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DEFINED BY A MODULUS FUNCTION 
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(Communicated by Michal Zajac) 

ABSTRACT. In this paper we introduce and examine some properties of new 
sequence spaces defined using a modulus function. 

Introduction 

Let w denote the set of all complex sequences x = (xk). Let p = (pk) be a 
sequence of real numbers such that pk > 0 for all k and supP^ = H < oo. This 
assumption is made throughout the rest of this paper. k 

Let l^ be the set of all real or complex sequences x = (xk) with the norm 
||x|| = sup \xk\ < oo. A linear functional L on I is said to be a Banach limit 

k 
( B a n a c h [1]) if it has the properties: 

(i) L(x) > 0 if x > 0, that is when the sequence x = (xk) has xk > 0 for 
all fc, 

(ii) L(e) = 1, where e = (1,1,1,. . .) , 
(iii) L(Dx) = L(x), where the shift operator D is defined by (Dx)n = xn+1. 
Let B be the set of all Banach limits on l^. A sequence x is said to be 

almost convergent to a number s if L(x) = s for all L E B. Let c denote the 
set of all almost convergent sequences. L o r e n t z [2] proved that 

c = < x : lim - — - V^ xm+i exis ts5 uniformly in m > . 
L k k + 1 .=o J 

R u c k l e [3], used the idea of a modulus function / (see Definition 1 below) 
to construct the sequence space 

L(f) = {xew: £/(|*fc|)}, 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 40A05, 40C05, 40D05. 
Key words : sequence space, almost convergence, paranorm, modulus function. 
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This space is an FK-space and R u c k l e proved that the intersection of all such 
L(f) spaces is $ , where $ denotes the space of all finite sequences. 

In the present note we introduce some new sequence spaces by using a mod­
ulus function / and examine some properties of these sequence spaces. 

Main results 

DEFINITION 1. ([3]) A function / : [0,oo) -> [0, oo) is called a modulus if 

(i) f(x) = 0 if and only if x = 0, 
(ii) f(x + y)<f(x) + f(y), 

(iii) / is increasing, 
(iv) / is continuous from the right at 0. 

DEFINITION 2. Let / be a modulus and A = (ank) be a nonnegative matrix. 
We define 

[w0(A,PJ,s)]={xew: lim J^ ankk~s [f {\tkm(x)\)]Pk =0, 5 > 0 , 
k 

uniformly in m , 

[w(A,PJ,s)] = {xew: l imJ ]a n ,A ; - s [ / ( | ^ m (x - -Le ) | ) ] P f c =0 , 5 > 0 , 
k 

uniformly in m for some L > , 

[Woo(A,P,f,s)] = {xew: sup^a n f e A ; -
5 [ / ( | ^ m (x) | ) ] p ' t <oo ) s > o} , 

k 

where e = (1,1,1, . . .) . 
When f(x) = x, we have the following sequence space: 

[w(A,P,f,s)]={xew: limJ2*nkk-s\tkm(x-Le)\Pk = 0, 
k 

for some L, s > 0, uniformly in m >. 

When A = (ank) -= (C, 1) Cesaro matrix, 5 = 0 and f(x) = x in the space 
[w(A,P, / , 5)], we have the following sequence space which is a generalization of 
the sequence space [u>(p)] which was defined by D a s and S a h o o [4]: 

[w(P)] = < x e w : lim — ^ \^krrXx ~ Le)\Vk = 0, uniformly in m > . 
^ n k=i ' 
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When A = (ank) = (C, 1) Cesaro matrix, s = 0 and pk = 1 for all fc, we 
have the following sequence spaces, which were defined by Es i [5]: 

[w, f]0 = < x G w : lim ± ^ /(l*fcm(^)|) = 0 , uniformly in m I , 
^ n k=\ J 

[w, f] = < x G w : lim - ^ /(|*fcm(z " i e ) l ) = ° 5 uniformly in m , 
^ n fc=i ^ 

[™J]oo = { * e ™ : s u p i ^ / ( | t f c m ( a ; ) | ) < o o ) . 
I n,m ll

 k=1 ) 

We now establish a number of useful theorems. 

