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CONSTRUCTING REGULAR MAPS AND GRAPHS 
FROM PLANAR QUOTIENTS 

STANISLAV JENDROL'* — ROMAN NEDELA** — MARTIN SKOVIERA*** 

(Communicated by Jan Plesnik ) 

ABSTRACT. Let M be a map on an orientable surface. The generic regular map 
for M is, up to isomorphism, the unique regular map M# such tha t M# covers 
M and every regular map tha t covers M covers also M#. In this paper, we 
show tha t several interesting results concerning maps on surfaces and graphs can 
be established by constructing generic maps over appropriate quotients. Among 
them are simple proofs of theorems o f V i n c e , M a c B e a t h , and generalizations 
of results of B r o w n and C o n n e l l y , A r c h d e a c o n , and others. Using the 
same method we also show tha t for every integer g > 3 there exists an arc-
transitive cubic graph whose girth equals g. 

1. Introduction 

The present paper deals with constructing highly symmetrical maps on closed 
surfaces by employing covering space techniques, a method which has already 
proved to be very fruitful. Various techniques have been used in explicit construc
tion of coverings. These include voltage assignments (see G r o s s and T u c k e r 
[11; Chapters 2 and 4] for a detailed treatment of this concept), surgery, and 
others. 

Here, we develop a different approach to the construction of symmetrical 
coverings. It is based on the well-known fact that every map can be covered by 
a regular map, one exhibiting the highest level of symmetry [14; Theorem 6.7]. 
Among regular maps that cover a given map, there is a universal smallest map 
which we call the generic regular map. Its characteristic property is that every 
regular map which covers the given map covers also its generic map. 

We show in this paper that several important results in theory of maps on 
surfaces and in graph theory can be proved or reproved by constructing a generic 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C10, 05C25, 20F32. 
K e y w o r d s : regular map, covering projection, face-width, graph automorphism, girth of 
a graph, cubic graph. 
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regular map over an appropriate quotient map. For instance, Grunbaum's con
jecture claiming that for every p > 2 and q > 2 there is a p-gonal orientable 
regular map with g-valent vertices (established by V i n c e [27] in 1983) can 
be proved by simply drawing certain trees in the plane. A similar proof with 
slightly more complicated base maps can be given for a result of M a c B e a t h 
[16] about the existence of H u r w i t z groups. We further employ generic maps 
to construct regular triangulations without short non-contractible cycles. Such 
maps are sometimes called "dense" and are of interest in topological graph the
ory. Corollaries of this result improve and generalize constructions of B r o w n 
and C o n n e l l y [5], and A r c h d e a c o n [1]. In addition, the same result im
plies that for any g > 3 there is an arc-transitive cubic graph whose girth is 
equal to g. 

The generic map is usually constructed from an algebraic rather than com
binatorial or geometric representation of the given map. It turns out, however, 
that a relatively small base map may have extremely large generic covering, 
and it is very difficult to control the size of the generic map by an appropriate 
choice of the base. Therefore, the value of our approach may be seen in proofs of 
existence results which use dessins d'enfants (children drawings, the term intro
duced by G r o t h e n d i e c k [12] for maps on surfaces to reflect their simplicity 
and concreteness) rather than in explicit constructions. 

2. Definitions 

Graphs considered in this paper are finite, non-trivial, connected, and may 
have both multiple edges and loops. For technical reasons, we allow our graphs 
to contain also semiedges, that is, edges that have one end-vertex and one free 
end. 

Formally, a graph is a quadruple G = (D, V; I,L), where D = D(G) and 
V = V(G) are non-empty finite sets, I: D —> V is a surjective mapping, and 
L = LG is an involutory permutation on D. The elements of D and V are arcs 
and vertices, respectively, / is the incidence function assigning to every arc its 
initial vertex, and L is the arc-reversing involution] the orbits of the group (L) 
on D are edges of G. If an arc x is a fixed point of L, that is, L(x) = x, then 
the corresponding edge is a semiedge. If IL(x) = I(x) but L(x) ^ x, then the 
edge is a loop. The remaining edges are links. Our graphs are thus essentially 
the same as those in J o n e s and S i n g e r m a n [14]. Topologically they can be 
viewed as finite 1-dimensional cell complexes in which semiedges are identical 
with pendant edges except that the pendant point of a semiedge is not listed as 
vertex. 

