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EXISTENCE OF POSITIVE SOLUTIONS TO 
VECTOR BOUNDARY VALUE PROBLEMS I 

ILJA M A R T I Š O V I T Š 

(Communicated by Milan Medvěd7) 

ABSTRACT. We show t h a t the question about the existence of a positive solu
tion to certa in n-dimensional differential system of second order w ith Dirichlet 
boundary condition can be answered by mult iple (step-by-step) solving of differ
ential equations of the first order. 

1. Introduction 

In [2], M. F e ck a n has dealt with the existence of a solution of the problem: 

-u" = (fa(x) + 9(u)) ' u - s(u) • v , 

—v" = (a -f r(u)) • v — v2 , 
V } (1.0.1) 

u(0) = U(TT) = v(0) = V(TT) = 0, 

u(x) > 0 , v(x) > 0 for all x e (0, TT) , 

where the functions / , g, r , 5 fulfil the following conditions: 

/(.)(•) G C ^ R x R , ! ) , g,s,r e C^MjR), 

^ / a ( " ) > 0 , fa(')> 2 , 

G(0) = a ' ( 0 ) = 0 , g,(^)<0 for u > 0 , 

r(0) = r'(0) = 0, 5(0) = s'(0) = 0 , 

r / ( 0 , o o ) < l , r 7 ( 0 , o o ) > 0 , 5 / ( 0 , o o ) > 0 , 

limg = - c o for x —> oo . 

Using the bifurcation method he found a necessary and sufficient condition 
for the parameter a that problem (1.0.1) may have at least one positive so
lution u, v. Attention to similar problems has been paid in papers [7], [4] where 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34B15. 
K e y w o r d s : shooting method, positive solution, Brouwer degree. 
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solutions in a cone have been studied. Another problems with similar formula
tion or with similar method of solution (degree theory) were studied in papers 

[3], [1]. 
In this paper we shall investigate the existence of a positive solution depend

ing on definition intervals which are determined by the Dirichlet boundary con
ditions for single components of the solution. We shall consider the second-order 
n-dimensional vector differential system, n > 2, (see (3.0.1)). In this paper the 
question about the existence of solution to n-dimensional differential system can 
be answered by multiple (step-by-step) solving of differential equations of the 
first order. This can be considered as the contribution of this paper. The whole 
paper is divided into two parts which will be published in this journal separately. 
In the first part some auxiliary lemmas are stated which will be proved in the 
second part of this paper. These lemmas and the Brouwer degree of the mapping 
will be used to prove Theorem 6.1 at the end of this part. This theorem gives 
a sufficient condition for definition intervals that guarantees the existence of a 
positive solution to problem (3.0.1) when some other assumptions on the form 
of right sides are fulfilled. This theorem is the first main result. In the second 
part of this paper all auxiliary lemmas will be proved which were applied in this 
part. Then we will introduce and prove the second main result of this paper — 
Theorem 7.3, which gives a necessary condition on definition intervals for the 
existence of a positive solution to problem (3.0.1) under some assumptions on 
the form of the right sides of that problem. The last main result in the second 
part is Theorem 8.1, which gives simple conditions on the right sides of problem 
(3.0.1). This result gives a necessary and sufficient condition for the existence of 
a positive solution to our problem. 

2. Auxiliary lemmas 

In this section auxiliary lemmas are stated which are necessary for the main 
section of this part of work. These lemmas will be proved in the next part of the 
paper. 

LEMMA 2.3 . Let the functions f(x,u1,u2), g(x,v1,v2) satisfy locally Cara-
theodory's conditions on the set ((a,b) x RQ~ X R) and the conditions 

(i) 
/(a;,0,0) = 0 for all x G (a,b), (2.3.1) 

(2) 

f(x,a-ux,a-u2) >a-f{x,ux,u2) 

for all (x,u1,u2) 6 ((a,b) x l J x R ) and for all a > 1, 
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(3) the function f satisfies locally Lipschitz's condition 

\f(x,uvu2) - f(x,v1,v2)\ < Lloc • flt^ - vx\ + \u2 - v2\) , (2.3.3) 

(4) 
g(x,u^u2) >f(x,uvu2) 

for all {x^u^u2) G ((a, b) x R+ x R) . 

Let the functions u(-), v(-) G AC1 ((a, b), RQ~) be solutions of the equations 

u"(x) = f(x,u(x),u'(x))} 
. > for almost all x G (a, b), (2.3.5) 

v"(x) = g(x,v(x),v (x)) J 

which satisfy 

u(x) > 0 for all x G (a, 6), (2.3.6) 

v(a) < u(a), v(b) < u(b). (2.3.7) 

Then at least one of two following assertions is true 

(i) 

v(x) < u(x) for all x € (a, b), 

(\v(a) - u(a)\ + \v'(a) - u'(a)\) > 0 , (2.3.8) 

{{\v(b)-u(b)\ + \v'(b)-u'(b)\)>0. 

Simultaneously < 

(2) 
3a >1 Vxe(a,b) v(x) = a • u(x). (2.3.9) 

P r o o f . In the second part of this paper. D 

LEMMA 2.4. Let the functions f(x,u), g(x,v) satisfy locally Caratheodory's 
conditions on the set ((0,a) x R j ) and all assumptions (2.3.1), (2.3.2); (2.3.3) 
and (2.3.4) from Lemma 2.3. where f, g do not depend on arguments u2, v2. 
Let now v(-) G ACx(0, a) be a solution of the equation 

v"(x)=g(x,v(x)), 

v(x) > 0 for all x G (0 ,a ) , v(0) = 0, i / ( 0 ) > 0 , v(a) = 0. 

Then the solution u(-) of the equation 

u"(x) = f(x,u(x)) , u(0) = 0, u'(0) = v'(0) (2.4.2) 

has another zero in the interval (0, a ) . 

P r o o f . In the second part of this paper. D 
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3. Preliminaries 

Throughout the paper we shall use the following notations 

E = (0, oo) x (0, co) x • • • x (0, oo). 
v v ' 

n times 
En is defined as the compactification of topological space En by adding 
point oo and 
defining its base of neighbourhoods Ok = {x € En; | | x | | > k } u { o o } . 

Eno = {x G En ; x{ = 0 for some i G {1, 2, • • • , n}} . 

E + d = F \E . 
n ,+ n \ n,o 

K,o = En,o^{oo}. 

^ ) +
d = I ^ n , + U{oo}. 

In the paper we will study the problem 

f „."(„\ a e -

й"(x) = ' F(x,й(x)) 

'{(x) = ' Fx (x, ux(x), u2(x),..., un(x)) , 

(x) = ' F2(x,ux(x),u2(x),... ,un(x)) 
(3.0.1) 

I ^xn(x) =" F n ( x , ^ ( x ) , u 2 ( x ) , . . . , ̂ in(x)) 

with the boundary conditions 

u . ( 0 ) = u - ( T . ) = 0, V x G ( 0 , T - ) : u{(x) > 0 for i = 1, 2 , . . . , n . 

In the sequel we shall assume some of assumptions: 

VkG { l ,2 , . . . ,n} V x e M i ! Vu-GM 

Fk(x, ux,..., uk_x, 0, u f c + 1 , . . . , un) = 0 . 

