a bipartite graph in an oriented surface, but I will occasionally indicate 
where generalizations are possible-

Let X be a compact, connected, oriented surface without boundary. (From 
now on, I will simply use the word "surface" to denote such an object, except 
when the context obviously indicates otherwise.) Let B be a bipartite map on 
X, that is, a 2-cell embedding of a finite bipartite graph Q in X. One can colour 
the vertices of Q black and white, so that all edges connect vertices of different 
colours. (There are just two ways of doing this, differing by transposition of 
the colours, and the particular choice is usually unimportant.) At each black 
vertex, the chosen orientation of X induces a cyclic permutation of the incident 
edges; since each edge meets a unique black vertex, these local rotations are the 
disjoint cycles of a permutation g0 of the set E of edges of B. Similarly, the 
local rotations around the white vertices determine a permutation gx of E, as 
shown in Figure 1. 

orientation of X 

F I G U R E 1 . 

These two permutations generate a subgroup G of the symmetric group SE of all 
permutations of E, called the monodromy group of B (the reason for this name 
will become clear later): the elements of G are just the finite products of powers 
of g0 and g1. Our topological assumptions imply that Q must be connected, 
so that G acts transitively on E. (Note that G is not, in general, a group of 
automorphisms of B, or even of Q, since g0 and gx do not preserve incidence.) 
It is straightforward to check that the faces of B correspond to the cycles of the 
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permutation g^ := (go#i)~1 : e a c n c y c l e °f l e n g t n I corresponds to a 2/-gonal 
face. One can reverse this process, so that every 2-generator transitive subgroup 
of the symmetric group SN represents an oriented bipartite map: the edges are 
the N symbols permuted, and the cycles of the two generators determine the 
sets of black and white vertices together with the local rotations of edges around 
them. 

If bipartite maps B and Bl are defined by pairs g{ and g[ of permutations, 
then a morphism B —> B' (preserving orientations and vertex-colours) is a func­
tion (j>: E —> E' between their edge-sets such that g{<\) = </>ĝ  for i = 0 , 1 . In 
particular, an automorphism of B (as a bicoloured oriented map) is a permu­
tation of E commuting with each g^, or equivalently with G. These form a 
group Aut0 23, the centralizer of G in the symmetric group SE , which preserves 
the orientation of X and the colouring of the vertices. (This group should be 
distinguished from the possibly larger group Aut B of automorphisms of the un-
coloured oriented map 23, which may permute the vertex-colours; these are the 
elements of SE which conjugate the set {go>#i} t o itself. Similarly, one could 
also allow automorphisms which reverse the orientation by inverting these gen­
erators gi, but, in this paper, I will restrict attention to orientation-preserving 
automorphisms.) I shall call B bipartite-regular if Aut0 B is as large as possi­
ble. There are several equivalent ways of expressing this more precisely: Aut B 
acts transitively on E, Aut 23 has order N where N = \E\, or G is a regular 
permutation group (transitive, of minimum order JV), and under these condi­
tions (though not otherwise), the groups Aut23 and G are isomorphic. (This 
definition of regularity is a little weaker than the concept of regularity of an 
uncoloured map, which I will discuss in the next section.) 

EXAMPLES. 

(1) Let Q be the complete bipartite graph Km n ; this has m black vertices 
v\-> - - -' vm a n d n white vertices w11..., wn, with a single edge e-• = v{w- be­
tween each pair vi and w-, so that there are N = mn edges in all. Let us use 
the numbering of the vertices to define the obvious local rotations of edges, as 
in Figure 2: we let g0 have disjoint cycles (e i ] L , . . . , ein), one for each black ver­
tex vi, and similarly, gx = ( e n , . . . , e m l ) . . . ( e l n , . . . , e m n ) . These permutations 
commute, and they generate a group G = (g0) x (gt) = Cn x C m of order N 
which permutes the edge-set E regularly; thus the bipartite map Km n which 
they define is bipartite-regular with Aut Km n = Cn x C m . Since the permuta­
tion g^ = ( g ^ ) - 1 has cycles of length [m, n] , the least common multiple of m 
and n , the faces of this map are all 2[m, n]-gons; the number of faces is therefore 
2N/2[m, n] = (m, n ) , the highest common factor of m and n , so Km n has Euler 
characteristic (m + n) — mn-\-(m,n) and genus ( (m—l)(n —1) + 1 — ( m , n ) ) / 2 . 
In particular, Kn n has genus (n — l) (n — 2) /2 . 
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vi+i 
) ™j + l 

FIGURE 2. /Cm ? n. 

(2) Let Q be the n-dimensional cube graph Qn, where n>2. The vertex-set 
V is the n-dimensional vector space Z 2 over Z 2 , or equivalently, an elementary 
abelian group of order 2 n . The graph is the Cayley diagram for V with respect 
to its standard basis e-^ . . . , en: two vertices are joined by an edge if they differ 
(as vectors) in just one coordinate place, so each vertex v is incident with n 
edges vw, which we can label j = 1 , . . . , n as w = v + e •. By colouring each 
vertex black or white as the sum of its coordinates is 0 or 1 in Z 2 , we see that Q 
is bipartite, with the black vertices forming a subgroup V0 of index 2 in V, that 
is, a subspace of codimension 1. Around each black vertex, let the rotation g0 

be given by the cyclic ordering (1, 2 , . . . , n) of the edge-labels, and around each 
white vertex, let gx use the inverse ordering (n,n — 1 , . . . , 1). Then all cycles 
of g^ have length 2, so we obtain a 4-gonal embedding Qn of Qn, each face 
being incident with four vertices v, v + e •, v + e • + e •_1, U + e • 1 in this cyclic 
order or its inverse, as in Figure 3. (The subscripts j are regarded as elements 
of Z n , so that e 0 = en.) 

V + Є v+ej-l+eз V + e v + e. 

j — 1 v+e •j-1 

F I G U R E 3. Q n . 

Since Qn is bipartite and all the faces are 4-gons, this embedding of Qn has 
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the maximum number of faces, so it must be of minimum genus: there are 2 n 

vertices, n 2 n _ 1 edges and n 2 n ~ 2 faces, so the characteristic is (4 — n ) 2 n ~ 2 

and the genus is 1 + (n — 4 ) 2 n _ 3 . The automorphism group Aut Qn has a 
normal subgroup V̂  = C ^ _ 1 which permutes each of the two monochrome sets 
of vertices regularly; this is generated by the half-turns h. (j = 1,2, ...,n) 
about the mid-points of the faces 0, ej_11 e^_x+e^ e-, which permute the 
vertices by v i—> v + e __1 + e •. This subgroup is complemented by a cyclic group 
of order n, generated by an automorphism which fixes 0 and acts on its adjacent 
vertices by e • i—> e •, 1 . It follows that Aut 0 Qn permutes the edges transitively, 
so that Q is bipartite-regular. When n = 3, for example, Q3 is the cube, the 
black and white vertices are the vertices of two inscribed tetrahedra, and Aut Q3 

is the rotation group of each of them, isomorphic to A4. In the case n = 4, we 
obtain the torus map {4 ,4} 4 0 , shown in Figure 4 with opposite edges identified; 
it is one of an infinite class of torus maps described by C o x e t e r and M o s e r 
in [10; §8.3]. This general construction of Qn is based on that given by B i g g s 
and W h i t e in [5; §5.6]. 

т ? т ? ° 

І O І o A 

o i o ó o 

o o ó O І 

• o 1 o • 

FIGURE 4. Q 4 = {4,4} 4 0 . 

(3) The map Qn is not the only bipartite-regular embedding of Qn. If we 
define the rotations g0 and gx by using the same cyclic ordering (1, 2 , . . . , n) of 
the edge-labels, as in Figure 5, we find that g^ now has cycles of length n , so 
the faces are 2n-gons and the genus is 1 + (n — 3 ) 2 n _ 2 . For instance, Q3 is the 
torus map {6, 3} 2 0 of [10; §8.4], shown in Figure 6 with opposite edges identified. 
One can obtain Qn from Qn (and vice versa) by applying the Petrie operation: 
the underlying graph Qn is preserved, but the faces of Qn are replaced with its 
Petrie polygons ([10]). 
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v+e-

*\ O" 
j - i v+e •j-1 

FlGURE 5. Q'n. 

