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BALANCED INTEGRAL TREES 

PAVOL Hie* — ROMAN NEDELA** 

(Communicated by Martin Skoviera ) 

ABSTRACT. A graph G is called integral if all the zeros of the characteristic 
polynomial P(C7; A) are integers. In the present paper we investigate the ques
tion which trees are integral. Some positive and negative results are presented . 
Among others, we prove tha t there are infinitely many balanced integral trees of 
diameter 8, but there is none of diameter 4k -f 1 for k > 1. A tree T is called 
balanced if the vertices at the same distance from the centre of T have the same 
degree. The problem of the existence of balanced integral trees of arbitrarily large 
diameter remains open. 

1. Introduction 

A graph G is called integral if it has an integral spectrum, i.e. if all the zeros 
of the characteristic polynomial P(G; X) are integers. In general, the problem 
of characterizing integral graphs seems to be difficult. Thus it makes sense to 
restrict our investigations to some interesting families of graphs. For instance it is 
known (see [1], [11]) that there are exactly 13 integral cubic graphs. Trees present 
another important family of graphs for which the problem has been considered 
([4], [6], [8], [9], [12], [13]). In contrast to cubic graphs there are infinitely many 
integral trees, and it turns out that even the problem of determining integral 
trees seems to be not at hand. There are many unanswered questions related 
with this problem. For instance, all the integral trees constructed so far have 
diameter at most 6, which suggests the following problem: 

(PI) Are there integral trees of arbitrarily large diameter? 

It is well known that the centre Z(T) of a tree T consists either of a central 
vertex, or of a central edge depending on whether the diameter of T is even, 
or odd, respectively. If all the vertices at the same distance from the centre 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C50. 
K e y w o r d s : tree, characteristic polynomial. 
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Z(T) are of the same degree, then the tree T will be called balanced. Clearly, 
the structure of a balanced tree (without vertices of degree 2) is determined by 
the parity of its diameter and the sequence (nk)nk_1)..., n j , where k is the 
radius of T and n- (1 < j < k) denotes the number of successors of a vertex 
at distance k — j from the centre Z(T). In what follows, n i (i = 1,2, . . . ) 
always stands for an integer > 2. The balanced trees of diameter 2k will be 
encoded by the sequence (nk)..., n-J, while those with diameter 2k + 1 by 
(l\nk,... , n x ) . Sequences (nk,...,nx) and (l;nk,...,nx) will be called integral 
if the corresponding balanced trees are integral. 

The main concern of this paper is to investigate balanced integral trees. Here 
is a brief survey of the related known results. 

H a r a r y and S c h w e n k [4] showed that (n-_) is integral if and only if n1 

is a square. Moreover, they gave the following examples of integral sequences: 
(1; 2), (1; 6), (3,1). Later, S c h w e n k and W a t a n a b e [12] proved that the 
sequence (n2)nx) is integral if and only if both nx and nx + n2 are squares. 
Further, they showed that the sequence (ljn-J is integral if and only if nx = 
r(r + 1) for some r G N. In [12] they also proved that there is no integral 
sequence of shape (nfc, 1 , . . . , 1) for k > 3. G o d s i 1 (see [12]) found a family of 
integral sequences of length 3. 

We extend the above by establishing the following results: 

(1) If (nk,..., nx) is integral, then ( n . , . . . , nx) is integral for 1 < j < k — 1 
(Corollary 3.4); 

(2) If ( l j n ^ , . . . , n2) is integral then ( n - , . . . , n-_) is integral for 1 < j < k — 1 
(Corollary 4.3); 

(3) If ( n ^ . , . . . , ^ ) is integral, then (q2nk,... ,q2nl) is integral for every 
q E N (Theorem 3.5); 

(4) There is no balanced integral tree of diameter 4fc + 1 (Theorem 4.5). 

On the other hand, one can verify that the sequence (616, 225, 672, 4) is 
integral. It follows from (3) that for every integer q the sequence (616g2, 225g2, 
672g2, 4q2) is integral, too. Thus we have infinitely many integral sequences 
of length 4 implying that there are infinitely many balanced integral trees of 
diameter 8. Unfortunately, even using a computer, we have not been able to 
construct an integral sequence of length greater than 4. 

The following problem remains open 

(P2) Are there integral sequences (nk)..., nx) of arbitrary large length? 