The usual graph-theoretical concepts such as cycles, connectedness, e t c , eas-
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ily translate to the present formalism. In particular, the valency of a vertex v is 
the number of arcs having v as their initial vertex. 

A map is a connected topological graph cellularly embedded in some closed 
surface. In this paper, we only consider maps on orientable surfaces. We often 
replace a map by its combinatorial description. By a (combinatorial) oriented 
map we henceforth mean a pair (G, R), where G is a connected graph and R is 
a permutation of D(G) called rotation, cyclically permuting arcs with the same 
initial vertex, that is, IR(x) = I(x) for every x E D(G). Alternatively, one can 
describe a map M by specifying the arc-set D = D(M), the rotation R = RM, 
and the arc-reversing involution L = LM. The vertices of the underlying graph 
G = GM of M then can be identified with the orbits of the group (R), and 
the incidence function I with the mapping which assigns to every arc of M the 
orbit of (R) it belongs to. The edges of GM correspond to the orbits of (L), 
and the face-boundaries correspond to the orbits of (RL). The connectedness of 
G is guaranteed by the transitive action of the permutation group Mon(M) = 
(i?, L), the monodromy group of M , on the set D(M). In this case, we write 
M = (L>; R,L). 

As we deal with maps on orientable surfaces only, we usually omit the adjec
tive "oriented". 

Let M 1 = (Dx\ R^L-^) and M2 = (D2\ i? 2 ,L 2 ) be two maps. A map homo-
morphism is a mapping (p \ L>1 —> D2 such that 

(pR± = R2cp and ipL1 = L2cp; 

we write cp\ M 1 —> M2 to denote this homomorphism. Transitive actions of 
Mon(M1) and Mon(M2) ensure that every map homomorphism is surjective, 
and that it also induces a homomorphism of the underlying graphs. Topologically 
speaking, a map homomorphism is a graph preserving branched covering of the 
supporting oriented surfaces with branch points possibly at vertices, face centres, 
or free ends of semiedges. Therefore, we can say that a map M covers M if there 
is a homomorphism M —> M. 

With map homomorphisms we use also isomorphisms and automorphisms. In 
particular, the automorphism group Aut(M) of a map M = (D\ i?, L) consists 
of all permutations in the full symmetry group S(D) of D which commute 
with both R and L. It is well known that | Au t (M) | < \D(M)\ for every map 
M (see, for example, [14]). If | Au t (M) | = |L)(M)| , then the map M is called 
regular. 

A map M = (D\ R, L) is called reflexible if it is isomorphic to its mirror 
image (D; i ? - 1 , L ) ; an isomorphism a\ (D\ R,L) —» (L>; R~X,L) is called a re
flection of M . Topologically speaking, map automorphisms preserve the chosen 
orientation of the underlying surface whereas reflections reverse it. 

Our use of the term "regular map" coincides with that of J o n e s and 
S i n g e r m a n [14], and C o x e t e r and M o s e r [7]. The same term is some-
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times used in a slightly stronger meaning (for example in [27]), in which case 
"rotary map" or "orientably-regular map" represent the weaker concept. 

3. Schreier representations and generic maps 

Let H be a finite group generated by two elements r and /, where / is 
an involution (possibly trivial), and let 5 be a subgroup of H. Then we can 
construct a map A(H/S\ r, /) = (D'\ R', L') by taking the arc-set D' to be the 
set H/S of left cosets of S in H, and setting 

R'(hS) = rhS, 

L'(hS) = lhS, 

for every arc hS E J)' = H/S. It is obvious that the monodromy group of the 
resulting map is a homomorphic image of H. 

If A(H/S\ r , / ) is isomorphic to a map M , then A(H/S\ r , / ) is called a 
Schreier representation of M . On the other hand, given a map M = (D; H, L), 
it is not difficult to find a Schreier representation for it. Indeed, let H = Mon(M) 
= (H, L), let S be the stabilizer of a fixed arc z E D under the action of 
Mon(M) on F), and let r = R and I = L. We show that there is a unique 
isomorphism A: M —» A(H/S] r , /) which takes the distinguished arc z to the 
coset S. This isomorphism is constructed as follows. Set X(z) = S and for any 
other arc x choose an arbitrary element wx E Mon(M) such that wx(z) = x; 
then set X(x) = wxS. The labelling A is well defined since for any two elements 
w and w' of Mon(M) with w(z) = x = w'(z) we have wS = w'S. Moreover, 
X(Rx) = RX(x) and X(Lx) = LX(x) for any arc x of M. Hence, A is the 
required isomorphism. 