FIGURE 6. Q(, = {6 ,3} 2 | 0 . 

These are bounded by closed zig-zag paths which turn alternately left and right 
on O at the vertices, so this operation is equivalent to replacing the generating 
pair g0,g1 with the pair g0'#i * ̂  therefore preserves both the monodromy 
group G = (go>gi) a n d the automorphism group (the centralizer of G) , so in 
particular it follows that Q'n is bipartite-regular, with Aut Q'n = Aut Qn. (It is 
a curious fact that Q'n and Q n + 1 have the same genus, so they can be drawn 
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on the same surface. For instance, Figure 7 shows how to convert Q'3 into Q4 

by replacing each of its four hexagons with two squares and four half-squares. It 
would be interesting to have a more general explanation of this phenomenon.) 

FIGURE 7. 

2. Maps and pe rmutat ions 

When using permutations to describe maps, one is not restricted to embed-
dings of bipartite graphs. Let Ai be an oriented map on X, where the underlying 
graph Q is finite but not necessarily bipartite. One can form a bipartite map 
B from M. by first colouring all the vertices of M black, and then inserting a 
white vertex of valency 2 in each edge of M. Thus each edge e of M. yields two 
edges of S , which can be regarded as directed edges of M, pointing in either 
direction along e. By applying the method of the previous section to B, we 
obtain a transitive group C = (c0,c1) < S2N of permutations of these directed 
edges, where c0 and cx are the rotations around the black and white vertices, 
as shown in Figure 8. 

—o-

M 

FIGURE 8. 

This permutation group C is the monodromy group of B, also called the carto­
graphic group of Ai. By our construction, c\ -= 1. Any transitive permutation 
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group C = (c0,c1 | c\ = 1,...) arises in this way: the vertices, edges and 
faces of M are the cycles of c0 , cx and c ^ := ( C Q C - J - 1 , with incidence given 
by non-empty intersection. (To allow for the cases where the involution cx has 
fixed-points, one has to allow M to have "free edges", or "half-edges" e, incident 
with only one vertex of M; in forming B, one places a white vertex of valency 
1 at the other end of e, giving a single edge of B fixed by c1.) Morphisms and 
automorphisms are defined as before as functions and permutations commuting 
with the generators c{, so in particular the automorphism group Aut M of M 
is the centralizer of C in S2N. We say that M is regular (as an oriented but 
uncoloured map) if Aut M has maximal order 2N, so that it acts transitively 
on the directed edges, in which case AutyVf = C. (Note that if M happens to 
be bipartite, then Aut M may be strictly larger than Aut M, since there may 
be automorphisms which transpose the two sets of vertices.) 

EXAMPLES. 

(1) The most familiar examples of maps are the regular solids, all of which are 
regular maps on the sphere: the tetrahedron has automorphism group isomorphic 
to the alternating group A4, the cube and the octahedron have Aut M = 5 4 , 
while the icosahedron and the dodecahedron have Aut M = A5. This last group 
is the smallest of the non-abelian finite simple groups; M a 11 e, S a x 1 and 
W e i g e 1 [25] have recently shown that every non-abelian finite simple group S 
can be generated by two elements, one of them of order 2, so S = AutyVf for 
some regular map M. 

(2) For some non-regular examples, again of genus 0, consider the maps M 
in Figure 9 (the first contains two half-edges). 

C *- PSL 2 (5) C Û_ PSL 2 (7) 

FIGURE 9. 

The corresponding bipartite maps B have 6, 8 and 12 edges, and the carto­
graphic groups C are isomorphic to the projective special linear groups PSL2(5) 
( ^ A$) and PSL2(7), and the Mathieu group M 1 2 , simple groups of orders 60, 
168 and 95040. For example, Figure 10 shows the construction of B for the 
first map M\ the edges of B are labelled with the elements 0, l ,2 ,3 ,4 ,oo of 
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the projective line PCX(5) over the field Z5 , so that c0 , c1 and c ^ induce 
the projective transformations z \—> 1/(1 — z), Z H 1/Z and z f—• z + 1 which 
generate PSL2(5). 

FIGURE 10. 

(3) If we ignore their vertex-colouring, we can treat our bipartite maps Km n 

in the above way: each edge e{j yields two directed edges (vvw.) and (w.,v{), 
directed towards vi and w- respectively, so the cartographic group C is a sub­
group of S2N = S2rnn. The effect of c1 is to reverse each directed edge, trans­
posing (v^Wj) with (w^v^, while c0 sends (v.,Wj) to (v.,wj+1) and (w^v^ 
to (Wj,vi+1), where we regard the subscripts i and j as elements of Z m and Z n 

respectively. It follows that C is isomorphic to the wreath product C-m nn IC2 of 
C[m>n] by C 2 : this has a normal subgroup C-m?n- x Cj m n ] (generated by c0 and 
its conjugate C^CQ^), complemented by a subgroup C2 (generated by c3) which 
transposes the two direct factors Crm n j by conjugation. If m ^ n , then /Cm n is 
not regular (as an uncoloured map), even though it is bipartite-regular; indeed 
Km n can have no regular embeddings for m ^ n , since its automorphism group 
is not transitive on the vertices. If m = n , on the other hand, then C permutes 
the directed edges regularly, so Knn is a regular map with Aut Kn n = Cn I C2. 

(4) The n-cube embedding Qn is another example of a regular map . In this 
case, Aut Qn has a normal subgroup V̂  = C2~

x preserving the two vertex-
colours and the n edge-labels, with quotient-group a dihedral group Dn of 
order 2n . The automorphisms mapping onto the subgroup C n < Dn preserve 
the colours and the cyclic ordering of the labels, while the other automorphisms 
transpose the colours and reverse the cyclic ordering. When n is odd, this ex­
tension splits: one can take a complement Dn for V0 to consist of those auto­
morphisms which either fix or transpose the antipodal pair of vertices 0 and 
e1 H h e n , which are respectively black and white. When n is even, however, 
these vertices are both black, and the extension does not split. 

(5) The embedding Qn of Qn is also regular, but its automorphism group 
differs from that of Qn. (This should not be surprising: a permutation which 
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preserves the set {g05gi} by conjugation need not preserve {go^i -1}-) In fac^ 
Aut Q!n is isomorphic t o C 2 | ( 7 n , a split extension of a normal subgroup V ^ C^ • 
which permutes the vertices regularly, by the stabilizer Cn of the vertex 0. 
However, if one includes orientation-reversing automorphisms, then both Qn 

and Q^ have the same automorphism group, namely the wreath product C2\Dn 

of order 2n .2n, where Dn acts naturally with degree n on the direct factors of 
the base group. 

This general method of representing oriented maps by permutations is quite 
old: it was used by H e f f t e r in the last century [14], [15] to study embed-
dings of complete graphs, and the earliest example I can find is Hamilton's use 
of the method in 1856 to construct what we now call Hamiltonian circuits in 
the icosahedral graph [13]. He was well aware that all of the regular polyhedra 
could be described in this way, but it is not clear whether he ever considered 
any other maps. This general theory was developed independently in the 1970s 
by M a 1 g o i r e and V o i s i n [24] and by J o n e s and S i n g e r m a n [19], [36]; 
Chapter 8 of [10] gives a detailed treatment of regular maps and their automor­
phism groups. 

One can extend this method to deal with non-orientable maps and with 
orientation-reversing automorphisms of orientable maps ([17], [38], [39]). The 
objects permuted are now Bags consisting of a vertex, edge and face, all mutu­
ally incident. There are three generating permutations r 0 , rx and r 2 , each ri 

changing the z-dimensional component of each flag (in the only possible way) 
while fixing the other two components; thus r? = (rQr2)

2 = 1 . In the case of an 
oriented map, one can identify its cartographic group C with the subgroup of 
index 2 in (Tc r i ' r2) consisting of the words of even length in the generators 
ri. By allowing the generators to have fixed-points, one can extend the theory 
further to include maps on surfaces with boundary ([4]). In this paper, I am 
mainly interested in Riemann surfaces, so I will restrict my attention from now 
on to the case of oriented maps without boundary. 