Clearly, the positive solution of (P2) would imply the positive solution of (PI) . 
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The current knowledge about the existence of balanced integral trees is sum
marized in the following table: 

diameter: existence: authors: 

2 yes Harary, Schwenk [4] 

3 yes Watanabe, Schwenk [12] 

4 уes Hararу, Schwenk [4] 

5 no Theorem 4.5 

6 yes Godsil (see [12]) 

7 no Theorem 4.6 

8 yes Table 1 

9 no Theorem 4.5 

4 k + l no Theorem 4.5 

diam > 10 and diam ф 4k + 1 ? 7 

Hence the first unsolved case occurs for the diameter 10. An equivalent for
mulation of the problem reads as follows: 

(P3) Is there an integral sequence (n5,n4,n3,n2,n1) ? 

It should be noted that the negative solution of (P3) together with the hered
itary properties (1), (2) would imply that there is no balanced integral tree of 
diameter > 12. 

Let us note that there exist infinitely many integral trees of diameter 5 
(see [9]), but there is no balanced integral tree of diameter 5 (see Theorem 4.5). 

2. Prel iminar ies and general results 

In the rest of this paper, a graph means a directed graph with multiple edges 

and loops. The main reason for dealing with directed graphs rather than undi

rected graphs is technical convenience. Most notions and definitions introduced 

in the paper for (directed) graphs will be also applied to undirected graphs in 

the following sense: Denote by G the directed graph which arises from an undi

rected graph G by replacing each edge of G by a pair of oppositely directed 

arcs. Since both G and G have identical adjacency matrices, to investigate the 

properties of the adjacency matrix of G we may consider the graph G instead 

of G and vice versa. 
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Let G be a graph. The characteristic polynomial P(G\ A) of a graph G is 
defined to be the characteristic polynomial of the adjacency matrix of G. We say 
that G has an integral spectrum or that G is integral if all the zeros of P(G; \) 
are integers. 

n 
A partition of the vertex set V(G) = IJ Vi of a graph G is called an equitable 

i=i 
partition if there exists a square matrix M = (d-•) of order n such that for every 
z, j G {1, 2 , . . . , n} and for every vertex x G V{ there are exactly d-• arcs joining 
x to vertices in V-. The graph D with the adjacency matrix M is called a 
front-divisor of G. The fact that F) is a front-divisor of G will be denoted by 
D \ G. Obviously, the vertices of D correspond to the classes V{ of the equitable 
partition. Two classes V{, V- of the equitable partition of G are called adjacent 
classes if d-• > 0. IJ 

The most important property of a front-divisor D of a graph G is that the 
characteristic polynomial P(D\ A) divides the characteristic polynomial of G 
([2; Theorem 4.5]), i.e. there exists a polynomial P(C;\) such that P(G;\) = 
P(D] \)P(C\ A). Unfortunately, in general, the polynomial P(C\ A) need not be 
a characteristic polynomial of a graph. However, it is proved in [2] that it is 
always a characteristic polynomial of an integer matrix M c . The combinatorial 
object C corresponding to Mc is a graph whose arcs are valued by plus or 
minus one. Then C is called a codivisor of G and P(C; A) is the characteristic 
polynomial of C. 

In [6] the properties of front-divisors of trees are discussed. 

There, the following Lemma, which shows that each front-divisor of a tree 
has a tree-like structure, is proved. 

LEMMA, (see [6; Proposition 3.4]) Let D be a front-divisor of a tree T. Then 
the following statements hold: 

(1) Let u G Z(T) and U be a class of equitable partition with u G U. Then 
\U\ = 1 or \U\ = 2 and D has a directed u-based loop. 

(2) D has exactly one loop, or it has none. 
(3) Let u, v be two vertices of D and U, V be corresponding classes of 

the equitable partition. Let y G V and x G U be such vertices, that y is 
successor of x in any radial path of T. Then \U\ < \V\ and there exist 
exactly one v — u path in D. (A w — t path in T will be called a radial 
ifweZ(T)). 

(4) D has no cycle of length greater than two. 
(5) Let U = {u G T : u G V{, |V-| = l } , where Vi be a class of the 

equitable partition corresponding to D • Then Z(T) C U and U is a 
connected subgraph of T. 
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It follows from the above lemma that it is always possible to choose ver
tices representing the classes Vi of the equitable partition of T in such a way, 
that they induce a connected subtree of T . For this it is sufficient to take 
v0 G Z(T) C V0 and if V0, V1 are two adjacent classes we choose the vertex 
vx G Vx such that (v0,vx) G E(T). Now, let v0,vx,... ,v{ be vertices represent
ing the classes V0, Vv .. •, Vi of the equitable partition such that they induce a 
connected subtree of T and Vi+1 be a class adjacent to the some of the classes 
VQ, V 1 ? . . . , Vi, for example V{. Then we choose the vertex vi+1 G Vi+1 such that 
(vitvi+l)€E(T). 