THEOREM 1. [w0(A,p,/, s)], [iu(A,p,/,s)] and [w^A,;? , / , s)] are linear 
spaces over the complex field C. 

P r o o f . We consider only [iu0(A,p, / , s)]. The others can be treated simi­
larly. We have 

K+ykr<c(\xkr + \ykr): a) 
where C = max(l, 2 ^ _ 1 ) . 

Let x,yG [iu0(A,p, / , s)]. For A, \i G C, there exist integers T and K such 
that |A| < T and |/x| < i f . From Definition l(ii) and (1), we write 

Hank^
S[f(\tkm(^ + ̂ )\)Yk 

k 

< C T " Y . *nkk-s [f(\tkm(x)\)]Pk
 +C-K"Y: «n,fc-s [f(\tkm(y)\)]Pk • 

k k 

For n —•> 00, since x, i /E [iu0(A,p, / , s)], we have Ax + jiy G [iu0(A,p,/, s)]. 
Thus [w0(A,p, / , s)] is linear space over C. • 

THEOREM 2. Lei A be a nonnegative regular matrix and f be a modulus, then 

[w0(A,p,/,s)] C [w(A,p,f,s)] C [w^A.pJ.s)]. 

P r o o f . The first inclusion is trivial. We now show that [w(A,p, / , s)] C 
[w^A^p, / , s)] . Let x G [iy(A,p, / , s)] . By Definition l(ii) and (1), 

Ea»-fc"'[/(i**™wi)]pt 

= T,ankk-$[f(\tkm(x-Le + Le)\)]Pk 

k 

<C"£ankk-s[f(\tkm(x-Le)\)]Pk +Cj2*nkk-S[f(\L\)Yk • 
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There exists an integer KL such that |L| < KL. Hence we have 

E '̂t/aw-oor 
k 

<CY,ankk-3[f(\tkm(x-Le)\)Yk +C[KLf(l)]H^nkk-s • 
k k 

Since A is regular and x G [uv(A,p,/, s)], we get x G [w^A^p, /, 5)] and this 
completes the proof. • 
THEOREM 3. Let A be a nonnegative regular matrix and M = max(l,H). 
[w0(A,p, /, 5)] and [w(A,p, /, 5)] are complete linear topological spaces para-
normed by G, where 

G(x) = s u p ( E « n ^ - S [ / ( I ^ W D ] 
n,m \ 

ж лт 
Vk ж 

P r o o f . From Theorem 2, G(x) exists for each x € [u>(A,p, / , s)] . Clearly 
G(0) = 0, G(x) = G(-x) , where 0 = (0,0,0,.. .). By Minkowski's inequality, 

(T,ankk-s[f(\tkm(x + y)\)YkY 

<{Zankk-a[f(\tkm(-)\)YkY + (Eanfcfc-1/(l^(y)l)]Pk)" , 

whence we obtain that G(x + y) < G(x) + G(y). We now show that the scalar 
multiplication is continuous. From this A -» 0, x -> 0 imply G(Ax) -» 0 and 
also x -> 0, A fixed imply G(Ax) —r 0. We now show that A —r 0, x fixed imply 
G(Ax)->0. 

Let x G [w(A,p,/,5)], then as n —r 00, 

5 m n = E a n ^ - S [ / ( l * f e m ( ^ - ^ ) | ) ] P f c ->0 , uniformlyin m. 
k 

For |A| < 1, we have 

(j2ankk-S[f(\tkm(Xx)\)YkY 

= ( E ankk- [f(\tkm(Xx -XL + XL)\)Y") M 

^ k ' 

< (j2ankk~s [f(\tkm(Xx - XL)\) + f(\tkm(XL)\)Yk^j M . 