Consider a Schreier representation A(H/S\ r , /) of a map M = (D\ H, L) , 
and assume that T < S < H. Then there is a natural projection TT : H/T —> H/S, 
hT i-> hS, hT being an arbitrary coset of T in H. This mapping is in fact a 
map homomorphism A(H/T; r, /) —• A(H/S\ r, / ) . An important special case 
of this situation occurs when T = 1. In this case, A(H/1; r , / ) is a regular 
map. To see this, consider, for any element h E H, the right translation Th 

of H by h, that is, the mapping given by the assignment rh: x i—> xh for 
any x E H. Since Th commutes with both the rotation and the arc-reversing 
involution of A(H/1\ r , / ) , Th is an automorphism of ^4(H/1; r , / ) . It follows 
that |Aut (A(H / l ; r , / ) ) | > |H | = \D(A(H/l] r , / ) ) | , s o A(H/1; r , / ) is a regular 
map. It is easy to see that Mon(A(H / l ; r , /)) coincides with H acting on itself 
by the left translation. 

Let us return to the isomorphism A: M —> A(Mon(M)/S' ; H, L) , where 
M = (D\ H, L) is an arbitrary map, and S is the stabilizer of an arc z E D 
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under the action of Mon(M) on D. If we identify M with A(Mon(M)/S\ R, L) 
and set M # = A(Mon(M); R, L), we obtain a natural projection 7r: M # —» M , 
where M # = A(.Mon(M); R,L) is a regular map with M o n ( M # ) = Mon(M) . 
In some sense, it is the smallest regular map for which there is a map homo-
morphism onto M . For if <p: M —> M is a map homomorphism, then there is a 
homomorphism ipf: M —> M # such that the diagram 

commutes. We call M # the generic regular map for M . 
It is the purpose of this paper to show that generic regular maps provide a 

very useful means both in map theory and graph theory. Further results about 
generic regular maps can be found in [21]. 

4. Maps of prescribed type 

A map M is said to have pattern (p1,p2, • . . , p m ; q1,q2, • • •,qn) if the set 
of face-sizes of M is {px,p2,... ,Pm}> and the set of vertex-valencies of M is 

{qi, q2> •••>?„}• T h e *2/:Pe o f M i s t h e P a i r (-°> 9), where p = \cm{p1,p2,... ,pm} 
and r/ = l cm{q 1 , ^ 2 , . . . , r / n } . 

In 1976, G r u n b a u m [13] asked if for every pair of positive integers p and 
q with 1/p + l/q < 1/2 (that is, in the hyperbolic case) there are infinitely many 
finite regular maps of type (p, q). He also remarked, however, that it was not 
even known whether for such p and q there was at least one map of that type. 
The question was answered in the affirmative by V i n c e [27] (1983) within a 
more general framework. His proof, based on a theorem of Mal'cev that every 
finitely generated matrix group is residually finite (see, for example, [15]), was 
highly non-elementary and non-constructive. Constructive proofs of V i n c e ' s 
theorem were subsequently given by W i l s o n and G r a y and W i l s o n [10], 
[28], [29] along with some refinements. 

One can observe that if M is a regular map of a hyperbolic type (p, q), then 
infinitely many regular maps of the same type can be constructed by covering 
space techniques, for example, by employing S u r o w s k i ' s voltage assignments 
which take values in 1-dimensional Zn-homology groups ([26]). Thus the crucial 
step is to construct at least one regular map of each given type (p, q). From this 
point of view, V i n c e ' s result can be derived from a theorem of F o x [8] (1952) 
saying that for any three given integers a > 1, b > 1, and c > 1 there can be 
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found a permutation a of order a and a permutation (3 of order b such that 
c is the order of a/3. Indeed, if b = 2 and if a and /3 are the corresponding 
permutations, then the A((a,/3)',a(3,/3) is a regular map of type (a,c). 