3. Maps on Riemann surfaces 

A Riemann surface is a surface with locally-defined complex coordinates, 
such that the changes of coordinates between intersecting neighbourhoods are 
conformal. Examples include the complex plane C, the upper half-plane 1A = 
{z E C | Imz > 0} , and the Riemann sphere (or complex projective line) 
£ = P1^) = C U {oo}. (One identifies £ \ {oo} with C by stereographic 
projection, and uses the local coordinates 1/z near oo.) Up to isomorphism, 
these are the only simply-connected Riemann surfaces. 

10 
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The upper half-plane is a model of hyperbolic geometry, the geodesies being 
the euclidean lines and semi-circles which meet the real line R at right-angles. 
The modular group T = PSL2 (Z) consisting of the Mobius transformations 

T.zi—> ; (a.b.c.deZ, ad — bc=l) 
cz + d 

acts on U as a group of orientation-preserving hyperbolic isometries. It also acts 
(transitively) on the rational projective line PX(Q) = Q U {00}, and hence it 
acts on the extended hyperbolic plane 

U=UuQL\{oo}. 

One can partition Q U {00} into three disjoint subsets, which are permuted by 
T; these are 

[0] = J ^ e Q U {00} I a is even and b is odd j , 

[1] = j . 5 e Q U {00} I a and b are both odd j , 

[00] = j 5 G Q U {00} I a is odd and b is even j . 

(Here a/b is always in reduced form, and 00 = 1/0.) In this action of T, the 
set-wise stabilizer of [0] is 

r0(2) = {TGT| c = 0 mod (2)}, 

a non-normal subgroup of index 3 in T; the kernel (stabilizing each of the three 
sets) is 

F(2) = {T G V | 6 = c = 0 mod (2)} , 

a normal subgroup of index 6 in T, with 

T/T0(2)^PSL2(2)^S3. 

(These are both examples of congruence subgroups of T, defined by finite sets 
of congruences between the coefficients a, 6, c and d. In particular, T0(2) is 
the principal congruence subgroup of level 2. Congruence subgroups are very 
important in number theory; they all have finite index in V, but not every 
subgroup of finite index is a congruence subgroup. This is the negative solution 
to the congruence subgroup problem for T; see [18] for a survey of this topic.) 

The universal bipartite map B on U has [0] and [1] as its sets of black and 
white vertices, and its edges are the hyperbolic geodesies between vertices a/b 
and c/d, where ad — be = ± 1 ; this implies that a and c have opposite parity, 
so the map (part of which is shown in Figure 11) is indeed bipartite. 

11 
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FIGURE 11. B. 

The automorphism group of B (preserving orientation and colours) is T(2). This 
is a free group of rank 2, freely generated by 

T0: zi 
-22 + 1 

and Tx : z i—>• 
z-2 

2z-3 

It follows that if B is any bipartite map, with monodromy group G = (go-g^), 
then there is an epimorphism 

Г ( 2 ) - G , T0^g0, T, •9l: 

giving a transitive action of T(2) on the set E of edges of B. The stabilizer of 
an edge in this action is a subgroup B of index JV = \E\ in T(2), called the 
map subgroup corresponding to B (different choices of an edge lead to conjugate 
subgroups). Since B < T(2) = A u t S , one can form the quotient map B/B, and 
it is straightforward to prove that this is a bipartite map isomorphic to B. We 
have A u t S = NTr2AB)/B, where N-,2AB) is the normalizer of B in T(2); in 
particular, B is bipartite-regular if and only if B is normal in T(2), in which 
case A u t £ ^ r ( 2 ) / H ^ G . 

EXAMPLES. 

(1) When B = Kmn, we find that B is the normal closure in T(2) of T n , T™ 
and the commutator [TQJTJ = T^T^TQT-^. This is the kernel of the epimor­
phism r(2) —> G = Cn x Cm, Ti i—> gt, so it is a normal subgroup corresponding 
to the fact that Km n is bipartite-regular. 

(2) When B = Qn, we can construct B in two steps: first we take B to be 

the normal closure in T(2) of T0T± and T0
n; thus T(2)/B =" C n , and B has 

generators 

T0
n, U^ToTj, U2 = T-%T?, ..., Un = Tl~nT0T

n, T~n, 

and a single defining relation 

T~nU TI TI T~n — 1 i0 uxu2 . .. unix — 1 , 

so B is a free group of rank n+ 1. We then map B onto V0 = C2~
x by sending 

the generators T0
n and T±n to the identity, and making the other generators 

12 
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Ui commute and have order 2. The map subgroup B is the kernel of this epi-
morphism, the normal closure in B of T0,T™, the commutators [U{,UA, and 
the elements Uf. This is normal, not just in B but in fact in T(2), confirming 
that Qn is bipartite-regular. The subgroup B/B of T(2)/B corresponds to the 
elementary abelian normal subgroup V0 of Aut Qn, while the complement Cn 

of VQ is generated by the image of T0. 

(3) The construction of B is similar for B = Q'n, except that we now take 
B to be the normal closure of T Q T - 1 and T0 ; this is equivalent to applying the 
automorphism T0 i—> T0, Tx i—» T^1 of T(2) to the previous example. 

This process constructs an isomorphic copy of our original bipartite map B, 
endowed with some extra structure. The underlying surface is now a compact 
Riemann surface X = U/B, in which Q is very rigidly embedded: for exam­
ple, the edges are all geodesies, the angles between successive edges around a 
vertex are all equal, and the automorphisms of B are all conformal automor­
phisms of U/B (induced by the action of Nr,2JB) on B). One can regard B/B 
as a canonical form for B, since it is a specially chosen representative of the 
isomorphism class of B. 

Instead of obtaining this canonical form as a quotient of the universal bipar­
tite map B, one can also obtain it as a branched covering of the trivial bipartite 
map. For any bipartite map 6 , the inclusions 1 < B < T(2) induce coverings 

B -+ B/B =~B^ B/T(2) = B1, 

where B1 is the trivial bipartite map on the sphere E = U/T(2) with one black 
vertex (at 0), one white vertex (at 1), one edge (the closed interval J = [0,1] 
in K), and one face E \ J . An elegant way of obtaining Bx from B is via 
the A-function. This is an analytic function A: U —» C with the property that 
X(z) = X(z') if and only if z and z' are equivalent under T(2); if we extend A 
to take the values 0, 1 and oo on [0], [1] and [oo], we get a function U —> E 
which maps B onto S 1 . I will define the A-function more precisely in §5; for 
more on this and related functions, see books on complex function theory, such 
as [1], [20]. 

The N-sheeted covering (3: B —> Bx, unbranched outside {0, l , c o } , is a 
meromorphic function X = U/B —> E of degree N with no critical values 
outside {0,1, oo}. Such a function is called a BelyZ function, and (X, (3) is called 
a Belyt pair. We have seen how bipartite maps give rise to Belyi pairs, and 
the converse is also true. If (X,/3) is a Belyi pair, then B = (3~1(B1) is a 
bipartite map on X: the black and white vertices of B are the elements of 
/3_1(0) and /3_ 1(1), the embedded graph Q is /3 _ 1 (J ) , and the faces of B are 
the connected components of /3_ 1(E \ J) in one-to-one correspondence with the 
poles (the elements of /3_1(oo)). By identifying each edge of Q with the sheet of 
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(3 containing it, one can identify G with the monodromy group of f3 (the action 
of 7TX(E \ {0,1, co}) = T(2) on the sheets induced by lifting closed paths via (3 
from £ \ {0, l ,oo} to X ) ; then g0, gY and g^ are the permutations induced 
by loops in £ around 0, 1 and 00. 