VfcG { l ,2 , . . . ,n} V x G M ^ Vtz-GlR 

Z7- („ 7 / q. \ — J? („ Ml + lml ^ 2 + | ^ 2 | Un + | U n | \ 
rk\x-> a l > • • • ' an) ~ rk\d/i 2 > 2 >•••> 2 f " 

VkG { l , 2 , . . . , n - 2 } VxGM+ 

V I ^ G M which fulfil uk+1 • ^ f c + 2 • • • un ~ ^ 

F f c(x, ux, u2,..., u n ) = F f c(x, u 1 ? . . . , uk) 0 ,0, . . . , 0) . 

n — k times 

(3.0.2) 

(3.0.3) 

(3.0.4) 
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V k e { l , 2 , . . . , n - 1 } VxeB+ \/U{eR 

—^(x,^,..., uk_x, 0, uk+li ...,un) = ~-^(x, ux,..., uk_x,0, 0 , . . . , 0 ) . 
ouk auk >—v—' 

n—k times 

(3.0.5) 

(3.0.6) The functions Fk(x,uvu2,... ,un) and ^f(x,u±,u2,... ,un) are con

tinuous in (ux,u2,... ,un) on the set En for any fixed x G Kg" and for 

all k,i G { 1 , 2 , . . . , n } , 
and Fk(x,u1,u2,... ,un) are measurable in x G (0, oo) for each fixed 
(u^...,^) e En and for all k G {1, 2 , . . . , n } . 

(3.0.7) §^+(x, u1,u2,..., un) is locally bounded on the set M£ x En 

for all k,i G {1 ,2 , . . . , n } . 

(3.0.8) For all T > 0 there exist continuous functions cx(X),..., cn(X); 
c{(-): (0, oo) -> (0, oo) such that lim c-(X) = oo for all i G { 1 , 2 , . . . , n} 

A-+oo 

and 
VkG { l , 2 , . . . , n } V x G ( 0 , T ) V A > 0 
\/u G {u; uk = ck(X) and 0 < u{ < c{(X) for a l i i G { 1 , . . . , n} , i ^ k} 

Fk(
X>Ul>U2>'-'>Un) - ^ ° -

Vk €{1,2 , . . . , n - l } V x G l + V « ť € R f , « f c > 0 

ðF, £(z,!*,.,....«,., 0 , . . . , 0 ) > — ^ ( x , ^ , . . . , ^ , 0 , . . . ,0) . (3-0-9) 
dul — . — ~k — v — 

n—k times n—k times 

We will study the question when problem (3.0.1) has at least one that solu
tion. We shall apply the shooting method and therefore the following definition 
of the mapping T(a) will be used. 

D E F I N I T I O N 3 .1 . Let a d= (ax,..., an) e En + . Let u be the solution of the 
following problem 

u,,(x)='F(x,u(x)), 
v ; _ v v n (3.1.1) 

u(0) = 0, u(0) = a. 
If for each component ui, i = 1, 2 , . . . , n , of solution u there exists a point Ti 

such that 

0 < T . < o o , w.(Ti) = 0, 

u{(x) > 0 for all x, 0 < x < T , 
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then we define T(a) d= (TVT2,...,Tn). 
In the case that at least one component u{(-) is positive on the whole interval 

(0 ,T m a x ( a ) ) , where (0 ,T m a x (a)) is the maximal interval where u is defined, 

then we put T(a) = o o G F * . 

In the following definition the domain of T will be extended from E+ to En . 

For this purpose we use the functions u^x) = ^~^- = ^f?^y. 

DEFINITION 3.2. Put 

nr - - ^teiF
i(x,ul'av...,un'an) 

G i ( x , i x 1 , . . . , M n , a 1 , . . . , a J = - ^ l l- 2 S- for a. > 0 

and (3.2.1) 

Gi(x,u1,...,un,a1,...,an) 

= ^ r ( x , wx • a 1 ? . . . , u._x • a-_ l5 0, u< + 1 • a i + 1 , . ..,un-an) 

for a{ = 0. 

Let now a e En. 

(1) If a = oo, then we define T(d) = oo. 
(2) If a 7-= oo then we shall consider the solution uT of the following problem 

u (x) a=' G(x, u(x), a) , 

£(0) = 0, 3#(0) = ( 1 , ! , . . . , ! ) . (3-2-2) 

Let (0 ,Tm a x (a)) be the maximal interval where the solution u can 
be defined. 

(a) If 3 i G { l , . . . , n } Vxe(0 ,T m a x (c f ) ) ui(x)>0, 
then we define 

f (a) Hf oo . 

(b) Otherwise let Tt be the zero point of ui for z G {1,2, ...,n} 
such that ti.(T.) = 0, T4 € (0 , f m a x (a ) ) and ^ ( x ) > 0 for all 
x G ( 0 , T - ) . Then we define 

-? («5)^(r 1 > r 2 > . . . , r B ) . 

In the following lemmas we shall show the correctness of previous definitions 
as well as the relation between w, Tm^(3) and iT, fm3iX(a). 
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LEMMA 3.3. Let F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then G(x,ti,a) 
defined in Definition 3.2 satisfies Caratheodory's conditions. 

P r o o f . In the second part of the paper. D 

LEMMA 3.4. Let F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then the problem 
(3.2.2) has the property of global uniqueness. 

P r o o f . In the second part of the paper. D 

LEMMA 3.5. Let F fulfil conditions (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). 
Let T > 0 be a fixed number. Let c 1 (A) , . . . , cn(X) be some functions satisfying 
(3.0.8). Then the following assertion is true: 

Let a G En be fixed. Let u(-) be the maximal solution of problem (3.LI) 
which is defined on the interval (0,Tmax(d?)) , that is 

u"(x) a-=' F(x,u(x)) , 

ff(0) = 0, uf(0) = a. 

If 
T < Tm a x(S) (3.5.2) 

and 
u{(T)<0 for all i G { 1 , 2 , . . . , n} , (3.5.3) 

then u{(x) < c-(0) for all i G {1, 2 , . . . , n) and for all x G (0, T m a x ( a ) ) . 

P r o o f . In the second part of this paper. D 

The following lemma deals with the relation between solutions u and u of 
problems (3.LI) and (3.2.2), respectively. 

LEMMA 3.6. Let the function F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Let 
a G En. Let u(-) and u(-) be the maximal solutions of problems (3.LI) and 
(3.2.2), respectively, which are defined on the intervals (0,T) and (0,T) respec
tively. Then T = T and u{(-) = a{ • u{(-) for all i G { 1 , . . . , n} . 

P r o o f . In the next part of the paper. D 

4. Continuity of the mapping T 

The following theorem has fundamental meaning for us. 

THEOREM 4 .1 . Let F fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). Then 
the mapping T : En —•» E* , defined in Definition 3.2, is continuous. 

P r o o f . In the next part of the paper. D 
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5. Definition of the set Q?n 

Here we shall define the set Qn and the mappings ak by means of which the 
set Qn can be easily defined. We shall also show later that for all (Tx, T2,..., Tn) 
G Qn problem (3.0.1) has at least one positive solution when some conditions 
are fulfilled. 