We establish the existence of regular maps of any hyperbolic type by ex
plicitly constructing the permutations a and (5 in a very simple manner - by 
"drawing" certain trees on the plane and deriving the permutations from the 
resulting "dessin d'enfants". The striking feature of this proof is a systematic 
use of semiedges. 

We need two simple lemmas. 

LEMMA 1. Let M be an oriented map with pattern (px,p2,... ,pm\ q1,q2,... 
...,qn). Then the generic regular map M# for M has all faces p-gonal and 
all vertices q-valent, with p = l c m ^ , ^ , . . . , p m } and q = \cm{q1,q2,... ,qn] . 
Consequently, the type of M # is equal to the type of M. 

P r o o f. Let M = (D; R, L). Clearly, all the vertices in M # = (D'; R', L') 
have the same valency q which, by the definition of M # , is equal to length of 
any cycle of R'. Since the cycles of R' have the form (x, Rx, R2x,...) for some 
x E D', q equals the order of R, that is, the least common multiple of the 
lengths of cycles in R. The length of any cycle of R coincides with the valency 
of the corresponding vertex, and so, q = \cm{q1,q2,... ,qm}. The proof that 
p = \cm{p1,p2,... ,pn} is similar. • 

The n-semistar Ssn is the graph consisting of a single vertex and n incident 
semiedges. 

LEMMA 2. The only regular maps containing semiedges are the n-semistars 
Ssn embedded into the sphere. 

THEOREM 3. ( V i n c e ) For every pair of integers p > 2 and q > 2 there 
exists an orientable regular map of type (p, q) not containing semiedges. 

Remark. The statement of Theorem 3 can be slightly strengthened. It is actu
ally sufficient to forbid the pairs (p, 1) and (l,p) where p > 2 . 

P r o o f . Since the dual of a map of type (p, q) is a map of type (q, p) and is 
regular if and only if the original map is regular, we may assume that q > p > 2 . 
We consider two cases. 

Case 1: p = q. Let M = (D] R, L) be a map obtained from the embedding 
of a pair of parallel edges in the sphere by adding p — 2 semiedges to each vertex 
in such a way that both the inner and the outer face contain exactly p — 2 of 
them on the boundary (see Figure 1). Clearly, the size of both faces and the 
valency of both vertices is p, so M has type (p,p). By Lemma 1, the generic 
regular map over M has the same type (p,p). As M # has at least two vertices, 
Lemma 2 shows that it has no semiedges. This concludes Case 1. 
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q — r 

F I G U R E 1. F I G U R E 2. 

Case 2: p > q. In this case, there exist integers k > 1 and r > 0, r < c/, 
such that p = kq + r. Let P be a path on k vertices with end-vertices u and v. 

If k = 1, then w = v, and r > 0 because P ^ q. Form a tree T by attaching 
r pendant links and q — r semiedges to v (see Figure 2). Clearly, T has r 
vertices of valency 1 and a single vertex of valency q; the number of arcs in T 
is therefore 2r + (q — r) = p. Any spherical embedding of T has a unique face 
of length p , and so, it gives rise to a map with pattern (p;<7,1). By Lemma 1, 
the generic regular map has type (p,q), and since p> q, it has no semiedges. 

g - i 9 - 2 9 - 2 9 - 2 q — r — 1 

F I G U R E 3. 

If k > 2, then u ^ v. We form a tree by attaching q — 1 semiedges to u, 
q — 2 semiedges to each inner vertex of P , and r pendant links and q — r — 1 
semiedges to v (see Figure 3). The resulting tree T has every vertex of valency 
q or 1, and the total number of arcs in T is the valency sum, that is, 

q + (k — 2)q + (l + r + q — r — l) + r = kq + r=p. 

Since any spherical embedding of T has a unique face of length p, it produces a 
map with pattern (p\ q, 1). As before, the required regular map of type (p, q) is 
obtained applying Lemma 1. The regular map has no semiedges because p > q. 

• 
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A very similar proof has been independently found by A r c h d e a c o n , 
G v o z d j a k and S i r a fi [2] (this issue p. 128). Their lifting argument is, never
theless, slightly different: the base maps are endowed with a canonical voltage 
assignment which takes values in the monodromy group and subsequently lifted 
to the required regular maps. 