One can apply similar techniques to maps in general (see [17], [19], [24], 
[36] for early versions of this theory). The universal map M, introduced by 
S i n g e r m a n in [37], is simply B without the colouring of its vertices, and its 
automorphism group is r o ( 2 ) . (The subgroup T(2) of index 2 preserves the sets 
[0] and [1], so it preserves the vertex-colours, while the other coset r o (2) \T(2) 
transposes them.) Now V0(2) is generated by 

z ~ 1 

U0 : z 1—> and U1: z -2z + l L 2z-l 

with a single defining relation Uj2 = 1, so if M. is a map with cartographic group 
C = (c0,c1 I c\ = 1,...) < S2N, then there is an epimorphism T0(2) —> C given 
by Ui 1—> c{. One can then reconstruct M as the quotient yVf/M, where M 
is a point-stabilizer in this action of T0(2). The details are similar to those in 
the bipartite case: for instance, the fact that /Cm n is bipartite-regular but not 
regular when m ^ n corresponds to the fact that its map subgroup B is normal 
in T(2) but not in V0(2). Similarly, the fact that Aut Qn = Aut0 Qn whereas 
Aut Qn ^ Aut Qn corresponds to the fact that the map subgroups B of these 
two regular maps have isomorphic quotient-groups Y(2)/B in T(2), whereas 
the quotients r o (2 ) /H are not isomorphic. Every map JVf can be obtained as 
a branched covering of the trivial map M.x= yVl/ro(2) on £ : this has a single 
vertex at 0, a single half-edge along I = [0,1], and a single face £ \I. (In place 
of A: U —•» £ one uses the function 4A(1 — A), which is invariant under T0(2).) 
The covering M. —» M 1 is now a clean Belyi function X —> £ : this is a Belyi 
function with the property that the 2jN sheets of the covering come together in 
pairs over the critical value 1 G £ , so that the single half-edge of A4X lifts to N 
complete edges of A4. 

4. Plane trees and polynomials 

Perhaps the simplest class of bipartite maps are the plane trees, the maps 
of genus 0 with a single face. There are several advantages to working with 
these: they are easy to draw, their Belyi functions are polynomials, which makes 
computation a little easier, and they all lie on the same Riemann surface. (By 
contrast, infinitely many complex structures can arise for any given genus g > 0; 
for instance, Q4 and Q'3 both have genus 1, but their Riemann surfaces are non-
isomorphic, having the form X = C/A for non-similar lattices A = Z + Z r with 
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r = i and exp(27ri/3) respectively.) Many of the results about Belyi functions 
and plane trees stem from [33]; for a very readable survey, see [34]. 

A Shabat polynomial (or generalized Chebyshev polynomial) is a polynomial 
P(z) £ C[z] with at most two critical values in C By replacing P with aP + b 
for suitable constants a , b G C ( a ^ _ 0 ) , one can assume that these critical 
values are in {0,1}; the only other critical value in E is oo (if deg(P) > 1), so 
P: E —•> E is then a Belyi function. It has a unique pole (at oo), so the bipartite 
map B = P~1(B1) has a single face; the graph Q = P~X(I) is therefore a tree, 
and since it is embedded in C, we call B a plane tree. (More precisely, B is a 
bicoloured plane tree since its vertices are coloured black or white as they project 
onto 0 or 1.) 

Conversely, any plane tree in C can be regarded as a bipartite map B o n S , 
so, by choosing a bicolouring of its vertices, we obtain a Belyi function (3: E —> E . 
Being meromorphic on E, (3 must be a rational function; since B has a single 
face, (3 has only one pole, and by using a Mobius function to send this to oo, we 
can assume that (3 is a polynomial. Since (3 has no finite critical values outside 
{0,1}, it is a Shabat polynomial. Thus plane trees and Shabat polynomials are 
essentially equivalent. 

E X A M P L E S . 

(1) The polynomial P(z) = zn has 0 as its only finite critical value, so it 
is a Belyi function E —> E . The plane tree P~1(B1) corresponding to P is the 
n-star Sn shown in Figure 12; it has a black vertex of valency n at 0, joined 
by n edges to white vertices of valency 1 at the n-th roots of unity. 

» i 

F I G U R E 12. 

(2) The finite critical points of the polynomial z m ( l — z)n are at z = 0 and 
z = 1 (if 7Ti, n > 1) and at the point c = m/(m + n) (where the derivative 
has a simple zero); the critical values are respectively 0, 0 and c m ( l — c)n = 
m^n71 /(m + n ) m + n , so this is a Shabat polynomial, and 

I^) = ( m + n r + V( i -*r 
m ' n V } mmnn v J 

is a Belyi polynomial. Topologically, the corresponding plane tree is made up of 
an m-star centred at 0 and an n-star centred at 1, with a common white vertex 
at c, as shown in Figure 13. 
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FIGURE 13. 

Note that P m n sends the four points 0, 1, c and oo to the three points 0, 1 
and co; we will need this useful property in the next section. 

(3) The n-th degree Chebyshev polynomial Tn(z) = cos (ncos - 1 z) has only 
± 1 as its finite critical values, so it is a Shabat polynomial, and the polynomial 
Pn = (Tn +1)/2 is a Belyi function of degree n on S . By considering the graph 
of the function Pn (restricted to R), one easily sees that the associated plane 
tree Vn = P~1(B1) is an embedding of a path with n edges along the real axis of 
C; its n + 1 vertices, alternately coloured white and black, are at cr = cos(T7r/n) 
for r = 0 , 1 , . . . , n (the points where Tn(z) = +1). For instance, Figure 14 shows 
the construction of V5 (on the z-axis) as a 5-sheeted branched covering of Bx 

(on the iv-axis). 

w = P5(z) 

FIGURE 14. V5. 
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5. Riemann surfaces and algebraic curves 

The most familiar examples of compact Riemann surfaces are those obtained 
from algebraic functions. If A(x,y) E C[x,y] (that is, A(x,y) is a polynomial 
in x and y with complex coefficients), then the equation A(x,y) = 0 defines 
the complex variable y as an N-valued function of the complex variable .r, 
where N is the degree of A in y. One of the basic techniques one learns in 
complex function theory is the construction of the Riemann surface XA of this 
equation by taking N copies of the Riemann sphere E (one for each branch of 
the function), cutting them between the branch-points, and then rejoining the 
sheets across these cuts to show how the function changes from one branch to 
another by analytic continuation. Let us call a Riemann surface algebraic if it 
is isomorphic to XA for such a polynomial A. The following major result is 
essentially due to Riemann: 

THEOREM. A Riemann surface is compact if and only if it is algebraic. 

This gives rise to a rich correspondence between the theories of compact 
Riemann surfaces X (which are essentially analytic and topological objects), 
and of complex algebraic curves (which are geometric and algebraic in nature). 
For instance, the group of conformal automorphisms of X can be identified with 
the Galois group of the field of meromorphic functions on X. For further details, 
see [11], [28]. 

EXAMPLE. 

(1) An elliptic curve is a compact Riemann surface of genus 1, that is, a 
complex structure on the torus (see [20], [28], for example). Every such surface 
X can be represented in Legendre normal form 

y2 = x(x — l)(x — A) 

for some A E C \ {0,1}, and conversely, every such equation defines an elliptic 
curve, which I will denote by Ex. (The value of A is not uniquely determined by 
X: there may be up to six possible values, permuted transitively by the group 
generated by the transformations A i—• 1 — A and A i—• 1/A.) Incidentally, this 
allows us to define the A-function used in §3: if r E U and if A = {m -f- nr \ 
m,n E Z} is the lattice (discrete additive subgroup) generated by 1 and r in 
C, then the torus X = C/A is an elliptic curve, and A(r) is one of the values 
of A such that X = Ex, chosen to vary continuously with respect to r; for our 
purposes (though this is not traditional), it is convenient to choose the branch 
of the function satisfying A(r) —> 0,1 , co as r —> 0,1 , oo respectively along the 
hyperbolic geodesies joining these three points. 