DEFINITION 5 .1 . Let F1,...,Fn fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Let 
the functions G1,..., Gn be defined as in (3.2.1). Let k G { 1 , . . . , n}. Let the 
mapping Rk: Ek* -> Ek* be defined by the following method: 

Let aeE*k: 

(1) If a = co, then we define Rk(a) = oo. 
(2) If a ^ co then we shall consider the following system 

u"(x) = ' G1(x,u1(x), 0,...,0,ax, 0, . . . , 0 ) , 

n—1 times n—1 times 

ufa)™' G2(x,Ui(x),u2(x), 0,...,0,a1,a2, 0 , . . . , 0 ) , 

n—1 times n—2 times / r -i i \ 

uk(x) ^= Gk(x,u1(x),...,uk(x), 0,...,0,av...,ak, 0, . . . , 0 ) , 

n — k times n — k times 

u . (0) = 0, u / (0) = l for all i G { 1 , 2 , . . . , k} . 

Let (0,-R^ax(cf)) be the maximal interval of definition of the solution 

( " i ( • ) > • • • . « * ( • ) ) • 

(a)U3ie{l,...,k} Vxe(0,Rk
m,x(d)) u{(x)>0, 

then we put 

i ^ ( a ) = f o o . 

(b) Otherwise we put JR^ to be the zero point of ui for i G {1, 2 , . . . , k} 
such that u{(R{) = 0, R{ G (0 , i t^ a x (a ) ) and u{(x) > 0 for all 
x G (OjRj) and we put 

LEMMA 5.2. Let F1,...,Fn fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). 
Then the mappings Rk: Ek -± Ek defined in Definition 5.1 for all k G { 1 , . . . , n} 
are continuous. 

P r o o f . Let k G {1, 2 , . . . , n} be arbitrary, but fixed. Now we can use The
orem 4.1, in which we put k in place of n which we write n ~ k, similarly 
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Fi(x,u1,...,un) ~Fi(x,u1,...,ui,09...,0) for i G { l , . . . , f c } , 
G{(x, u1,...,un,a1,...,an)~ G/(s, UV ..., uv 0 , . . . , 0, a1,..., a., 0 , . . . , 0) 
for i G { 1 , . . . ,/c} and 

f ( . ) : ^ ^ ^ ~ / i f c ( - ) : ^ ^ ^ . 
Then lemma follows from Theorem 4.1. • 

LEMMA 5.3. Let F1,...,Fn fulfil (3.0.2); (3.0.3), (3.0.6); (3.0.7) and (3.0.9). 

Then \/k G { 1 , . . . , n — 1} the mapping Rk: Ek —r .E£ defined in Definition 5.1 

is infective when we restrict this mapping to the set (Rk) (Fk). 

P r o o f . By contradiction. Let 

3a\a2 G Ek R^a1) = Rk(d
2) G Ek while a1 + a2 . (5.3.1) 

Then we can choose i0 G { 1 , . . . , k} such that 

V . € { 1 , . . . , . 0 - 1 } a]=al and < ^ < . (5.3.2) 

From condition (5.3.1) using (3.0.2), (3.0.3) and Definition 5.1 it follows that 
the solutions u1^), u2(-) of problem (5.1.1) for a1, a2 are denned on the whole 
interval (0,co). Using (5.3.2) and the diagonal structure of problem (5.1.1) we 
can easy show by (3.2.1) and (3.0.7) that 

V i G { l , . . . , i 0 - l } u](') = u2(.) o n ( 0 , o o ) . (5.3.3) 

Putting *,(•) =< uj(0 = u?(0 , «i = «\ = «? , *_0 = K = Rl for * ^ 
{ l , . . . , i 0 — 1}, by (5.3.3) we get that the functions iv?_ for j G {1,2} are 
solutions of the following equation on the interval (0, Rio) 

uio"(x)^p(x,ai,uio(x)), < ( 0 ) = 0, < / (0 ) = l , 

«jo(i? io) = 0 and u{(x)>0 for all x € {0,RJ , 

where we have used function p which is denned for a, u > 0 

n—io times n—io times 

p{x,a,u) = G f o(x,w 1( .r) , . . . ,u i o_ 1(a;) ,« , 0 , . . . , 0 , a 1 ; . . . ,aio_1,a, 0 , . . . , 0 ) 
(5.3.5) 

(
n — io times 

^ • ( x , a 1 - u 1 ( x ) , . . . , a i o _ 1 - « i o _ 1 ( x ) , 0 , 0 , . . . , 0 ) 

n—io times 
OL-U 

• / * àß 
0 

Fio(x,al •u1(x),...,aio_1-uio_1(x),0, 0 . . . . . 0 ) 
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We can estimate the expression in the last integral. For all ß > 0 

П—ІQ t i m e s 

_d_ 

dß 

ғi0{
x>ai-ui(x)>--->ai0-i-ui0-i(x),ß> 0 , - - - ,0 ) 

ß 
n—iQ t imes 

1 / BF >>, 

= P [ !ht (*'Ql' Ul W'" ''aio_1' Ui°-1^'f3, °- • • •' ° ) 
n—io times 

_ Fj0 (g» <*l • Ul(X)> - - - » Q»p-1 ' Ui0-l(
X)i ft 0, • • • , 0 ) \ (3-0.9) Q 

Without losing generality we can consider that 0 < a}Q < a2
Q. If this is used in 

(5.3.6), then the following relations hold 

VxG (0,i?.o) V u > 0 : p(x,a}Q,u) < p(x,a2
Q,u), 

(5.3.7) 

Vx E (0, RiQ) Vu,a>0 V c > l : p(x, a, c • u) > c • p(x, a, u). 
(5.3.8) 

Now we can verify the assumptions in Lemma 2.3, where we put 

(a,b) = (0,RiQ), f(x,u1,u2) =p(x,a\Q,u1), g(x,vx,v2) = p(x,a2
Q,v1), 

U(-) = U}Q(.), < ) = < ( • ) • 

By (5.3.7), (5.3.8) we get conditions (2.3.4), (2.3.2). From (5.3.5) and (3.2.1) 
using (3.0.7), (3.0.6) we get that f(x, •, •) fulfil Lipschitz's condition (2.3.3) and 
also (2.3.1). (5.3.4) implies (2.3.5), (2.3.6) and (2.3.7). Hence Lemma 2.3 can 
be applied. Statement (2.3.8) cannot be true because (5.3.4) contradicts its sec
ond condition. Thus statement (2.3.9) must be true and then from u}'(0) = 
U2

Q(0) = 1 we get 

« i0(»)d= < ( * ) = < ( * ) for all xe(0,RJ. 

From this by (5.3.4) we get 

P(x>aio>UioW) =>( x ' a L^o( x ) ) 
which contradicts (5.3.7). • 

DEFINITION 5.4. Let F1,..., Fn fulfil assumptions (3.0.2), (3.0.3), (3.0.6) and 

(3.0.7). Let Rk(') be the mapping defined in Definition 5.1 for k £ { 1 , . . . , n } . 

Then we put Slk ^ Rk(E*k) \ {oo}. Evidently Qk C Ek for k e {1, • . . , n} . 
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LEMMA 5.5. Let F1,...,Fn fulfil assumptions (3.0.2), (3.0.3), (3.0.6), (3.0.7), 
(3.0.8) and (3.0.9). Let Rk(-) be the mapping defined in Definition 5.1 for k G 
{ l , . . . , n - l } . Let ilk C Ek be defined as in Definition 5.4. Then the inverse 
mapping R^1^): flk -» Ek is continuous. 