In our approach to the construction of maps of an arbitrary type (p, q), it is 
possible to control the reflexibility of the resulting regular maps (cf. G r a y and 
W i l s o n [10; p. 30-31]). This is enabled by taking an alternative approach to 
combinatorial description of maps. It is well known that a topological map M 
can be described by means of three involutions /, r and t acting on "flags" of 
M , mutually incident (vertex, edge, face) triples (see, for example, [2], [9]). The 
group (/, r, t) can be viewed as an "extended" monodromy group, and hence, 
the idea of construction of the generic map for M can be applied. The new map 
obtained in this way is the smallest reflexible regular map M + such that there 
exists a map homomorphism M + —> M . It is the reflexible generic regular map 
for M . In general, the maps Af+ and M # are not isomorphic. 

THEOREM 3 ' . For every pair of integers p > 2 and q > 2 there exists a 
reflexible regular map of type (p, q) not containing semiedges. 

P r o o f . It is sufficient to interpret the topological maps M constructed in 
the proof of Theorem 3 by means of three involutions and apply the construction 
o f M + . • 

5. Triangulations of given valency 
and arbitrarily large face-width 

Let M be a map formed by embedding a graph G in a closed surface S other 
than the sphere. The face-width of M , fw(M), is the minimum of |CnC?| taken 
over all non-contractible (that is to say, homotopically non-null) simple closed 
curves C in 5 , and the edge-width of M , ew(M), is the length of a shortest 
non-contractible cycle in G. Face-width and edge-width have recently received 
wide attention due to their importance for the study of graph embeddings. This 
is well documented in M o h a r ' s survey paper [17] published in this issue. 

Obviously, ew(M) > fw(M) for every map M . It is also easy to see that 
ew(M) = fw(M) if M is a triangulation, and that the face-width of any map 
M equals the face-width of its dual M* (see [17; Proposition 3.2]). In [1], maps 
where any of these invariants is large enough are called dense in order to reflect 
the fact that they measure how densely a graph is embedded on a surface. 

Our next aim is to show that many remarkable dense maps can be constructed 
by our generic regular map construction. In particular, our method is employed 
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to produce regular k-valent triangulations of arbitrarily large face-width. This 
result has a number of corollaries which reprove, improve or generalize several 
known results. 

The following lemma can be proved by using elementary arguments from 
algebraic topology. 

LEMMA 4. Let ip: S —• S be a branched covering of surfaces. Let DCS be an 
open disk which contains no branching point of ip, and let D be any connected 
component of ip~1(D). Then the restriction i/>\ f) : D —> D is a homeomorphism. 

Now we are ready to prove Theorem 5. 

THEOREM 5. For every k > 6 and every d > 1 there exists a k-valent regular 
triangulation of some orientable surface whose face-width is > d. 

P r o o f . It is easy to construct 6-valent triangulations of the torus with 
arbitrarily large face-width, so we may assume that k > 1. Let Tk be the 
infinite regular k-valent triangulation of a hyperbolic plane, and let T be the 
triangulation of a disk D arising from Tk by taking the part of Tk induced by 
the vertices at distance not greater than d from a specified vertex v. We form 
a spherical map M0 from two copies T' and T" of T with different orientation 
by glueing their boundary circles identically. The cycle of M0 that arises will be 
called the equator. The corresponding copies v' and v" of the vertex v will be 
the poles of M0. Obviously, M0 is a spherical triangulation. It is k-valent apart 
from the vertices lying on the equator, where a sequence of k — 5 consecutive 
vertices of valency 4 alternates with a single vertex of valency 6. 

Pi 

FIGURE 4. 

Next we modify the triangulation M0 by amending the valencies on the 
equator. The modification will result in a k-valent spherical map Mk d where all 
the faces are either 1-gons or 3-gons. In order to do this, consider the following 
sequence (Pn) of planar maps. The maps P1, P2, P3 and P4 are depicted in 
Figure 4. For n > 5, the map Pn is obtained from Pn_3 by adding a semiedge 
and a loop as shown in Figure 4. Every Pn has a vertex of valency n , and at 
most one other vertex of valency 1. The vertex of valency n is incident with 
the loop bounding the outer face of Pn. We form Mk d as follows. If k > 9, 
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we first replace every edge on the equator by two parallel edges. Inside every 
digon, we draw the map Pk_8 or Pk_6 depending on whether the "left" vertex 
in the digon has valency 8 or 6, respectively (see Figure 5). The cases k = 1 
and k = 8 have to be solved separately; the solution is indicated in Figures 6 
and 7. 

equator 

k — 3 vertices 

J 

FIGURE 5. k > 9. 

equator 

FIGURE 6. k = 7. 
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equator 

FIGURE 7. k = 8 . 