If K is a subfield of C, then we say that a compact Riemann surface X is 
defined over K if X = XA for some polynomial A(x, y) E K[x,y]. We will be 
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particularly interested in the case where K is the field Q of algebraic numbers. 
Recall that an element a G C is an algebraic number if p(a) = 0 for some non­
zero polynomial p(t) G Q[t], or equivalently, if a lies in some finite extension of 
the rational field Q. The algebraic numbers form a field Q, the algebraic closure 
of Q in C; this is a countable, infinite, algebraic extension of Q, equal to the 
union of all the algebraic number fields (the finite extensions of Q in C). The 
following powerful result is due to B e l y i [2]: 

THEOREM. A compact Riemann surface X is defined over Q if and only if 
there is a Belyi function /3: X - > S . 

(Recall that a Belyi function is a meromorphic function with no critical values 
outside {0,1, oo}.) This condition was already known to be sufficient as a direct 
consequence of W e i l ' s Rigidity Theorem ([41]); B e l y i ' s contribution was a 
simple but ingenious proof of the converse, which I will now outline. 

If X is defined over Q by an algebraic equation A(x,y) = 0, then the 
projection n onto the x-coordinate is a meromorphic function X —•> £ with 
finitely many critical values, all in Q U {oo} . (If X is an elliptic curve Ex with 
A G Q, for instance, then there are four critical values 0, 1, oo and A, so - is 
"nearly" a Belyi function.) The finite critical values of TT are all roots of some 
polynomial p±(t) G Q[t], so one could try pr o - as a second approximation to 
a Belyi function on X. These critical values are now conveniently sent to 0, 
but unfortunately, we may have introduced some new critical values, namely 
those of px. However, these are algebraic numbers, so they are all annihilated 
by a polynomial p2(t) G Q[t]; one can show that deg(p2) < deg(px), so by 
iterating this process, one eventually obtains a meromorphic function / = pko... 
opx on: X —> H with a finite number of critical values, all contained in QU {oo} . 
Any such critical value c 7̂  0 ,1, 00 can be eliminated by writing c = m/(m + n) 
and composing / with the function P m n in §4, which sends c to 1 and which 
introduces no new critical values. (One may have to allow m or n to be negative 
integers, in which case P m n is a rational function rather than a polynomial, but 
the principle still applies.) By doing this finitely many times, one can eliminate 
all unwanted critical values, thus giving a Belyi function on X. 

It is straightforward to reinterpret the existence of a Belyi function in terms 
of uniformisation. First it is useful to introduce the idea of a hyperbolic triangle 
group (see [20; §5.6]). This is a subgroup A = A( / ,m ,n ) of Aut(U) = PSL2(R) 
generated by rotations through angles 27r//, 27r/m and 27r/n about the vertices 
of a hyperbolic triangle with internal angles 7T/7, 7r/m and 7r/n, where /, m 
and n are integers greater than 1. (Such triangles exist in U if and only if 
Z_1 + m _ 1 + n _ 1 < 1.) Belyi's Theorem can now be restated as follows: 

THEOREM. If X is a compact Riemann surface, then the following are equiv­
alent: 
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a) X is defined over Q ; 
b) X ^ U_/M for some subgroup M of finite index in the modular group T ; 
c) X ^ U/B for some subgroup B of finite index in V(2); 
d) X = U/H for some subgroup H of finite index in a hyperbolic triangle 

group A . 

The advantage of using condition (d) is that one can work in U, which is a 
surface, rather than in ZY, which is not. The disadvantage is that different Rie-
mann surfaces X will, in general, correspond to subgroups of different triangle 
groups A , whereas in (b) and (c) one can work with subgroups of a single group. 

From our point of view, the significance of Belyi's Theorem is that it shows 
that the Riemann surfaces defined over Q are precisely those which can be 
obtained from maps (or bipartite maps) by the methods described earlier: one 
can regard these combinatorial structures as pictures of Belyi pairs. For example, 
if X is defined over Q, then there is a Belyi" function (3: X —* X, and by using 
j3 to lift the trivial map or bipartite map from X to X, we obtain a similar 
structure on X. Conversely, if X is obtained in this way, then it is uniformised by 
a subgroup of finite index in T, and hence, it is defined over Q. This means that 
simple, purely topological objects (such as the childish drawings in Figure 9) can 
carry a whole wealth of mathematical meaning and structure. For this reason, 
oriented maps are sometime referred to as dessins d'enfants. 

EXAMPLES. 

(2) We have seen that the bipartite map B = Km n corresponds to a sub­
group B = F?m n of index N = mn in T(2), so this dessin can be drawn 
on the Riemann surface X = U/B as /3_ 1(B1) , where (3 is the projection 
U/B -> U/T(2) = X. By Belyi's Theorem, this surface X is defined over Q . 
Now in general, it is very difficult to compute the algebraic equation defining the 
compact Riemann surface uniformised by a given group, but in this particular 
case, it is quite straightforward. One can verify that x = A1/71 and y = (1 —A)1//m 

are single-valued meromorphic functions on X. For instance, if we rotate a point 
z £ X through an angle 27r/n around a black vertex (of valency n ) , then the 
point w = (3(z) G X] rotates once around the critical value 0, and hence analytic 
continuation multiplies A1/71 by exp(27ri/n); it follows that a complete rotation 
of z around the vertex leaves x unchanged. Similar arguments apply to x and 
y at the other critical points, so they are both single-valued. One can regard the 
mn sheets of the covering f3: X —> E as being copies of a fundamental region for 
T(2), all carrying the same values of A but carrying the mn distinct branches of 
the pair (x,y): incomplete rotations around black or white vertices enable one 
to change the branches of x or y by multiplying them by the appropriate roots 
of unity. It follows that x and y distinguish points on X in the sense that any 
two distinct points have neighbourhoods on which x or y (or both) differ. The 
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polynomial equation of least degree satisfied by x and y is 

Xn + ym = 1 , 

so X is the Riemann surface of this equation. We call X a generalized Fermat 
curve, since the case m = n gives the Fermat curve xn + yn = 1 (see §6). The 
Belyi function (3 on X sends each point (x,y) to A = xn. The automorphisms 
of /Cm n are clearly visible in its equation: this is invariant under simultaneous 
multiplication of x and y by nth and mth roots of unity, and these operations 
form a group Cn x C m which is the group of covering transformations of (3 and 
hence the automorphism group Aut0 B of the bipartite map B = Km n. 

(3) It is a little more complicated to construct a Belyi pair corresponding to 
the n-cube embedding Qn. Recall that Aut Qn contains an elementary abelian 
normal subgroup VQ of order 2 n _ 1 , which acts regularly on the black vertices 
and on the white vertices. This is generated by half-turns h- (1 < j < n) which 
induce the transformations v i—• v + e-_1 +e- of the vertices v G V (as usual, we 

use subscripts j G Z n so that e0 = e n ) . The quotient Qn = Qn/V0 is a bipartite 
map of genus 0 with one black vertex, one white vertex, n edges and n faces (all 
2-gons). One can realise this map on E as f3~1(B1), where /?: E —> E is given 
by x i—> (x/(x — 1)) , so that the black and white vertices are at 0 and oo, and 
the edges are the lines arg(.r) = 2nj/n for j = 1 , . . . , n (this parameter j gives 
the edge-labelling of Qn induced from that of Qn). We now reconstruct Qn as 
a 2n_1-sheeted regular covering of Qn, branched at the face-centres. These are 
the points a- = exp((2j — l)ni/n) , the nth roots of — 1, so let us consider the 
Riemann surface R of the algebraic equation 

y = ±yj(x - ax)(x - a2) ± yj {x - a2)(x - a3) ± • • • ± yj (x - an)(x - ax) . (1) 