P r o o f . The existence of the inverse mapping follows from Theorem 5.3. 
Now, by contradiction, we shall show its continuity. Let the sequence {Ti}

c*_1 C 
flk be such that 

^-^TQE flk for i -> oo 

and in opposition to continuity, 

V i G N : H ^ - Q o l l >e>0 (5.5.1) 

where 

Zi = Rk\Ti)€Ek for i € N 0 . 

The space Ek is compact, and therefore there exists a subsequence {ai.}
cc_ 

such that 
lim a- =30eE* (5.5.2) 

j-+oo tj U K 

Because the mapping Rk(-) is continuous (see Theorem 5.2) we get 

-^o) = 4(/j™«.J=£^^ 
The mapping Rk(-) is injective on the set Rk

l(Ek) and therefore 

a0 = a0 

and the contradiction can be obtained from (5.5.1) and (5.5.2). • 

DEFINITION 5.6. Let F1,...,Fn fulfil assumptions (3.0.2), (3.0.3), (3.0.6), 
(3.0.7) and (3.0.9). Then we can define the mappings ak(-): Slk__ -r E* for 
2 < k < n by the following way: 

For any f = ( T l 5 . . . ,T f c - 1) G f l M we put (ax,..., ak_x)
 d= (Rk^) (f). 

Let the functions u1(-),... ,uk_1(-) be defined as solutions of the problem (5.1.1). 

(Using i?A._1(a) = f G Ek__1 we can show by assumptions (3.0.3), (3.0.2) and 
by definition of functions G^(-) (3.2.1) that the functions u{(-) are defined on 
the whole interval (0, oo).) Let the function v(-) be defined as the solution of 
the following problem 

n—k times 
, „ v a.e. 0Fk , /- ^x V(x) + \v(x)\ 

v"(x) = -j^{x,a1-u1(x),...,ak_1.uk_1(x),0, 0 , . . . , 0 ) - 2 

= Gk(x,ur(x),... ,uk_1(x),v(x), 0 , . . . , 0 ,a1,...,ak_1,0, 0 , . . . , 0 ) , 

n—k times n — k times 

t>(0) = l , «'(0) = 1. (5.6.1) 
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By assumptions (3.0.6), (3.0.7) we can easily obtain that v(-) is uniquely defined 
also on the whole interval (0, co). 

(1) If solution v(-) is positive on the interval (0, co), then we put 

ak(T1,...,Tk_1)^oo€El. 

(2) Otherwise, let T be the zero point of solution v(-) on the interval (0, oo) 
such that v(T) = 0 and v(x) > 0 for all x G (0, T ) . Then we put 

ak(T1,...,Tk_1)
<^TeE*1. 

LEMMA 5.7. Let F\,... , T n fulfil assumptions (3.0.2), (3.0.3), (3.0.6), (3.0.7), 
(3.0.8) and (3.0.9). Then mappings ak(-) for 2 < k < n defined in Definition 5.6 
are continuous. 

P r o o f . From the definition of mappings ak(-) and Rk(-) we can easily 
obtain the following identity 

<EEfc-i 

( ^ • • . . . T ^ a ^ (5.7.1) 
N v ' 

GE/c 

where we shall assume that if ak(T1,... ^Tk_1) = oo, then we put the vector 
on the left side equal to oo G Ek. From Lemmas 5.2 and 5.5 it follows that the 
right side in identity (5.7.1) is continuous in (Tp . . . , Tjfc_1) G ^tk_1 C Ek_l so 
also the left side is continuous and we can easily obtain that ak(-): ^tk_1 —> E* 
is continuous, too. • 

The following lemma gives us a recurrent formula between sets ^tk_1 and ftk 

using mappings ak(-). 

LEMMA 5.8. Let F\,...,Fn fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8) and 
(3.0.9). Let 2 < k < n. Let sets ^tk_1 and Ctk be defined such as in Definition 5.4 
and let ak(-) be defined in Definition 5.6. Then the formula 

^ = {(-V">-Vi>-T.)€--„; 
(T1,...,Tfc_1)€fifc_1, ofc(r i,...,Tfc_1)<rfc<oo} (5.8.1) 

is true. 

P r o o f . At first we show the inclusion C in (5.8.1). Let ( T l 5 . . . , Tk) G ftk. 
According to Definition 5.4 and Definition 5.1 there exists ( a 1 , . . . , a / e ) G Ek 

such that the following system is fulfilled 

n—i times n—i times 

u"(x) =" G^x.u^x),...^^), 0 , . . . , 0 , « - _ , . . . , a i ? 0 , . . . , 0 ) (5.8.2) 

for i G { l , . . . , f c } 
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w i th boundary conditions 

„,(o, = o ,/(o) = i, -,cr.)-o.\ 
ut(x)>0 for all x e (0,T{) J \ » » > / v ; 

where i^(-) are defined on the whole interval (0, co). From system (5.8.2) for 

i £ { 1 , . . . , f c - l } we get (Tx,.. .,TA;_1) = ^ ( c ^ , . . .,OLk_i) € ft^i. In addition 
we must prove the inequality ak(Tx,... ,TA._1) < Tk. We shall consider the 
solution v(-) of the following problem similarly as in the definition of ak(-) (see 
Definition 5.6) 

n—k times n—k times 

v"(x) = Gk (x, u^x),..., uk_x (x), v(x), 0 , . . . , 0 , av ..., ak_lt0, 0,..., 0 ) , 

(5.8.4) 

« ( 0 ) = 0 , v'(0) = \ , v(ak(T1,...,Tk_1))=0, 

v(x)>0 for all x € (0,ak(Tlt... ,Tk_1)) . 

If we define the function p(x, a, v) similarly as in (5.3.5) 

n—k times n—k times 

p(x,a,v) = G^x^^x),... ^^(x)^, 0,...,0,a1,...,ak_1,a, 0 , . . . , 0 ) , 
(5.8.5) 

then in the same way as we have got formula (5.3.7), we get 

VxG (0,Tfc) V w > 0 p(x,0,u) <p(x,ak,u). (5.8.6) 

Since the function p(x,0,v) is linear in v for v > 0, we get 

Vxe(0,Tk) V u > 0 V c > l p(x,0,c-u) = c-p(x,0,u). (5.8.7) 

Using this new function p the equations for uk(-), v(-) can be rewritten in the 
form 

uk(x) = p(x,ak,uk(x)) h boundary conditions, 

v"(x) = p(x, 0, v(x)) Sz boundary conditions. 

Now Lemma 2.4 can be used, where in our context we put (0,a) = (0,Tk), 
f(x,u) = p(x,0,u), g(x,v) = p(x,ak,v), u(-) = v(-) and v(-) = uk(-). From 
(5.8.5), (5.8.6) and (5.8.7) the assumptions of Lemma 2.4 follow which we put 
on / , g. From (5.8.2), (5.8.3), (5.8.4), (5.8.5) and (5.8.8) assumptions (2.4.1), 
(2.4.2) follow. According to Lemma 2.4 we get that ak(Tx,... ,T /,_1) < Tk and 
this is what we needed. 