We claim that the generic triangulation Mkd for Mk d has face-width at 

least d. Suppose this is not the case. Since ew(Mkd) = fw(Mkd), there is a 

non-contractible cycle C in Mkd of length smaller than d. Recall that there 

is a natural branched covering projection 7r: Mkd —> Mk d. As Mkd is vertex-
transitive (being a regular map), we can assume that C contains a preimage w 
of one of the poles, say v'. Consider the interior U of the disk D' supporting 
T' which contains v' (the "northern hemisphere" of Mk d) and the component 

U of 7r_1(U) containing w. From Lemma 4, it follows that the restriction of 7r 
on U maps U homeomorphically onto U. Since the length of C is less than d, 
C is wholly contained in U. Hence C is contractible, a contradiction. D 

Theorem 5 shows, in particular, that for every fixed k > 6 there exist infin
itely many fc-valent regular triangulations (with increasing face-width). Espe
cially interesting is the case k = 7 due to the relationship with Hurwitz groups. 
We call a map a Hurwitz triangulation if it is regular, 7-valent, and has all faces 
triangular. The automorphism group of a Hurwitz triangulation is a Hurwitz 
group. A Hurwitz group is finite and can be generated by two elements x and y 
which satisfy the relations 

x7 = 1, y2 = 1, and (xy)3 = 1. 

A short trip through an extensive literature about Hurwitz groups is offered in 
C o n d e r ' s survey [6]. 
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A classical result by Hurwitz (1893) says that for every map on an orient able 
surface of genus g > 2 the order of its orientation preserving automorphism 
group is bounded from above by 84(# — 1). This extreme value is attained 
precisely when the map is a Hurwitz triangulation or the dual of a Hurwitz 
triangulation. The fact that there are infinitely many Hurwitz triangulations 
was first established by M a c B e a t h in 1966 [16]. A map-theoretical proof was 
given by S u r o w s k i [26]. Our Theorem 5 yields another such proof. 

THEOREM 6. ( M a c B e a t h ) There exist infinitely many Hurwitz triangula
tions and hence infinitely many Hurwitz groups. 

It is not difficult to give alternative constructions of Hurwitz triangulations. 
For instance, one can apply the generic regular map construction to an infi
nite sequence of irregular planar "dessins d'enfants" with pattern (7,1; 3,1), or 
pattern where one or both values 1 may be missing. Such a sequence can be 
constructed inductively from a certain base map of this kind which is then re
peatedly expanded by adding a certain pattern. The first two members of such 
a sequence are shown in Figure 8. 

FIGURE 8. 
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An independent proof of M a c B e a t h ' s theorem in a similar style can be 
found in A r c h d e a c o n , G v o z d j a k and S i r a n [2] (this issue p. 127). It 
employs toroidal base maps. 

"Dessins d'enfants" can also be used to derive permutation representations 
of small Hurwitz groups. Note that if M = (D\ R, L) is a map for which 
M # is a Hurwitz triangulation or the dual of a Hurwitz triangulation, then 
M o n M # = (R,L) is a Hurwitz group. Let, for instance, M be the map in 
Figure 9 which has seven arcs and type (7,3). If the arcs of M are labelled con
sistently with Figure 9, where a in the transposition (ab) denotes the arc in the 
indicated direction, we see that R = (135)(467) and L = (12)(34). These per
mutations generate a group of order 168 isomorphic to PSX(2, 7), the smallest 
of all Hurwitz groups. Permutation representations of the next three smallest 
Hurwitz groups of orders 504, 1092, and 1344 can be derived from maps in 
Figure 10(a), (b) and (c), respectively. 

cДo —dЗ ^ ^ 
(a) (b) (c) 

FIGURE 10. 