The ± signs indicate that one can choose either of the two values for each of the 
n square roots, so this defines y as a 2n-valued function of x, branched only 
at the points x = a • in E. Analytic continuation around a small loop enclosing 
a- has the effect of multiplying the (j — l ) th and j t h square roots by — 1 , while 
leaving the rest unchanged. Since the fundamental group of E \ { a 1 , . . . , a n } 
is generated by these loops, it follows that analytic continuation in this region 
allows us to change any even number of the ± signs, but never an odd number. 
This implies that equation (1) defines two distinct algebraic functions y, differing 
from each other by an odd number of sign-changes, and so R has two connected 
components, one carrying each function. If X is either of these components, 
then the projection onto the ^-coordinate is a 2n _ 1-sheeted covering ~: X —> E, 
branched at the points a-, and _ _ 1 ( Q n ) is a bipartite map on X with 2 n _ 1 

black and white vertices (covering 0 and oo), and n 2 n _ 1 edges, 2 n _ 1 over 
each of the n edges of Qn. Above each point a- the 2 n _ 1 sheets of X come 
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together in 2 n ~ 2 pairs, so each 2-gonal face of Qn lifts to 2 n ~ 2 quadrilateral 
faces of 7 r _ 1 (Q n ) . It is straightforward to check that the underlying graph of 
/~~1(Qn) is isomorphic to Qn: for instance, each black vertex v G 7T_1(0) can be 
identified with a vector (v •) G V, where v> = 0 or 1 as v supports the branch of 

* (x — a-)(x — a-+ 1) taking the value exp(27rij/n) or — exp(27rij/n) at x = 0; 

if we take X to be the component of R on which ^2 v- is even, then the set 
of black vertices is identified with VQ; by continuing analytically along the edge 
arg(x) = 2~j/n of Qn from x = 0 to x = oo, we pass from v G VQ to a white 
vertex w G 7r_1 (oo), which we identify with the vector v + e- G V\VQ. If we use 

- to lift the edge-labels from Qn, we obtain the cyclic rotations (1, 2 , . . . , n) and 
its inverse around the black and white vertices. This shows that 7r - 1 (Q n ) = Qn, 
so we have obtained Qn as /3~1(/51), where (3: X —> S is the Belyi function 

/3 = ^ o 7 r : ( x , t / ) ^ ( ^ T ) ' 

In theory, one could find the polynomial equation defining X by eliminating all 
the square roots in (1) and then decomposing the resulting polynomial into two 
irreducible factors, but I will leave this to the reader's imagination. 

At this point, one might object that, whereas Belyi's Theorem treats the 
three critical values 0, 1 and oo with complete symmetry, the maps and bi­
partite maps I have introduced seem to depend more heavily on 0 and 1 than 
on oo. This is true, and it was done purely for conceptual and diagrammatic 
simplicity. To avoid the appearance of bias against oo, I will briefly mention 
that perhaps a more appropriate combinatorial object to associate with a Belyi 
pair is a triangulation (see [21], [33], [43], for example). The trivial triangulation 
Tx of E has three vertices (at 0, 1 and oo), three edges (the real line-segments 
joining these vertices) and two faces (the upper and lower half-planes). Given any 
Belyi pair (X, (3), we obtain a triangulation T = (3~l(Tx) of X, together with a 
3-colouring of its vertices (as they cover 0, 1 or oo). One can also obtain T as 
a quotient of the universal triangulation T on U: this has vertex-set QU {oo}, 
with a/b joined by a hyperbolic geodesic to c/d if and only if ad — be = ± 1 . If 
one deletes the vertices of T labelled oo, together with their incident edges, one 
obtains the bipartite map B associated with (X, (3); conversely, one can recon­
struct T from B by inserting a new vertex, labelled oo, in each face of B, and 
joining it by an edge to each vertex incident with that face. Thus bipartite maps 
and triangulations are essentially equivalent; the former are more economical, 
while the latter treat the critical values more symmetrically. 

E X A M P L E . 

(4) If X is the Fermat curve xn + yn = 1, and /3 is the Belyi function 
(x,y) i—» xn of degree n2, then T has three sets of n vertices, labelled 0, 1 and 
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oo. Each pair of vertices with different labels are joined by a single edge, so the 
embedded graph is the complete tripartite graph Knnn. Since the faces are all 
triangles, this is a minimum-genus embedding of Kn n n (see [42]). It is regular 
as a 3-coloured triangulation, since the map subgroup B = Bn n is normal 
in T(2). In fact, since B is the subgroup generated by the nth powers and the 
commutators, it is a characteristic subgroup of T(2), that is, it is invariant under 
all automorphisms of T(2); now T(2) is a normal subgroup of V, so conjugation 
by r induces automorphisms of T(2) which preserve L?, and hence, B is a 
normal subgroup of T. This implies that T is also regular as an uncoloured 
triangulation: as such, its automorphism group is an extension of T(2)/B = 
Cn x Cn (preserving the vertex-colours) by T / r (2) = S3 (permuting the colours 
transitively). 

A Belyi pair (X,f3) can equally well be described by the dual of T . This is 
a hypermap 71, that is, a trivalent map on X with a 3-colouring of its faces: 
the faces labelled 0, 1 and oo are called the hypervertices, hyperedges and 
hyperfaces of 7i. The bipartite map B associated with (X, ft) then coincides 
with the Walsh map W(7i) of 7i introduced by W a l s h in [40]: it has black 
and white vertices corresponding to the hypervertices and hyperedges of 7{, 
with edges representing incidences between them, and faces corresponding to 
the hyperfaces of 7i. Hypermaps were first studied by C o r i [6] in 1975 as a 
generalization of maps (they embed hypergraphs, rather than graphs); the theory 
was developed mainly by C o r i and M a c h i , who have given an excellent survey 
in [7]; for connections between hypermaps and Belyi pairs, see [21]. 

6. Fermat's Last Theorem 

Having stated Belyi's Theorem, I now find it hard to resist making a detour 
into an area which is not strictly essential for this survey, but which is neverthe­
less of great topical interest and which exhibits many features in common with 
the present subject-matter. The impatient reader can skip this section. 

A compact Riemann surface (or algebraic curve) X is modular if X = U/M 
for some congruence subgroup M of the modular group V. One of the main 
open problems in the theory of elliptic curves is the following: 

SHIMURA-TANIYAMA-WEIL CONJECTURE. (STW) If an elliptic curve is 
defined over Q. then it is modular. 

Notice the similarities and the differences between this and Belyi's Theorem: 
it concerns Riemann surfaces of genus 1, rather than of arbitrary genus; the field 
of definition is Q, rather than Q; it refers to congruence subgroups of T, rather 
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than all subgroups of finite index; the implication is in only one direction (the 
converse is known to be false); finally, it is a conjecture rather than a theorem. 

Fermat's Last Theorem (FLT) is the assertion (apparently still unproved) 
that for integers p > 2 there are no positive integer solutions a, 6, c of the 
equation 

ap + ftP = cp , 

or equivalently, the Fermat curve xp + yp = 1 has no non-trivial rational points. 
It is well-known that it is sufficient to prove this when p is prime. It is also 
well-known (but less easy to prove) that if a, b, c and p are a counter-example 
to FLT, then the Frey curve 

y2 =x(x-ap)(x + bp) 

(which is an elliptic curve defined over Q) cannot be modular. This means that 
a proof of STW (at least, for the Frey curves) would immediately imply FLT (see 
[9], [27], [29]). In June 1993, Wiles announced a proof of STW for a wide class 
of elliptic curves, but at the time of writing it is not clear whether his methods 
will apply to the Frey curves. 

7. Galois theory 

Returning to our main theme, let us consider the absolute Galois group (of 
the rational numbers); this is the Galois group 

G = Gal 

of the field extension Q > Q, or simply, the group of field-automorphisms of Q . 
The rest of this section (which is not essential to what follows) is intended to 
show that it is both important and difficult to understand the structure of G. In 
the next section, I shall show that there is some hope of doing this by considering 
the action of G on dessins d'enfants. For background on Galois theory, see [16]. 

A Galois extension of Q is a finite normal extension of Q, that is, a finite 
extension K > Q such that the Galois group GK = Gal(K/Q) has fixed-field Q 
(in general, it could be a field properly containing Q); for such an extension, the 
order \GK\ is equal to the degree \K : Q\. Every algebraic number is contained 
in a Galois extension of Q, namely the splitting-field of its minimal polynomial 
over Q, so 

Q = U K> C1) 
KeK, 

where AC is the set of Galois extensions of Q in C . If K, L E /C and L < K, 
then every element of GK leaves L invariant, so the restriction mapping gives a 
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group-homomorphism pK L : GK —* GL . (This is, in fact, an epimorphism since 
every automorphism of L extends to an automorphism of K.) These groups 
GK (K G K) and homomorphisms pK L form a projective (or inverse) sys­
tem, meaning that each pair LX,L2 G K are contained in some K G 1C, and 
PK,L ° PL,M = PK,M whenever K > L > M in K. 