56 



SOME NEW SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION 

By Minkowski's inequality 

(Y,ankk-s[f(\tkm(^)\)Yky 

< (Eanfc*-s[/(i<fem(Az- xmyy+(E-»»*-[/(it*m(^)i)r)" 
V k ' ^ k ' 

< ( E *nkk-S[f(\tkm(\x)\)Yk) " + ( E ankk~S [f(\tkm(^)\)Yk) " 

+ ( E a n f c ^ S [ / ( l ^ ^ ) l ) ] P f c ) M . 

Let e > 0 and choose N such that for each n, m and k > N implies Smn < e/2. 
For each N, by continuity of /, as A —•> 0, 

( E ^ - ' [ / ( i w ^ o r ) " + (Eanfcfc-s[/o*fcm(^)i)]pfcr -> o. 
^k<N ' \ k ' 

Then choose 5 < 1 such that |A| < S implies 

( E «nfc*-s[/(i*fcn.(A*)i)r)" + (E«n f efc- s[/(i' f c m(^)or) 
^k<N ' ^ k ' 

ж < ^ . 
^ 2 

Hence we have 

E«nfcfc-s[/(i'fcm(Az)or) 
^ / 

M Є Є 

< — + — =£ 

and G(Xx) -> 0 (A -» 0). Thus [w(A,p, / , 5)] is paranormed linear topological 
space by G. 

Now, we show that [iu(A,p, / , 5)] is complete with respect to its paranorm 
topology. 

Let (xl) be a Cauchy sequence in [iv(A,p,/, s)]. Then we write 
G(x% — xj) -» 0, z, j -> 00. i.e., as i, j —> 00, for all n and m, we write 

G ( x i - ^ ) = s u p ( E « n f c f c - s [ / ( | í f c m ( x i - ^ ) | ) ] p Л M - > 0 . 
n,тn \ fc / 

(2) 

Hence for each n, m and fc, as i, j -> 00, we have 

fc"8[/(l*fcm(!-i-^')|)]Pfc->o 
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and by continuity of / 

lim Af" [ / ( l ^ f V - z ') | )]P f c = k- [ / ( . lim | t jkm(x* - a * ) . ) ] " . 
i , j —> oo L \ i , j —» oo / J 

It follows that 
.lim \tkm(xi-x*)\ = 0 
i,j—>oo 

for each k and m . In particular 
lim \t0m(xi-xj)\= lim 1 ( ^ - ^ ) 1 = 0 

i,j—j>oo i , j -»oo 

for each fixed m . Hence (a:2) is a Cauchy sequence in C. Since C is complete, 
there exists x £ C such that x% —> x coordinatewise as i -> oo. It follows from 
(2) that given e > 0, there exists i0 such that 

(Eanfc*-[/(l'*m(^-^)l)]W)J'<e 0) 

for all n , m and i,j > i0. Since for any fixed natural number U, we have 
from (3), 

(E^k^Uih^-xn^Y <e (4) 
^k<LI ' 

for all n , m and i, j > i 0 , by taking j -> oo in the above expression we obtain 

m \ M 

E°«**-[/(l**m(^-*)!)]'*) <^ 
UťTT ' 'k<U 

for all n , m and i > i0. Since U is arbitrary, by letting U —> oo we obtain 
\ M 

E0«-*"[/(l'-m(*i-»)l)],,t) <^ 
k ' 

for all n , m and i > i0, that is G(xl — x) —>> 0 as i -> oo, and thus a:2 -> x as 
i —> oo. 

Also, for each i, there exists Ll with 

E ankk~° [fihmi*1 ~ L{e)\)]Pk -* 0 ( n -> oo) (5) 
k 

uniformly in m . From the regularity of A, Definition l(ii) and (5), we have 
f(\Lle — L^e\) —> 0 as i, j —> oo and (L l) is a Cauchy sequence in C. So (27) 
converges, say, to L. Consequently we get 

J2ankk-s[f(\tkm(x-Le)\)]Pk-^0 ( n ^ o o ) 
k 

uniformly in m . So that x £ [w(.A,p, / , 5)] and the space is complete. • 

Using the same technique of Theorem 4 of M a d d o x [6], it is easy to prove 
the following theorem. 
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THEOREM 4. Let A be a nonnegative regular matrix, mipk > 0 and f be a 
modulus, then 

[w0(A,p,s)] C [w0(A,p,f,s)], 

[w(A,p,s)] C [w(A,p,f,s)], 

[w^A^s)] C [w^A^J^)]. 