In the following theorem we show that the characteristic polynomial P(C\ A) 
of a codivisor of a tree T may be expressed in terms of proper subtrees of T . 

THEOREM 2 .1 . Let D be a front-divisor of a tree T and C be the correspond
ing codivisor. Then 

P(C;X)= TJ P(Tt;X), 
TiCT-V(D) 

where T{ are connected components of T — V(D) and in the case, that D has 
the v1-based loop, Tx is the connected component ofT-V(D) with the ux-based 
loop valued by — 1. (u1 G Z(T)). 

P r o o f . Let R = {vx,..., vm} be a selection of representatives of the vertex 
set of D such that the induced subgraph is connected and v1 G Z(T). Every 
strongly connected component T' C T — R is a rooted tree with the root u' 
where u' G T' is the end-vertex of the edge joining T' to R. Let T1,T2,...,Tr 

be the strongly connected components of the graph T — R, and u1,u2,...,ur be 
the roots of T1,T2,...,Tr where ui G Ti be the end-vertex of the edge joining 
T{ to R. It follows from above Lemma that Ti can be put in order TX,T2,..., Tr 

such that for each Ti, T-, i < j we have d(f1,i^ i) < d(vx,u.). Now, using the 
algorithm in [2; p. 126], we see that the adjacency matrix M(C) of the codivisor 
C has the following form 

/M(TX) \ 
M(T2) 

- 1 or 0 

V M(Tr)j 

where M(TJ is the adjacency matrix of the tree T{ for i = 1, 2 , . . . , r . In the 
case if D has a loop, then by the algorithm in [2; p. 126] M(TX) is the adjacency 
matrix of the component Tx with a loop denote by —1 which is u1 -based, 
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ux G Z(T). Since M(C) is a triangle matrix, 

r 

P(C;\) = \\\-M(C)\ = l[P(Ti]\) 
г=l 

D 

3. Balanced rooted trees 

A rooted (undirected) tree T will be called a balanced rooted tree if the 
distance partition IT of V(T) with respect to the root of T is an equitable 
partition. It follows that vertices of the same class of 77 have the same degrees. 
Thus, if T is a balanced rooted tree with a root w of the excentricity k > 1, then 
there exist integers n t , n 2 , . . . ,n f c such that a vertex v of T at distance i, 0 < 
i < k — 1 from I/J has exactly nk_t successors. Hence, every nontrivial balanced 
rooted tree T being uniquely determined by the sequence (nk,nk_l,..., nY), 
T will be denoted by T(nk,nk_1,... ,nx). Note that a balanced rooted tree 
T(nk,..., n x ) is a balanced tree of even diameter 2k if and only if nk > 2. 

T(3,2,2) 

D(3,2,2) 

FIGURE 1. 
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The front-divisor of T = T(nk,nk_1,..., n j determined by the distance par
tition 17 of T is a directed graph D(nk,nk_1,... , n j with vertices v0,vx,... ,vk] 
a vertex v{ is joined by nk_{ parallel arcs to vi+1 and vi+1 is joined by one 
arc to v{, for 0 < i < k- 1. The tree T(3,2,2) and its divisor 19(3,2,2) are 
depicted in Fig. 1. The divisor D(nk,nk_1,..., n j will be called a rooted canon
ical divisor. It is proved in [6] that for every tree T there exists a divisor D* 
such that D* | D for every front-divisor D of T . The front-divisor D* is called 
the canonical divisor of T . Note, that if T is a balanced rooted tree, then the 
rooted canonical divisor is the canonical divisor of T with the exception that T 
is a starlike tree (see [12]) and the root of T is not the central vertex of T . 

In order to cover also the trivial case we denote by T(0), T>(0) the graph 
consisting of one isolated vertex. 

THEOREM 3.1. Let T(nk,nk_1,... , n j be a balanced rooted tree and 
D(nk, n / e _ 1 , . . . , n j be the corresponding canonical rooted divisor. Then 

p{D(nk,nk_1,...,n1)-\) 

= \P(D(nk_x, nk_2,..., n j ; A) - nkP(D(nk_2, nk_3,.... n j ; A) (k > 2 ) . 