EXAMPLE. The cyclotomic field of the nth roots of unity is the field K = 
Q(e n ) , where en = exp(27rz/n). This is a normal extension of Q of degree <j>(n), 
where 4> is Euler's function. Its Galois group GK = Gn consists of the </>(n) 
automorphisms en i—> en, where (u,n) = 1, so GK is isomorphic to the group 
Un of units in Z n . We have Q(em) < Q(^n) if and only if m divides n , in which 
case the restriction mapping corresponds to the natural epimorphism Un —-> Um . 

In view of (1), an element g G G is simply a choice of automorphisms 
gK G GK of if, one for each K G /C, which is compatible with the restriction 
mappings, that is, such that pK L sends gK to gL whenever K > L. Thus G is 
the subgroup of the cartesian product Yl GK defined by these compatibility 

KeK 
restrictions, so G is the projective (or inverse) limit 

G = limGK 

of the groups GK. (This shows that G is a profinite group, meaning a projective 
limit of finite groups.) It follows that G is uncountable, so one cannot expect 
G to have a particularly simple structure. If we impose the discrete topology on 
each GK , then G becomes a topological group, which is compact by Tychonoff's 
Theorem. This topology on G (called the Krull topology) is important, since 
under the Galois connection between subfields and subgroups, the subfields of 
Q correspond to the closed subgroups of G. In particular, the algebraic number 
fields correspond to the subgroups of finite index in G (which are both open and 
closed), and the Galois extensions K G /C correspond to the normal subgroups 
of finite index (with quotient-group isomorphic to GK). 

In a sense, the whole of classical Galois theory is contained in this single group 
G . For instance, one of the most difficult open problems in Galois theory is the 
Inverse Galois Problem, which is, in its simplest form, Hubert's conjecture that 
every finite group F is isomorphic to GK for some Galois extension K of Q. By 
the preceding remarks, this is equivalent to the conjecture that every such F is an 
epimorphic image of G . This is easy to prove for the cyclic, dihedral, symmetric 
and alternating groups, and, with considerably more difficulty, S h a f a r e v i c h 
has proved it for finite solvable groups (the error in [35] concerning the prime 
2 is corrected in his collected papers). It has been verified for a few classes of 
finite simple groups, but progress is very slow, and a complete solution seems to 
be a long way off. See [26], [32] for detailed treatments of this subject. 
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8. Actions of G 

In his Esquisse d'un Programme [12], G r o t h e n d i e c k proposed that one 
should study this highly algebraic object G through its actions on topological, 
geometric, and even combinatorial structures. There are many levels at which 
this can be done (the whole edifice is known as the Teichmiiller tower), but 
at the simplest and most explicit level, it is maps (or dessins d'enfants) which 
provide the context for representing G. 

By definition, G acts on Q, so it has natural induced actions on polynomials 
and rational functions over Q, and hence on Belyi pairs: one simply applies G 
to the coefficients of these functions and notes that since the critical values 0,1 
and co are fixed by G , the set of Belyi functions is preserved. As we have seen, 
there are correspondences between Belyi pairs and various combinatorial struc­
tures such as maps, bipartite maps, triangulations and hypermaps on Riemann 
surfaces, so we obtain further induced actions of G on all of these combinato­
rial categories. The remarkable fact, pointed out by G r o t h e n d i e c k , is that 
these actions are all faithful, that is, each non-identity element of G sends some 
object to a non-isomorphic object in the same category, so one loses none of the 
structure of G by representing it in these ways. 

For a very simple example of this action of G, due to M a 11 e, consider the 
third map M in Figure 9, with the Mathieu group M1 2 as its cartographic group. 
The associated Belyi function is a rational function (3: X = E —> E defined over 
the algebraic number field K = Q(<\/—11) < Q . Complex conjugation is an 
element a G G which induces the unique non-trivial automorphism of K, and 
by replacing (3 with the conjugate Belyi function (3a on E, we obtain the mirror-
image Ma of M. (This is equivalent to applying the outer automorphism of 
order 2 of M 1 2 , which transposes its two transitive representations of degree 12.) 

It is pointless looking at our examples based on the Fermat curves or the 
Chebyshev polynomials for non-trivial actions of G: in all these cases, the Belyi 
pairs are defined over Q, so they and their associated dessins are fixed by G. 
In the case of the n-cube embedding Qn, we see from Example 3 of §5 that the 
corresponding Belyi pair (X, f3) is defined over the cyclotomic field Q(^2n) of the 
2nth roots of unity; it follows that G acts as the Galois group G2n = U2n of this 
field, permuting the branch-points a. in equation (1) and hence redefining the 
cyclic order of edge-labels around the vertices. However, this is not a very good 
example since the resulting maps are all isomorphic to Qn under the obvious 
isomorphisms. Instead, one can find non-trivial actions of G, again based on 
cyclotomic fields, by taking double coverings of some of our earlier examples. 

E X A M P L E S . 

(1) The plane tree Vn, obtained in §4 from the Belyi polynomial Pn(z) = 
(Tn(z) + l ) / 2 , is a path of n edges with vertices at cr = cos(r7r/n) for 
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r = 0 , 1 , . . . , n coloured alternately white and black. If k = 0 , 1 , . . . , n , then 
Pn(z + ck) is also a Belyi polynomial, and its plane tree is obtained by trans­
lating V along the real axis so that it has k positive vertices and edges, n — k 
negative vertices and edges, and one vertex at the origin. We now take a double 
covering of this plane tree, branched at 0 and oo, by forming the Belyi poly­
nomial Pn(z

2 + ck). The associated plane tree Qn k has a vertex at the origin, 
coloured black or white as k is odd or even; there are two paths of k edges 
emanating from 0 along the positive and negative parts of the real axis, both 
ending in white vertices, and two paths oi n — k edges along the imaginary axis, 
ending in black or white vertices as n is odd or even. Figure 15 illustrates Qn k 

for odd n , with k odd or even, as a covering of Vn. Note that if n is odd, 
then Qn 0 , . , , , Qn n are mutually non-isomorphic (as bicoloured plane trees), 
whereas Qnk = Qn^n_k when n is even. 

n—k 

n odd 

k odd 

n—k 

Q. n,fc 

-o—•—o 

F I G U R E 15 . Qn k . 

Now ck = (e2n + £2n ) /2 , so Qn k is defined over the cyclotomic field Q(£2n) • 
(Of course, it is actually defined over the proper subfield Q(ck) < Q(e2n) H R, 
but it is more convenient to work with Q(^2n)0 The g r o u P ^ a c^s on Q(^2n) 
as the Galois group G2n = U2n of this field, so it permutes the vertices ck of Vn 

in the same way as it permutes the mutually inverse pairs {^2n^e2n} °^ 2 n t n 

roots of unity: two vertices ck and c{ are in the same orbit of G2n if and only 
if e2n and el

2n have the same multiplicative order, that is, (k, 2n) = (/, 2n), 
and so this is the condition for the plane trees Qn k and Qn t to be conjugate 
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under G. Thus the number of orbits of G on these trees is T(2n), the number 
of positive divisors of 2n. If n is odd, then since r is multiplicative, we have 
T(2n) = 2T(n); both Qn 0 and Qn n (which are embeddings of paths) form 
orbits of length 1, while the other trees Qnk lie in orbits of length 

1 J 2n 
2<P\(k,2n) ¥ П 

(kђn) 

When n is an odd prime, for instance, there are four orbits: apart from the two 
orbits of length 1, there are also two orbits of length (n — l)/2 consisting of 
the remaining trees Qn k for k odd and k even. Thus the orbits of G can be 
arbitrarily large. The situation is similar when n is even, though in this case, 
the extra isomorphisms make the counting slightly more complicated. 