Further we show the inclusion D in (5.8.1). Let (T 1 ? . . . ,Tk) e Ek fulfil 

( T l 5 . . . , Tk_,) e nk_, and ak(T,,... ,T ,_ 1 ) < Tk < oo . (5.8.9) 
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Let a G R~[" be a free variable in the following expression 

RMk-i) 1(T1 , . . . ,T f c_1) ,a) . 

eEk 

This expression is a function from RQ~ —T £ £ , which, by Lemmas 5.2, 5.5, is 
continuous. Simultaneously we easily see from definition of Rk(-) that first k—l 
components in the image (if it is not just oo G B^) are again T l 7 . . . ,T f c_1 . 
Using (5.7.1) we know that if we put a = 0, then the last component in the 
image is ak(Tx,... ,TA._1). If a is increasing, then only the last component in 
image will being changed (continuously). So if a increase to oo, then from 
Rk(oo) = oo it follows that the last component of image must reach all numbers 
from the interval (ak(Tly..., T/e_1), oo) so also Tk will be reached and therefore 

(T-p . . . , Tk) G Rk(Ek)DEk = Qk . Thus also the second inclusion is showed, and 
so (5.8.1) is proved. • 

DEFINITION 5.9. Let F\,...,Fn fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and 
(3.0.9). Let v(-) be the solution of the following problem 

v"(x) = f p : ( z > 0 ^ 0 ) • V{X)+
2

HX)1 = Gx{x,v{x), ( ^ 0 ,0, 0_1__0) , 

n times n —1 times n —1 times 

t>(0) = l , t/(0) = l . 

The right-hand side fulfils locally Caratheodory's conditions and locally Lip-
schitz's condition because conditions (3.0.6) and (3.0.7) are satisfied. From this, 
using linearity of right-hand side in v for v > 0 and condition (3.0.7), we obtain 
that v(-) is uniquely defined on the whole interval (0, oo). We will now define 
a1 G E{: 

(1) If solution v(-) is positive on the whole interval (0, oo), then we put 
d e f _ 7-,* 

ax = oo e E1 . 
(2) Otherwise let T be the zero point of solution v(-) such that v(T) = 0 

and v(x) > 0 for all x G (0,T) . Then we put 

ax=TeEl. 

L E M M A 5.10. LetF1,...,Fn fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8) and 
(3.0.9). Let the number ax be defined as in Definition 5.9. Let the set f̂  be 
defined as in Definition 5.4. Then 

ftx = {T; ax <T < oo} . 

P r o o f . Analogically as in proof of Lemma 5.8. • 
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L E M M A 5.11. Let Fv...,Fn fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8) 
and (3.0.9). Let 1 < k < n. Let £lk be defined as in Definition 5.4. Let 
a 1 , a 2 ( - ) , . . . , ak(-) be defined in the same way as in Definition 5.6 and Defi
nition 5.9. Then 

Qk — I (T 1 ? . . . ,Tk) G Ek such that the following conditions step-by-step hold 

a1 < Tx < oo, 

a 2 ( T 1 ) < T 2 < c o , 

a„(Г 1 , . . . ,T f e _ 1 )<T„<oo} . 

P r o o f . By mathematical induction. The first step follows from Lemma 5.10. 
The second step is based on Lemma 5.8. • 

Now we are prepared for the following definition of the domain Qn. 

DEFINITION 5.12. Let F l 5 . . . , T n fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8) 
and (3.0.9). Let a 1 , a 2 ( - ) , . . . ,a n(-) be defined as in Definition 5.6 and Defini
tion 5.9. Let us put 

A f ( 

ftn = < (Tp . . . , Tn) _ En such that gradually the following conditions hold 

ax < Tx < oo , 

a 2 ( T 1 ) < T 2 < o o , 

a 3 ( r 1 , r 2 ) < r 3 < c » > 

a _ ( Г l ł . . . , Г _ _ 1 ) < T _ < c o } . 

N o t e . ( T l 5 . . . , T^_x) belongs to the domain of functions a{(-) (for i G {2, 3 , . . . 
. . . , n)) and it follows gradually from Lemma 5.11. 

N o t e . We also show an easy algorithm for verifying if ( T 1 ? . . ., Tn) G Qn. The 
whole algorithm follows from facts, which we already have shown in this part. 
We put on functions Fx,..., Fn the same assumptions as we have put in Defi
nition 5.12. Let us have some T = ( T 1 ? . . . , Tn) G En. 

1st step. Let v(-) be the solution of the following equation 

^ ( x ) - - g - ^ ( g , 0 , 0 ; ^ ) - " ( g ) +

2

| t , ( 3 ; ) l , 

n —1 times 

_(0) = 1, _'(0) = 1. 
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From all assumptions it follows that solution v(-) is defined on the whole interval 
(0, oo). If v(-) does not have any zero point in the interval (0, T1) then we need 
not continue and we know that T ^ fln . Otherwise we have verified the 1st step. 

kth step. Let us assume that we have verified k — 1 steps of verifying (2 < 
k < n) and so we have constructed k — 2 functions ux(-),... ,uk_2(-), which 
fulfil the following system of equations (for i = 1 , . . . , fc — 2) 

u'-(x) = T i(x,'U1(.x),... ,u{(x), 0 , . . . , 0 ) on interval (0,oo), 

n — i times 

«<(()) = 0 , «,(T i) = 0, yxe(0,Tt): Ul(x)>0. 

Because we have verified the (k — l)st step, we know how to construct uk_x(-), 
in order that it fulfil the system for i G { 1 , . . . , k — 1}. Let v(-) be the solution 
of the following equation 

*"(*) =• ^(*,M*),---,"fc-i(*),o, _^_i) • v{x)+
2
lv{x)l, 

n — k times 

v(0) = 1, v'(0) = 1. 

It follows from our assumptions that v(-) will be defined on the whole interval 

(0, oo). If v(-) has no zero point in the interval (0, Tk), then we need not continue 

and we know that T ^ ftn. Otherwise we have verified the kth step. 

If we verify gradually all n steps, then T _ Qn. Otherwise T ^ fln. 

6. Sufficient condition for the existence of a solution 

Purpose of this part is to prove the following theorem. 

THEOREM 6 .1 . Let F1,...,Fn fulfil assumptions (3.0.2) to (3.0.9). Let n°n be 
the domain which has been defined in Definition 5.12. Then problem (3.0.1) has 
at least one positive solution for V (T 1 5 . . . , Tn) G ftn . 

P r o o f . We shall reduce it to Theorem 6.7, which will be proved in the 
end of this part and which has stronger assumptions than this theorem. Let 
Tdef G (0, oo) be arbitrary but fixed and let us redefine the functions F 1 ? , . . , Fn 

in the interval (Tdef, oo) by the following way. Let c 1 ( - ) , . . . , cn(-) be the func
tions whose existence is guaranteed by assumption (3.0.8) for T -= Td e f . Let 
Min > 0 is chosen such small that the following condition holds 

VzG { l , . . . , n } VAG (0,OO) C-(A) > Min . 
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Let us now redefine the functions Fi in the interval for all x G (T d e f , oo) by the 
following way 

P , ч def / « . • ( « j 
Fť(.Г, « ! , . . . , « i ) . . . , t ł J = | Q 

Min) for u{ > 0, 

for u • < 0 . 