P r o o f . Let M be the adjacency matrix of D(nk,nk_1,..., n j . Then 

P ( J D K , n f e _ 1 , . . . > n 1 ) ; A ) = | A I - M | 

A ~ n k 0 . 0 0 
- 1 X ~ n k - l • . 0 0 

0 -1 X . 0 0 

0 0 0 . A — Гì 

0 0 0 . - 1 A 

Now, the expansion by cofactors of the first column yields the statement. • 

THEOREM 3.2. Let D = D(nk,nk_1,... , n j be a canonical rooted divisor of 
a balanced rooted tree T(nk, n / e _ 1 , . . . , nx) and 

fc+i 

P(D;\) = \k+1+ J^a-A^1-* 
i=i 

be its characteristic polynomial, then 

W a2i+i = °> « = 1,2, . . . ; 
i 

(ii) a2i = (—l)l_Z Ei n
s •> where the summation is done over all subsets 

L j=i 3 

L = { 5 1 , 5 2 , . . . , 5 j C { 1 , 2 , . . . , A;}, sr ^ Sq, \sr - sq\ / 1 for every 
r,qe { l , 2 , . . . , z ' } ; r^q. 
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P r o o f . First observe that D(nk,nk_1,..., na) contains only directed cy
cles of length 2. Further, every directed linear subgraph F of D with exactly 2i 
vertices contains exactly i directed cycles of length two. It is easy to verify that 
the number of such linear subgraphs of D is given by (ii). Now, the statement 
follows from [2; Theorem 1.2]. • 

THEOREM 3.3. Let T = T(nk,nk_1,... ,nx) be a balanced rooted tree with 
the canonical rooted divisor D = D(nk,nk_1,... ,nx) and let C denote the 
distinguished codivisor of D. Then the characteristic polynomial of C is 

P(C;\) = f[[P(T(nk_i,nk_i_1,...,n1);\)p-^-1. 

P r o o f . Because for every i = l,...,k there are exactly (nk_i+1 - 1) 
strongly connected components T(nk_{, nk_i_1,..., nx) in T — V(D) the proof 
follows from Theorem 2.1. • 

Remark. By Theorem 3.3 

P(T(nk,...,ni);\) 

= P(D(nk,nk_1,...,n1);\)f[[P(T(nk_i,nk_i_1,...,n1);\)}
nk-i+l-1. 

2 = 1 

Iterating this formula, P(T(nk,..., n-_); A) is expressed as a product of powers of 
P(T(0);A) = A and P(D(nk_i,..., nx); A) where the exponents can explicitly 
be calculated. Thus (nk,..., nx) is integral if and only if all the zeros of all the 
P(D(nk_i,...,n1);X) are integral. 

The above theorem has the following interesting corollary. 

COROLLARY 3.4. A sequence (nk,nk_1,... ,nx) is integral if and only if all 
zeros of the polynomial P(D(nk,nk_1,..., nx); A) are integral and (nk_1,nk 2, 
. . . ,nx) is integral. In particular, if (nk,... ,nx) is integral then (ni,n._1,... ,nx 

is integral for every 1 < j < k — 1. 

THEOREM 3.5. A sequence (nk,nk_1,...,nl) of positive integers is integral 
if and only if for every q e N the sequence (q2nk, q2nk_Y,.. ., q2nl) is integral 

P r o o f . Let q e N. By Corollary 3.4 it is sufficient to prove that D(nk,nk x, 
...,"-_) has integral spectrum if and only if D(q2nk,q

2nk_1,..., q2nl) has inte
gral one. 

Let Pk(\) = \k+'+Zai\
k+1'i and P^\) = A^1 + X? M"+1 l be the 

i=\ i = 1 

characteristic polynomials of D(nk,nk_1,... ,nx) and D(q2nk,q
2nk_1}...; q

2
n 
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respectively. By Theorem 3.2 for every i = 1,2, . . . , b2i+1 = a2i+1 = 0 and 
b2i = q2la2i. Now, xx,x2,... ,xk+1 are zeros of Pk(X) if and only if for every 
z = l , 2 , . . . 

a2i = _ C xhxh ' *' xhi 5 i 5 G { 1 , 2 , . . . , k + 1} . 

Multiplying this equation by q2x we get 

and further 

hi = Y.^xh^xJ.)-'-^xjJ' 
But, the last equation is equivalent to the statement qxx, qx2,..., qxk+1 are 
zeros of polynomial P'k(X). • 

COROLLARY 3.6. If there exists an integral sequence (n / c ,n f c _ 1 , . . . , nx) of 
length k, then there are infinitely many integral sequences of length k. 

An integral sequence (Tik,nk_1,..., n-J such that the g • c- d- (nk,... ,n x ) is 
square-free will be called a primitive integral sequence. 

The following theorems contain results about integral sequences of length < 4. 