(2) For a similar class of examples, but now of genus 1, let X be the elliptic 
curve Ex, given by y2 = x(x — l)(x — A), where An = 1 / A. As we saw in 
§5, the projection 7r: X —> E, (x, y) H-> X, is a 2-sheeted covering, branched 
over x = 0, l,oo and A. The polynomial P(x) = xn sends these critical values 
of 7r to 0,l,oo and 1, and has critical values 0 and oo, so the composition 
(3 = P o 7r: (x,y) i—• xn is a Belyi function X —> S, of degree N = 2n. Now 
P~1(B1) is the n-star Sn constructed in Example 1 of §4, so the bipartite 
map B = f3~1(B1) associated with (X, (3) is a double covering 7r-1(<Sn) of <Sn, 
branched over its black vertex 0, its white vertices 1 and A, and also over its 
face-centre oo. Let us denote this torus map by Tn k, where A = en; it is shown 
in Figure 16, with opposite sides identified. 

7Г-Ҷ0) 

ir-ЧVÒ 

F I G U R E 16. 

There is one black vertex, of valency 2n, there are 2n — 2 white vertices, two of 
valency 2 and the rest of valency 1, and there is a single 4n-gonal face. In the 
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cyclic rotation around the black vertex, the 2-valent white vertices are separated 
by blocks of k — 1 and n — k — 1 vertices of valency 1, so Tn k = Tn t if and 
only if k = ±1 mod (n). As in Example 1, these bipartite maps are conjugate 
under G if and only if their corresponding values of A are conjugate, that is, 
(k ,n) = ( / ,n) . (Notice that in this case, G preserves the formula for /3, and 
acts non-trivially on the underlying algebraic curves K, whereas in Example 1, 
it fixes X and acts non-trivially on the Belyi functions /3.) W o l f a r t gives 
several similar examples of conjugate dessins on the torus in [43]. 

FIGURE 17. 

(3) One can find similar actions of G on dessins of higher genus. For instance, 
a hyperelliptic surface X is a 2-sheeted covering of E; it has equation 

"2 = ( x - a 1 ) . . . ( x - a m ) , 

where a 
l ' • • 

y 
, a m are distinct complex numbers, and conversely, every such equa­

tion defines a hyperelliptic surface. The double covering is given by the projection 
7r: (x, y) i—> x, which has critical values a x , . . . , a m (and oo if m is odd), and the 
genus is g = |_(m — l ) /2 j . If we choose each a. to be 0 or an nth root of unity 
for some fixed n , then f3: (x,y) \-^ xn is a Belyi function of degree N = 2n on 
X; the corresponding bipartite map B is a branched double covering K~l(Sn) 
of <Sn, with one or two faces as m is odd or even. For instance, if ax = 0 and 
if an = 1 for j = 2 , . . . , m , then B has a single black vertex of valency 2n, 
together with m — 1 white vertices of valency 2, and 2(n —m-f 1) white vertices 
of valency 1. The action of G on these dessins corresponds to that of the cy-
clotomic Galois group Gn = Un on the sets A = { a 2 , . . . , a m } of m — 1 distinct 
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nth roots of unity. Two such dessins are isomorphic if and only if their corre­
sponding sets A are equivalent under a rotation around 0. In Figure 17, the two 
rows show the two orbits of G on the isomorphism classes of these dessins in the 
case m = 5 and n = 7: opposite sides of each octagon are identified to produce 
a surface of genus g = 2. Alternatively, if a7} = 1 for each j = 1 , . . . , m, then B 
has two black vertices of valency n , together with ra white vertices of valency 
2, and 2(n — ra) of valency 1. The action of G now corresponds to that of Gn 

on the sets of ra distinct nth roots of unity. In either case, by choosing ra first, 
one can specify the genus, and then by choosing n appropriately, one can make 
the number of G-orbits and their lengths arbitrarily large. 

These examples illustrate an important general principle that in its action on 
dessins, G preserves most of their obvious numerical, topological and algebraic 
features; these include the genus, the numbers of vertices, edges and faces, their 
colours, valencies and face-sizes, the automorphism group and the monodromy 
group. This is because these can all be defined in terms of field-theoretic proper­
ties which are invariant under the Galois group G, as shown in [23] for example. 
(However, orient at ion- reversing automorphisms are not generally preserved by 
G.) Since the numbers of vertices, edges and faces are invariant, an orbit of G 
can contain only a finite number of dessins (up to isomorphism). Indeed, the 
number of conjugates of a dessin is bounded above by the degree over Q of its 
field K of definition, since this is the number of embeddings of IT in C; if we 
take n odd and (n, k) = 1 in Example 1 so that K = Q(s2n) VI R of degree 
<j)(2n)/2 = 0 (n) /2 , we see that this upper bound is attained. 

Because the genus and the number of faces are preserved, G leaves invari­
ant the class of plane trees. What is surprising is that, even on such apparently 
simple objects, the action of G is faithful as was recently proved by S c h n e p s 
[30], using an argument of Lenstra. This result, which was the justification for 
concentrating on plane trees in §4, has motivated a systematic study of the 
relationships between plane trees, polynomials and Galois groups, often using 
computer algebra systems for the calculations [3], [8], [23], [30], [34]. Unfortu­
nately, the various proofs of the faithful action of G do not lead to particularly 
simple explicit classes of dessins, such as those considered above. Example 1 
demonstrates that the kernel of the action on plane trees has infinite index in 
G, and Examples 2 and 3 do the same for dessins of higher genus, but they do 
not show that the kernel is trivial: since these dessins are all defined over cyclo-
tomic fields, which have abelian Galois groups, they are fixed by the commutator 
subgroup G' of G , which contains much of its most interesting structure. By 
contrast, the following example illustrates a non-abelian action of G . 

(4) Let X be the elliptic curve 

y2 = x(x — l)(x — a)(x — b), 
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where a and b are distinct roots of the polynomial f(t) = 2tp — 1 for some odd 
prime p. As in Example 3, the projection 7r: (x,y) >—> x is a 2-sheeted covering 
X —> S with critical values 0, 1, a and b. The polynomial x i—> x p (which has 
critical values 0 and oo) sends these to 0, 1 and 1/2, and these three points are 
then sent to 0 and 1 by the polynomial w i—> 4w(l — w) (this is the polynomial 
P l f l of §4, Example 2). 

7Г-Ҷ&) 

7Г-Ҷ0) 

JaЉ 

тr-Ҷa) 

-o • ! 

HЭ-
l 
2 

-O 
1 

FIGURE 18. 

30 



MAPS ON SURFACES AND GALOIS GROUPS 

It follows that the composition /?: (x,y) \—> Axp(l — xp) is a Belyi function of 
degree N = 4p on X. The construction of the corresponding bipartite map 
Bab = /3~1(B1) is illustrated in Figure 18 in the case p = 7 (in general, one 
has to distinguish between the cases where one or none of a and 6 coincides 
with the unique real root c of / ) . It is easily seen that Ba b = Ba, b, if and 
only if {a,b} = {a ' ,b ' } . These maps Ba b are all defined over the splitting field 
K = Q(c, ep) of / . The Galois group of K permutes the roots a = ceJ

p (j € Z ) 
of / by inducing the transformations j i—> uj + t of the exponents j , where 
t, u G TLp and u ^ 0. These transformations form the 1-dimensional affine group 
AGLx(p) over Z , a split extension of a cyclic normal subgroup of order p (the 
transformations j \—• j + t) by a cyclic group of order p— 1 (the transformations 
j \-+ uj). Its action on the roots of / is doubly transitive (transitive on distinct 
ordered pairs), so for a given prime p the p(p— l ) / 2 bipartite maps Ba b are all 
conjugate under G. For each p the group AGLx(p) is metabelian (an extension 
of one abelian group by another), so the second commutator subgroup G" of G 
is in the kernel of this action. 

It would be interesting to produce further classes of dessins on which G 
induces more complicated groups, such as non-solvable groups or solvable groups 
of unbounded derived length. 
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