THEOREM 5. Let A be a nonnegative regular matrix, inf pk > 0 and f be a 
modulus. If (3 = lim(f(t)/t) > 0 then, [w(A,p, s)] = [w(A,p, f, s)] . 

P r o o f . In Theorem 4, it was shown that [w(A,p, s)] C [w(A,p, f, s)]. We 
must show that [w(A,p, f, s)] C [w(A,p, s)]. For any modulus function, the 
existence of a positive limit for given (3 is proved in M a d d o x [7; Proposition 1], 
Now, let /? > 0 and let x G [w(A,p, f, s)]. Since /? > 0, for every t > 0, we 
write f(t) > /3t. From this inequality, it is easy to see that x G [w(A,p, s)]. 
This completes the proof. • 

Some information on multipliers for [w^ (A, p, f, s)] is given in Theorem 6 (i). 
For any set E of sequences, we denote by M(E) the space {a G w : a • x G E 
for x € E}. 

THEOREM 6. Let A be a nonnegative regular matrix and f be a modulus, then 

(i) ^ C M([Woo(A,p,f,s)]) C [Woo(A,p,f,s)}, 
(ii) inf p^ > 0 and xk —> L imply xk —> L[w(A,p, / , s)], 

(iii) s1 <s2 implies [w(A,p, f,sx)] C [w(A,p, f, s2)] . 

P r o o f . 
(i) Let a G l^. This implies \ak\ < K for some K > 0 and all k. Hence 

x e [woo(AiP'f>s)} ™plies 

E a n ^ - 5 [ / ( l ^ ( ^ ) l ) ] P f c < E«nkk-^Kf(\hrn(x)\)]Pk 

k k 

<KH^ankk^[f(\tkrn(X)\)] Pk 

which gives the first inclusion. The second inclusion follows from the fact e = 
(1,1,1,...) G [Woo(A,p,f,s)}. 

(ii) Suppose that xk —> L as k —> co. This implies tkm{x) —> L as k —> oo 
uniformly in 7Ti. Since / is modulus then 

\im[f(\tkm(x) - L\)} = f[\im (\tkm (x) - L\)] = 0 
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uniformly in m . Since inf pk = h > 0 then, 

\\m[f(\tkm(x)-L\)]h = 0 
K—>00 

uniformly in m. So, for 0 < e < 1, 3fc0 G N for all k > k0 and for all m, 

[/(!**«(*)-i|)lfc<^<-
and since pk>h for all &, 

[/(.**»(*) - --1)]" < [/(I**m(-0 " il)]* < £ 

then we get 

lim[f(\tkm(x)-L\)r=0 

uniformly in m. Since (k~s) is bounded, we write 

\™k-°[f(\tkm(x)-L\)]Pk=0 
K—>00 

uniformly in m. From regularity of A, we have 

\imY,ankk-°[f(\tkm(x)-L\)Yk=0 
AC—>00 T 

k 

uniformly in m. So that x G [uv(A,p,/,s)]. 
(iii) Let sx < s2. Then k~S2 < k~Sl for all k G N. Since 

ìPfc 

D 

*"S2 [ / ( t d ) - L\)T < *"Jl [/(LW - -W1 

for all A: and m. Hence we have 

£ "n^ [/(IW*) " -..)]" < £ «nfe*"Sl [/(l*fcm W " L\T 
k k 

Since x G [iu(-4,p, / , s-J], we get x G [w(-4,p, / , s2)]. 

THEOREM 7. Le£ / and # 6e two moduli, then 

(i) lim 4fJ zmp/ie5 [w(A,p,g,5)] C [w(-4,p,/, s)] , 
fc—>oo y v l J 

(ii) [w(A, p, g, s)] n [w(A, p, / , a)] C [ttf(.4, p,f + g, s)], 

P r o o f . This is trivial. n 
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