THEOREM 3.7. ([12; Theorem 1 and Theorem 2]) 

(a) The balanced rooted tree T(nx) is integral if and only if n1 is a square. 
(b) The balanced rooted tree T(n2in1) is integral if and only if both nx and 

(n2 + nx) are squares. 

Combining Theorem 3.7 with Corollary 3.4 we may obtain characterization 
theorems for some subfamilies of balanced integral trees. In [12; Theorem 1] the 
authors presented a characterization of starlike integral trees, i.e. the balanced 
trees T(nk, 1 , . . . , 1). It follows from Theorem 3.7 that the sequence (1,1) is 
not integral. By Corollary 3.4 k < 2. Now the characterization follows from 
Theorem 3.7. Namely, wre have that the only integral starlike trees are T(m2) 
and T(m2 — 1,1) for m > 2. Analogously we obtain that the only T-uniform 
balanced integral tree T(T , . . . , T) is the star T(r), where T = m2 and m > 2. 

The following theorem gives us a characterization of integral sequences of 
length 3. 

THEOREM 3.8. A sequence (n3,n2,n1) is integral if and only if n1 = k2, 

n2 = n2 + Ink, n3 = gj^~ where a, b, k, n are positive integers satisfying 

(k2 - b2)(a2 - k2) = k2(n2 + 2nk), b<k<a. (3.1) 
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P r o o f . 
(a) Let T(n3,n2,nl) be an integral tree. Theorem 3.7 and Corollary 3.4 

imply that there exist integers k, n such that n 1 = k2, n 2 = n 2 + 2nk, and 
the polynomial A4 — (nx + n2 + n 3)A 2 + n1n2 = 0 has only integral roots. But, 
this polynomial has only integral roots if and only if it may be factored into 
(A2 - a2)(A2 - b2) with a, b positive; that is 

A4 - (n 2 + n 2 + n 3)A 2 + nxn3 = (A2 - a2)(A2 - b2). (3.2) 

From the above formulas we have 

a 2 + 62 = (k + n ) 2 + n 3 , (3.3) 

a2b2 = k2n3 . (3.4) 

Excluding n 3 from (3.3) and (3.4) we get 

a 2 b 2 = k2(a2 + b2-(n + fc)2). (3.5) 

Now a simple modification of (3.5) gives us the required equation. 

(b) Let nx = k2, n 2 = n 2 + 2nk, n 3 = -*p- and a,b,k,n G N satisfying 
(3.1). From formula (3.1) we have 

a2b2 

k2 

Then 

= a- + V - (n + kŢ . (3.6) 

P(D(n3,n2,nl); A) = A4 - (k2 + n2 + 2nk + ^ - ] У + a 2 , 2 

= A 4 _ ( a 2 + 6 2 ) A 2 + a 2 6 2 

= ( A 2 - a 2 ) ( A 2 - b 2 ) 

= ( A - a ) ( A + a)(A-b)(A + 6). 

Now, from Theorem 3.7 and Corollary 3.4 T ( ^ , n 2 + 2n/c, k2) is integral. • 

Theorem 3.8 implies that the problem of characterizing integral sequences of 
length 3 is equivalent with the problem of solving the diophantine equation (3.1). 
Let d = g • c • d • (6, k), k = dx, b = dy. Then (3.1) is equivalent with 

(x2 - y2)(a2 - d2x2) = x2(n2 + 2ndx), (3.7) 

where g • c • d • (x, H) = 1. Since a • c • d • (x, y) = 1 we have a = xc for some c. 
Hence (3.7) is equivalent with 

(x2 - y2)(c2 - d2) = n(n + 2d:r). (3.8) 
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Assuming n = x2 — y2 or n = c2 — d2 (3.8) can be reduced to 

c
2 + 2 /

2 = (x + r/)2
) (3.9) 

or to 
c2 + H2 = ( x - r f ) 2 , (3.10) 

respectively, the solutions being Pythagorian triples (c, H, x + d), or (c, y,x — d), 
respectively. One class of such solutions obtained in this way is presented in 
Corollary 3.9. Unfortunately, the solutions of (3.1) derived from the solutions 
of (3.9) and (3.10) do not cover all the solutions of (3.1). These formulas allow 
infinitely many primitive integral sequences to be generated. 

We note that G o d s i 1 (see [12]) also constructed a class of integral sequences 
of length 3. 

COROLLARY 3.9. For every u e N, u > 1, the tree T(4u2(u2 - l ) 2 , 
8u4 — 6u2 + 1,H4) is a balanced integral rooted tree. In particular, there exist 
infinitely many primitive integral sequences of length 3 . 