We can easily see that the new redefined functions fulfil not only assumptions 
(3.0.2) to (3.0.9), but also the following two conditions: 

(6.LI) There exist functions c x (A), . . . , cn(A), c^-): (0, oo) -> (0, oo) such that 
lim c{(X) = oo for all i G {1, 2 , . . . , n) 

A—>oo 

and 
VkG { l ,2 , . . . ,n} VxG(0,oo) V A > 0 
VH G [u] uk = ck{\) and 0 < ui < c{{\) for a l H G {1, . . . ,n} , i / k} 

F j x , ^ , ^ , . . . , ^ ) > 0. 

(6.1.2) 3 M i n > 0 3 T d e f > 0 
V f c G { l , . . . , n } V x > T d e f Vu- G R (1 < z < A; — 1) 

dF 
— * - ( x , u v . . . , u k _ 1 , 0 , 0 , . . . , 0 ) < - M i n . д< 

n — k times 

In Theorem 6.7 just these two assumptions will be added to the set of as
sumptions which are considered in this theorem and assumption (3.0.8) will be 
replaced by new assumption (6.LI). We shall now define two domains Qn and 
ftn T d e f such as in Definition 5.12, where we will use the old functions F1,..., Fn 

or the new redefined functions F1,..., Fn defined in this part respectively. From 
definition it follows that 

^ n ( o , T d e f )
n = ^ T d e f n ( o , T d e f ) " . 

Let now ( T l 5 . . . , T ) G fln be chosen arbitrarily. If we choose T\ f > max T{, 
l < i < n 

then according to the last identity ( T l 5 . . . , T n ) G Qn T d e f , and then by The
orem 6.7 problem (3.0.1) with redefined functions Fi has a positive solution 
which will be also a solution of the original problem with the old functions be
cause functions Fi have been redefined only in the interval ( r d e f , o o ) . So the 
reduction of this theorem on Theorem 6.7 is done. • 

DEFINITION 6.2. Let functions F1,...,Fn fulfil assumptions (3.0.2) to (3.0.7), 

(3.0.9), (6.LI) and (6.1.2). Let a 1 , a 2 ( - ) , . . . ,a n (-) be defined according to Defini

tion 5.6 and Definition 5.9. Then we define the following mapping B: En -> En. 

Letf=(T1,...,Tn)eEn. 
-* -*• -*• H p f 

(1) If T = oo, then we put B(T) = oo. 
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(2) Otherwise T 6 En, and step-by-step we shall define 

B, := S(T, - a,), d.-a.+B^ 

B2:=S(T2-a2(d1)), d2 := o2(_j) + _?2 , 

Bn_l:=8(Tn_l-an_l(d1,...,dn_2)), dn_x:= an_i(di,...,dn_2) + Bn_1, 

Bn--=*(Tn-an(di>-••><!„-!)), 

where S(s) = max{s ,0} . And then we put: B(T) = (B1,... ,Bn). 

LEMMA 6.3. Let F\,... ,Fn fulfil the same assumptions as in Definition 6.2. 
Then the mapping B: En —> En from that definition is correctly defined and is 
continuous. 

P r o o f . By definition of mapping B and by Lemma 5.11 step-by-step 
we see that for i G { 1 , . . . , n - 1}: ( d - , . . . , d{) G fy, which implies correct
ness of definition ai^_1(d1,...,di). We just need to eliminate the case that 
some a fc+1(d l5 • • •, dk) reach value oo. We even show that ak+1(dly..., dk) are 
bounded on the domain ftk for 1 < k < n — 1. (Finiteness of ax would be 
shown by simple adaptation of the following method.) So let (T - , . . . ,Tk) G fl^ 

be arbitrary and let Tk+1 = ak+1^r^... ,Tk) G E{. Using Definition 5.6 and 
Definition 5.1 we get the existence of functions u{(-) (i G { 1 , . . . , /.}), f (•) and 
numbers ai (i G { 1 , . . . , k}), which fulfil the following system 

u"(x) = ' G ^ x ^ ^ x ) , 0, ...,0,^, 0, . . . , 0 ) , 

n—1 times n—1 times 

i.2(x) a=' G2(x,u1(x),u2(x), 0 , . . . ,0 ,a1Ja2, 0 , . . . ,0 ) , 

n—2 times n—2 times 

; (6.3.1) 

uk(x) = ' G^x.u^x),... ,uk(x), 0 , . . . , 0 , « ! , . . . , Qffc, 0 . ^ . ^ 0 ) , 

n-/e times n-fc times 

^.(0) = ^ ( T i ) = 0 , i_;(0) = l for all i G { 1 , 2 , . . . , fc} , 

Ui(x)>0 for all x G f O , ^ ) , 

n —A: times 

v (x) = + (x,a1-u1(x),...,ak-uk(x), 0 , . . . , 0 ) , 
c^/c+i z 

-(0) = 0, -'(0) = 1, Vx £ (0,Tk+1) : v(x) > 0. 
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If we define new functions v{(-) by the following way 

def 
^t(") = ai'uÁ') for i Є {1,... , k} , 

Vi(-) = 0, a 4 = f 0 for i€{k + l,...,n}, 

then using the definition (3.2.1) of functions Gt(-) and assumptions (3.0.4) and 
(3.0.5) we get that system (6.3.1) is transformed to 

v'l(x) =' Fx (x, vx(x),..., vn(x)), 

v'k\x) =• Fk(x,vx(x),.. .,vn(x)), 

vk+i(x) = ' ^ f c + i ( x ' v i ( x ) , - - - , v n ( x ) ) 
(6.3.2) 

v'n(X) =' Fn(X>Vl(X)> • • ->Vn(X)) » 

v(0) = Õ, v'(0) = ă, 
def vt(T) < 0 for all i G {1,..., n) where T = max (TJ 

ЯI? 
l<i<k 

^(x) + ^(x) 
2 (6.3.3) 

U(0) = 0, T/(0) = 1, Vxe(0 ,T f c + 1 ) : u(a;)>0. 

Now let us apply Lemma 3.5 to system (6.3.2). If we realize that functions 
c1(-),... ,cn(-), whose existence follows from assumption (6.1.1), fulfil assump
tion (3.0.8) for arbitrary T, then we get from Lemma 3.5 

VxG (0,oo) V i e { l , . . . , n } v.(x) < c.(0). (6.3.4) 

Let T d e f be defined by assumption (6.1.2). If we now define the following compact 

Kd= {(x,u) e ( M + x E j ; 0 < x < T d e f , 0 < u{ < c-(0) for all i e {1,... ,ra}} 
(6.3.5) 

then according to (3.0.7) we can choose such a sufficiently great constant M 
that 

9Fk+1-(x,u) У(x,u)eK : 
дuî+i 

<M. 

From this and from (6.3.5) and (6.3.4) we obtain 

дFk+1 

дu 
2±(x,vx(x),...,vn(x)) 
k+1 

<M for all x € ( 0 , T d e f ) . (6.3.6) 

471 



ILJA MARTlSOVITS 

Let Min > 0 is chosen according to assumption (6.1.2). Let us define z(-) as the 
solution of the following equation 

z"(x) = r(x) • z(x), z(0) = 0, z'(0) = 1, 

where (6.3.7) 

r(x)d=M for all xe ( 0 , T d e f ) , 

r(x) = - Min for all x > T d e f . 