We proceed to another application of Theorem 5. A graph G is said to be 
vertex-locally Cn (edge-locally Cn) if for every vertex v (for every edge e) of G 
the subgraph induced by the vertices at distance 1 from v (from e) is a cycle of 
length n. P a r s o n s and P i s a n s k i [23] proved that for n > 6 every vertex-
locally Cn graph is the underlying graph of a uniquely determined n-valent 
triangulation of face-width at least 4, and vice versa. An edge analogue was 
established by N e d e l a [18]: for n > 8 every edge-locally Cn graph is the 
underlying graph of an ra-valent triangulation of face-width at least 5, where 
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77, = 2m — 4 and m > 6. With these facts in mind, Theorem 5 implies the 
following strengthening of an old result of B r o w n and C o n n e l l y [5]. 

THEOREM 7. For every n>6 there are infinitely many connected graphs that 
are locally Cn and edge-locally C2n_4. 

Now we turn our attention to the duals of triangulations constructed in The
orem 5. A polygonal graph is a regular graph of girth g together with a set 
of ^-cycles {Zt} such that every path of length two is in a unique Zt. Most 
work has concentrated on cubic polygonal graphs. Graphs of girth not exceeding 
9 were investigated by P e r k e l [24], [25] and N e g a m i [22], It was conjec
tured that no cubic polygonal graphs of girth g > 10 exist (see [1]), However, 
A r c h d e a c o n [1] constructed a cubic polygonal graph of girth g for every 
g = 0 (mod 4). We generalize this result by dropping the divisibility condition. 

THEOREM 8. For every integer g > 6 there exist infinitely many cubic arc-
transitive polygonal graphs of girth g. 

P r o o f . Theorem 5 provides a k-valent regular triangulation Tk d = Mkd 

of face-width at least d for every k > 6 and d > 1. Consider the case when 
d > k, and let Gk d be the underlying graph of the dual map Tk d. It follows 
that Gk d is cubic, arc-transitive (because Tk d is a regular map) and has girth 
at most k (since the face boundaries are fc-cycles). Moreover, Gkd together 
with the set of face boundaries of Tk d is a polygonal graph. It remains to prove 
that the girth of Gk d equals k. 

Let C be a shortest cycle in Gk d, and let the length of C be g. We have 
g < k. Since 

ew(T* d) > M-X.) = fw(2"M) = d > k , 

every cycle of length not exceeding k is contractible. Hence, C separates the 
underlying surface of Tk d into two components one of which is a disk D. We 
claim that the interior of D contains no vertices of Gk d; in other words, C 
is the boundary of a face of Tkd. Suppose not, and consider the subgraph K 
induced by the vertices in the interior of D. We distinguish two cases. 

If K is acyclic, then it contains a vertex u of valency at most 1. It follows that 
there is a path P of length 2 joining two vertices on C and passing through u. 
However, C U P obviously contains a shorter cycle - a contradiction. 

If K contains a cycle, then the set of all edges with one end-vertex on C and 
the other end-vertex inside D constitutes a cycle-separating edge-cut X with 
\X\ < g. On the other hand, we have proved in [19] (see also [20]) that the cyclic 
connectivity of a cubic vertex-transitive graph is equal to its girth. (Recall that 
an edge-cut X in a graph G is cycle-separating if at least two components of 
G — X contain cycles. The cyclic connectivity of G is the smallest integer m 
such that G has a cycle-separating m-cut.) Thus we have a contradiction again. 
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Consequently, C bounds a face, and g = k. This completes the proof. • 

A lot of work has been done in the construction of cubic symmetrical graphs 
of arbitrarily large girth, see for example [3], [4], From the known constructions, 
however, it has not been clear whether for any given integer g > 6 at least 
one arc-transitive cubic graph of girth g can be found. The previous theorem 
provides such a construction. 

The result can still be improved: for every g > 3 we can actually construct a 
2-arc-transitive cubic graph K of girth g. This can achieved by replacing the 
generic regular maps with the reflexible generic regular maps throughout. For 
every k > 6 and d > 1 we thus obtain a k-valent reflexible regular triangulation 
of face-width at least d (which is in fact Theorem 5'). Its dual is a reflexible 
regular map, and if the face-width is larger than k, then the girth of the under
lying cubic graph equals k. As the map is reflexible, the graph is 2-arc-transitive 
[9; Theorem 4], Finally, using the Platonic solids to cover the remaining small 
values of girth we obtain: 

THEOREM 9. For every integer g > 3 there exists a cubic 2-arc-transitive 
graph of girth g. 
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