P r o o f . Let a = 2us , b = u2 — 1, n = 2u2 — 1 and k = u2. By substituting 
these a, b, n and k in (3.1) one can check that they present a solution of (3.1). 
Further, it follows from g-c-d-(u4, 8u4 — 6u2-\-\) = g-c-d-(u4, 6u2 — 1) = 1 that 
the sequence (4u2(u2 — 1) , 8u4 — 6u2 + 1,H4) is a primitive integral sequence 
for every u G N. • 

THEOREM 3.10. A sequence (n4,n3,n2,n1) is integral if and only if nx — k2, 
: a —a 

{n+k)2 n2 + 2nk, n3 = £L^-, n4 = c ?n+£\2b , where a,b,c,d,k,n are positive 

integers satisfying (3.1) and 

(c2 + d2)(n + k)2k2 = (n + k)4k2 + a2b2(n2 + 2nk) + c2d2k2 , a2b2 < c2d2 . 
(3.H) 

P r o o f . Let T(n 4 , n3,n2,nx) be a balanced integral rooted tree. Using The
orems 3.7, 3.8 and Corollary 3.4 we have nx = k2, n2 = n2 + 2nk, n3 = - -p- , 
(a2 - k2)(k2 - b2) = k2(n2 + 2nk); b < k < a, and all the zeros of 

P (J9(n 4 , n 3 , n 2 , n 1 ) ; A) = A5 - (n1 + n2 + n3 + n 4 ) A 3 + (n1n3 + n2n4 + nxn4)A 

are integral. Then there must exist c , l iGN such that 

X4 -(nx + n 2 + n 3 + n 4 ) A 2 + ( n 1 n 3 + n 2 n 4 + n 1 n 4 ) = (A2 - c2)(A2 - d2). (3.12) 

From the above formulas we have 

(n + k)2 + ^ + n4 = c2 + d2 , (3.13) 

a2b2 + (n + k)2n4 = c2d2. (3.14) 
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czd2-a2b2 

(3.14) implies n 4 = c
 (

rf
n ~*)2

b , which inserted into (3.13) yields (3.11). Let 
nx = k2 , n2 = n2 + 2nk, n 3 = ^ p - , n 4 = c fn^k)2

b , where a, b, c, d, fc, n £ N, 

satisfy (3.1) and (3.11). It follows from Theorems 3.7, 3.8 and Corollary 3.4 that 

it is sufficient to show that the polynomial 

P{D(n4, n3 , n2 , n j ; Л) = A5 - í 
2 L 2 c2d2 - a2b 

(n + k)2 

has only integral zeros. From (3.11) we have 

+ ^T + (n + k)2)\3+c2d2\ 

(3.15) 

c2 + d2 = (n + k)2 + 
aЧ2 c2d2 - aЧ2 

+ (3.16) 
fc2 ' (n + fc)2 ' 

Substituting this into (3.15) we get 

P(D(n4,n3,n2,nl);X) = A5 - (c2 + d2)A3 + c2d2A = A(A-c)(A + c)(A-d)(A + d ) . 
(3-17) 

D 

Using a computer we have found 182 "small" solutions of (3.1) and (3.11). 
A sample of them are given in the following table. 

nl n2 n
3 n4 

a b c d 

4 672 225 616 30 1 19 34 

9 9792 1225 6336 105 1 71 111 

9 9792 1225 38784 105 1 97 201 

16 105 144 676 16 3 10 29 

16 560 729 360 36 3 12 39 

16 560 729 2736 36 3 21 60 

36 693 1600 1209 48 5 17 57 

It turns out that for every fc we may find a system (Sk) of diophan-
tine equations such that every solution of (Sk) gives an integral sequence 
(nk, nk_l, • • •, ni), and vice versa. Unfortunately, we have not been able to 
find any solution of (Sk) for fc > 5. Thus the problem of the existence of inte
gral sequences of length > 5 remains open. In fact, we do not know any example 
of an integral tree of diameter > 9. The above results imply that there e I 
infinitely many balanced integral rooted trees of diam t r 8. 

Balanced rooted trees can be used also for deriving g n r 1 r ults on p r 
of trees. For instance we have the following theorem A bran h of a tr e 
subtree T' C T such that every endvertex of T' "s an ndv rt of T . 
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THEOREM 3.11. Let T be an integral tree. IfT(2,nk, ...,nx)CT is a branch 
of T, then T(nk,..., n x ) is integral. 