By the form of this equation it follows that z(-) has on the interval (0, oo) a 
zero-point T such that 

z(f) = 0 and z(x) > 0 for all x G (0, f). (6.3.8) 

Now by contradiction we shall show validity of the following estimate from which 

the estimation of ak+i(') follows 

Tk+1=ak+1(T1,...,Tk)<f. (6.3.9) 

Let us prove it. If 
f < Tk+1, (6.3.10) 

then according to (6.3.3) v(-) fulfils on the interval (0,T) 

v"(x)a= p(x)-v(x) on ( 0 , f ) , 

v(0) = 0, v'(0) = l , v(x)>0 for all x e (0, f), 

where 
def дFk+l 

(6.3.11) 

дuk+i 

From estimate (6.3.6), definition (6.3.7) of T(-) and assumption (6.1.2) the in
equality 

p(x) < r(x) for all x <E (0, f ) (6.3.12) 

follows. Now we shall use Lemma 2.4, where we put /(x,u) = p(x) -u, g(x, v) = 
r(x) -u, u(-) = v(-) and v(-) = z(-). By (6.3.12), (6.3.7), (6.3.8) and (6.3.11) 
then assumptions of Lemma 2.4 follow. Then Lemma 2.4 implies, that v(-) has a 
zero-point on the interval (0,T), what gives us the contradiction with (6.3.10). 
So assertion (6.3.9) holds, from which the correctness of Definition 6.2 follows. 
We should verify else the continuity of the mapping B(-). 

(1) Continuity at points T G En follows from its correct definition and from 
continuity of mappings ak(-), which is proved in Lemma 5.7. 

(2) Continuity at point T = oo G E* easily follows from definition of map

ping B(-) and from proved global estimation of mappings ak(-) • 

• 
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LEMMA 6.4. LetF1,...,Fn fulfil (3.0.2) to (3.0.7), (3.0.9), (6.1.1) and (6.1.2). 
Let the mappings T(-) and B(-) be defined as in Definition 3.2 and Defini
tion 6.2, respectively. Then the mapping B o T : E* —> E* zs continuous and has 
the following properties: 

(1) Bof(oo) = oo. 
(2) If a = (a1,..., an) G £?n and z/ i0 exists sitc/i £7ia£ a^ = 0 , then either 

B o f (a) = oo or if Bo f(a) =:(BX,..., Bn) G # n , ^ e n B.Q = 0. 

P r o o f . The continuity of the mapping follows from Theorem 4.1 and from 
Lemma 6.3. The first property follows similarly from definitions of both map
pings. To prove the second property let us assume 

a=(ai,...,an)GEn, T(a)=:f=(T1,...,Tn)eEn, 

B(f)=:B = (B1,...,Bn)eEn. 

Let, according to assumptions, 3k G { 0 , 1 , . . . , n — 1} such that ak+1 = 0. 

Now we shall show that Bk+1 = 0. Assumption T(a) = f implies according to 
Definition 3.2 that u(-) fulfils the system 

u"(x) a= Gi(x,u1(x),... ,un(x),a1:... ,an) for ie{l,...,n}, 

n . ( 0 ) = 0 , u[(0) = l, ui(Ti)=0,ui(x)>0 for all x G (0,T-). 
(6.4.1) 

If we use ak+1 = 0, the (k + l ) th equation transforms by using (3.2.1) and 
(3.0.5) to the following form 

// , , a.e. dFk+1 Uk+1(x) + \uk+1(x)\ 
uk+1(x) = —^(x,a1'U1(x),...,ak-uk(x), 0 , . . . , 0 ) • —^ ± , 

auk+i v — v — ' z 

n—k times 
uk+1 (0) = 0 , u'k+1 (0) = 1, uk+1 (Tk+1) = 0 , (6.4.2) 

uk+1(x)>0 for all x e (0,Tk+1). 

When we use ak+1 = 0 and (3.2.1) and (3.0.4), we obtain for all i, 1 < i < k, 
and for all /? > 0 the following identity 

G{(x, u1,...,un,a1,..., a{_x,P, ai+1, ...,an) 

= G^x,^,...,^, 0,...,0,a1,...,ai_1,(3, 0,...,0). 

n—i times n — i times 

Lemma 3.3 implies continuity of the mapping G{ in j3, so the previous identity 
holds also for V/3 > 0, what we can obtain when (5 —> 0 + in the last identity. 
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Then from (6.4.1) it follows that 

n—i times n — i times 

u"(x) = ' G i(a;,u1(x), . . . ,7x i(x), 0 , . . . ,0 , av ... , a i ? 0 , . . . , 0 ) 

for t G { l , . . . , f e } , (6.4.3) 

^ ( 0 ) = 0, < (0) = 1, ^ i ( T i ) = 0 , ui(x)>0 for all x e (0,Tx). 

Let us now consider two following cases: 
1. If possibility fc > 1 occurs, then from Definition 5.1 equation (6.4.3) 

implies that 
Rk(av...,ak) = (Tv...,Tk). (6.4.4) 

Using this, from Definition 5.6 and from equation (6.4.2) we get that 

«k+x<Tv...,Tk) = Tk+1. (6.4.5) 

Now from (6.4.4) it follows by Definition 5.4 that (T^ . . . ,Tfe) € fife, what, 
together with Lemma 5.H, implies 

ax < Tx, 

a2(T,)<T2, 

ak(Tv...,Tk_,)<Tk. 

When we use these inequalities in the definition of the mapping B(-) (Defini
tion 6.2), step-by-step we get that dx =TX, d2 = T2, . . . , dk = Tk from what 
it follows that 

wThat we needed to prove. 
2. If possibility fc = 0 occurs, then from (6.4.2) and from Definition 5.9 we 

get that T-_ = ax , what by Definition 6.2 implies that B1 = 6(T1 —a1) = 0. • 

LEMMA 6.5. A mapping M: En —•> W1 exists such that it fulfils the following 
conditions: 

(1) M is one-to-one mapping from En to Bn(0,1) = {x G W1 ; \\x\\ < l } . 
(2) M: En -> F?n(0,l) is continuous. 
(3) M~l: .Bn(0,1) -> £* is continuous. 

(4) yM(F;n)0) = 5 n ( 0 , l ) = f { x G l R n ; ||f|| = l } . 
(5) If z,z'eSn(0,l) z = -z' and {z,z'} ^ {M(0),M(oo)} 

then if we put x := M~x(z) and x' := M~1(z'). 
for all i G { 1 , . . . , n) it holds that \x{\ + |x i ' | > 0 . 
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P r o o f . We can define M for example by the following way. 

(1) M i ^ ^ ^ i ^ ^ O , - ! ) . 

n times n—1 times 

(2) _ M ( o o ) d ^ f ( 0 _ _ 0 , l f 

n — 1 times 
(3) Let x = ( x 1 , . . . , x n ) e En, f / 0. We want to define M(x) = : 

(z1,...,zn). Let us define gradually 5 := xi+xv+-+x* (evidently 5 > 0), 

zn := ^ " l i Vi '= s~xi f ^ all t G {1,. . . , n } (evidently £ y. = 0). 
7 2 = 1 

(a) If ^ = H2 = • • • = yn_1 = 0 (what implies yn = 0), 
then we put zx := z2 := • • - := zn-1 := 0. 