P r o o f . Since T(2, nk,...,nl) contains two copies of T(nk,..., nx) there 
is a front-divisor D of T such that the corresponding codivisor C contains 
T(nk,..., nx) as a connectivity component. By Theorem 2.1 T(nk,..., n x ) is 
integral. • 

For instance, it follows from Theorem 3.11 and Theorem 3.7 that an integral 
tree cannot contain a branch isomorphic with the tree which is depicted in Fig. 2. 

F I G U R E 2. 

4. Balanced trees of odd diameter 

Г»(l;3,2,2) 

F I G U R E 3. 
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Let T = T ( n f c , n f c _ 1 5 . . . , n x ) be a balanced rooted tree. We may form 
the tree T ( l ; n fc, n f c _ 1 , . . . , n x ) by taking two copies of T and joining their 
roots by an edge. Note that the tree T ( l ; n f c , n f c _ 1 , . . . , n x ) is the balanced 
tree of diameter 2k + 1 corresponding to the sequence ( l ; n f c , . . . , n x ) . The 
graph D = D ( l ; n f c, n f c _ 1 ? . . . , n-_) formed from D' = _9(nfc, n f c _ l 5 . . . , n j by 
joining a directed loop to the root of D' is clearly the canonical divisor of 
T ( l ; n fc, n f c _ 1 ? . . . , n 1 ) . Later we shall use also the graph D = D( — 1; n fc, nfc l 5 

. . . , n x ) which is formed from _9' by joining a loop valued —1 to the root of 
Dr. Note that the adjacency matrix of D(~l;nfc,nfc_15... , n x ) arises from the 
adjacency matrix of j D ( l ; n f c , n f c _ l 5 . . . , n : ) by changing 1 on the main diagonal 
into - 1 . The balanced tree T(l ;3,2,2) and its canonical divisor F)(l;3,2,2 
are depicted in Fig. 3. 

THEOREM 4.1 . Let T ( l ; n f c , n f c _ l 5 . . . , n x ) be a balanced tree of diameter 2k + l 
and JD(1; nk,nk_1,..., nx) be the corresponding canonical dmsor. Then 

P(D(±1; n f c , . . . , n x ) ; A) = P(D(nk,..., n-); A) T P ( / ? ( n f c _ - , . . . , n-); A) . 

P r o o f . For the proof j t is sufficient to expand the corresponding determi
nants \XI — D\ and \XI — D\ by cofactors of the first column. • 

Using the algorithm [2; p. 126] and Theorem 2.1 we get: 

THEOREM 4.2. Let D = D ( l ; n f c , n f c _ 1 , . . . , n x ) be the canonical divisor of the 
balanced tree T ( l ; nk,nk_1,..., n x ) and C be the corresponding codivisor. Then 

k 

P(C;Л) = P(D;Л)ПЃ(T(n fc- i,n fc- i-i,...,n1);A)] 
2(n f c_ 

COROLLARY 4.3. A balanced tree T ( l ; n f c , n f c _ l 5 . . . , n x ) is integral if and only 
if the following conditions hold: 

(i) D ( l ; n f c , n f c _ 1 , . . . , n x ) is integral, 
(ii) _9(—1; n f c, n f c _ l 5 . . . , n 1 ) is integral, 

(iii) T ( n r , . . . , n x ) zs integral for every r with 1 < r < k — 1. 

THEOREM 4.4. (see [12; Theorem 2]) A balanced tree T ( l ; n x ) is ^ntegral ^f 
and only if nx = r(r -f 1). T G N. 

N o t e . If a tree T ( l ; n f c , n f c _ l 5 . . . , n-J is integral, then the tree T ( l ; n f c _ 1 , 
. . . , n x ) need not be integral. For example, assume that both T ( l ; n 2 , n 1 ) and 
T ( l ; n 1 ) are integral then by Corollary 4.3 and Theorem 3.7 nx is a square but 
by Theorem 4.4 n1 = r(r + 1), TEN, a contradiction. 

As concerns the balanced integral trees of diameter 4k + 1 we have the fol
lowing theorem. 
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THEOREM 4.5 . There is no balanced integral tree of diameter 4k + 1. 

P r o o f . Let T = T(l;n2k_n2k__1,... , nx) be a balanced tree of diameter 
4k + 1, and D(l; n2k_n2k_1_..., nx) be its rooted canonical divisor. Combining 
Theorem 4.1 and Theorem 3.1 we get 

P(D(l;n2k,...,n_);\) 

= (A - l)P(D(n2k__,..., nx); A) - n2kP(D(n2k_2,..., n_); A) . (4.1) 

If T is integral then there exist n0,n_,... ,rj2k G Z such that P(D(l;n2k, 
... ,n_);ni) = 0, for each i = 1,2,...,2k. Hence ,qi are solutions of 

(A - l)P(D(n2k__,..., n . ) ; A) - n2kP(D(n2k_2,...,n.); A) = 0 . (4.2) 

Now, put 

/ ( A ) = ( A - W - ;"f>. (4.3, 
P(D(n2k_2,...,n_);X) 

Clearly, every solution of the equation /(A) = n2k is a solution of the equation 
(4.2). By Theorem 3.2 we see that the rational function (4.3) has the following 
form: 

fW = 
(A _ i) [A-* - ( - . , + „ _ + • • •+ n ^ t J A - - - - + • • • + ( - l )*n 1 n 3 . • • n2fc_J 

A[A2*-2 _ ( n i + . . . + n2k_2)\™-* + ••• + ( - l ) * - 1 ^ ! . . . n2k_3 +t_... n2k_2)] 

(4.4) 

It is easy to check that the following conditions hold: 

(a) /(A) is continuous for A G (0,1) (see Corollary 3.4), 
(b) M + /(A) = oo, 

(c) / ( l ) = 0 (see [7; Corollary 1]). 

Hence, the equation /(A) = n2k has a solution 77 G (0,1). Since every solution 
of /(A) = n2k is also a solution (4.2), then 77 G {%' ^ l ' • • • > %&) • However, this 
contradicts the fact that rqi is an integer for i = 0 , 1 , . . . , 2k. D 

Now we shall discuss the balanced integral trees of diameter 4k — 1. It follows 
from [12; Theorem 4.4] that there exist infinitely many balanced integral trees 
of diameter 3. In contrast we prove that there is no balanced integral tree of 
diameter 7. The problem of the existence of balanced integral trees of diameter 
4k — 1 for k > 3 remains open. 

THEOREM 4.6. There is no balanced integral tree of diameter 7. 
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P r o o f . Let T(l;n3,n2>
ni) be such a tree. According to Theorems 4.1, 4.2 

and Corollaries 4.3, 3.4 we get 

P(D(l;n3,n2,nx); A) = A4 - A3 - (n + k)2X2 + (n + k)2X - n3(A2 - k2), 
(4.5) 

P(D(-l;n3,n2,nl); A) = A4 + A3 - (n + k)2X2 - (n + k)2X - n3(A2 - k2). 
(4.6) 

Clearly, 77 is a zero of equation (4.5) if and only if —77 is a zero of equation (4.6). 
Now, we consider the functions 

A ( A - l ) ( A 2 - ( n + fc)2) 
/(A) 

X2-k2 

X(X + l)(X2-(n + k)2) 

A2 - fc2 

It is easy to see that every solution of equations /(A) = n3 or g(X) = n3 is also 
a solution of (4.5) or (4.6), respectively. We distinguish two cases: 

Case 1. fc = 1. 
Then the functions /(A) and g(X) have the following properties: 

(a) lim /(A) = lim g(X) = 00, 
A—>-i+ A - > I -

(b) / (0 ) = 5(0) = 0, 
(c) / (A) , g(X) are continuous in (—1,1). 

Then there exist rj0 G (—1,0) and r}'Q G (0,1) for which /(r/0) = n3 and 
^(T/Q) = n3 but this contradicts the integral nature of zeros of (4.5), (4.6). 

Case 2. fc > 1. 
Then the function /(A) and g(X) have the following properties: 

(a') lim /(A) = lim g(X) = 00, 

(b') sFA) > /(A) for*every A G (l,fc), 
(c') / (A) , g(X) are continuous in (0, fc). 

Clearly, there exist r , s G N ; l < r < r + s < f c and g(r) = f(r + s) = n 3 , thus 

(r + l ) r ( r 2 - (n + fc)2) _ (r + s)(r + 5 - l ) ( ( r + s)2 - (n + fc)2) 

T2 — fc2 (r + s)2 — fc2 

This equation can be modified to the form: 

(r + l ) r ( r 2 - (n + fc)2) _ [r(r + 1) + (2T + s)(s - 1)] [(r + 5 ) 2 - (n + fc)2] 

T2-fc2 ~ ( r 2 - f c 2 ) + 3 ( 2 r + 5) 

and finally wre obtain the equation 

T(r + 1)5[fc
2 - (n + fc)2] = (r2 - fc2)(2r + s)[(r + s)2 - (n + fc)2](5 - 1) . 

The left side of the last equation is < 0 and the right one is > 0, except for 
s < 1. But, this is a contradiction with the fact s G N. • 
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