(b) Otherwise, if at least one yi ^ 0, then we put 

r . = max{y i yw> ( e v i d e n t l y J y . -- Q a n d 5 > 0 ==-L> T > 0 ) . 
ś = l 

z- := r • л / y i 2 + 2 / 2 2 H h2/n , 2 
V7! - 2„ 2 for ałl * Є {1,. . •, n - 1}. 

And now we put M(x) = z = (z1,..., z n ) . 

It is easy to check that so defined mapping fulfils all conditions we put on it. 

• 

LEMMA 6.6. Let F1,...,Fn fulfil (3.0.2) to (3.0.7), (3.0.9), (6.1.1) and (6.1.2). 

Let T, B be defined, by Definitions 3.2, 6.2. respectively. Then B oT(En + ) D 

I?n + holds. 

P r o o f . According to Lemma 6.5 it shall be sufficient for us to prove the 
following assertions: 

(6.6.1) MoBof o tyVf- 1(Gn(0,l)) D G n ( 0 , l ) 

where <7n(0,1) d= {z e W1 ; \\z\\ < 1} and where M is defined in 
Lemma 6.5. 

Let us define for this purpose the following mapping T\ Bn(0,1) -> -Bn(0,1) 

T(z)d= MoBof oM~l(z) for zeBn(0,l). (6.6.2) 

Now we shall prove the following properties of the mapping T\ 

(6.6.3) T\ 5 n ( 0 , 1 ) -> Hn(0,1) is continuous. 
(6.6.4) ^ ( 5 n ( 0 , l ) ) c 5 n ( 0 , l ) . 
(6.6.5) V z G 5 n ( 0 , l ) : T(z) + -z. 
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us prove it: 

(1) From Lemmas 6.4 and 6.5 (points 1, 2 and 3) we obtain that T as 
composition of continuous mappings is continuous, too. 

(2) Property (6.6.4) also follows from Lemmas 6.4 and 6.5 (statement 4). 

(3) Let us prove the last property (6.6.5). We shall divide the proof to the 
following cases: 

n —1 times 

(a) If z — Aí(oo) = ( 0 , . . . , 0 ,1) , then from Lemma 6.4 we obtain 
T{z) = MoBoŤoM-1(M(oo)) = M(oo) = Ž^ -z what had 
to be proved. 

n—1 times 

(b) If z = M(6) = ( 0 , . . . , 0 , - 1 ) , then the proof of condition T{z) ^ 
—z = M(oo) ( ^=> BoŤ(6) / oo e JE7* ) is sufficient in this čase. 
And for this it is sufficient to show condition T(0) ^ oo, because 
from definition of the mapping B (Definition 6.2) it follows that 
oo fi B(En0). Let us prove it: According to Definition 3.2 we 
obtain that the systém (3.2.2) for a = 0 transforms to 

n times 

< w = J|(*,C3) .-M+2i-'*)i, 
u.(0) = 0, < (0) = 1 forall í G { l , . . . , n } . 

By assumption (6.1.2) it follows that some numbers Min, Tdef 

exist such that 

dul Vx > Tdef jrifaO,... ,0) < Min < 0. 

From this it follows by use of comparison theorems that all u{(-) 
must háve a zero point somewhere on the interval (0, oo) and 
therefore T(0) ^ oo, what we had to prove. 

(c) If z <£ {M(6),M(oo)}, then validity of (6.6.5) will be shown by 
contradiction. Let T{z) — —z. Let us define x := M~l(z) x' : = 
M-^fiz)) = M~l\-z). (It is evident that x , f ' G En0). Then 

BoŤ(x) = M-l(T(Ž)) = x'. Because x G En0 => 3k e 
{ l , . . . , n } : xk — 0, and therefore from previous assertions it 
follows, when we use Lemma 6.4, that xf

k = 0, what together with 
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xk = 0 by using previous definitions of x, x' and Lemma 6.5 
(statement 5), gives us the contradiction. 

So property (6.6.5) is showed, too. 

Let us return to the proof of (6.6.1). Here we shall use the Brouwer degree theory 
as it is given in [6]. Let d be the Brouwer degree of mapping. Let us define the 
first homotopy hY(t, z): (0,1) x i?n(0,1) ->• # n (0 ,1 ) by the following way 

h^z)** t - F(z) + (1 -t) • z. 

This homotopy connects T (for t = 1) with identity mapping for t = 0. Its 
continuity follows from (6.6.3). Let us verify that 

W e (o,i) V£eSn(o,i): V ^ ^ O -

By contradiction let us assume that for some t, z it holds that t-T(z) = (t—l)-z. 
When we use (6.6.4), we obtain t = \t — 1\ = 1 — t =--> t = 1/2 and therefore 
we obtain 1/2 • T(z) = —1/2 • z, what by (6.6.5) implies contradiction. Now by 
the homotopy property we obtain 

d ( ^ , 0, Gn(0,1)) = d(7,0, o„(0,1)) = 1. (6.6.6) 

Let us choose an arbitrary point z0 G Gn(0,1) (||;?0|| < 1). Let us define the 
second homotopy h2(t, z): (0,1) x Bn(0,1) -.> B n(0,2) 

h2(t,z)d= T(z)-t-z0. 

Its continuity follows from (6.6.3). Let us verify that 

V*G(0,1) V z G 5 n ( 0 , l ) : h2(t,z)?6. 

By the contradiction we can obtain for some t, z that 

T{z) = t-z0. 

Using (6.6.4), we get 

l = | | ^ ( i ? ) | |= t - | | - ' o l l< l l~x) l l< l 

what gives us the required contradiction. So, when we use second homotopy, we 
get 

d ( ^ ( 0 , z0, C7n(0,1)) = d(^(- ) - f0 ,0, Gn(0,1)) = d(^( - ) , 0, Gn(0,1)) ( 6 = 6 ) 1. 

By the properties of the degree, we obtain that z0 G .^r(Gn(0,1)). Because 
z0 was arbitrary, we get Gn(0,1) C ^ ( ^ ( 0 , 1 ) ) , from what required (6.6.1) 
follows. • 
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THEOREM 6.7. Let Fv...,Fn fulfil (3.0.2) to (3.0.7), (3.0.9), (6.1.1) and 
(6.1.2). Let ttn be the domain defined in Definition 5.12. Then problem (3.0.1) 
has for all (T1:..., Tn) _ Q,°n at least one positive solution. 

P r o o f . Let f = (f1,...,fn) e 9,°n be arbitrary, but fixed. From Defini
tion 5.12 it follows that the following sequence of definitions is correct. 

Bi := Ti - a,, 

B^-ra-a^fi) . 
(6.7.1) 

4:=r„-«„(-\.---.-;-i)-

By Definition 5.12 we also obtain that Vi G { l , . . . , n } : B{ > 0 => B := 
(B1,..., Bn) G JSn>+ . Then from Lemma 6.6 we get 3d? = (a x , . . . , an) £ En + 

such that Bof(a) = £?. If we now put f = (T1 ? . . . , Tn) := f (a), then when we 

rewrite the identity B = B(T) with help of Definition 6.2, we gradually obtain 

0 < B1 = 5(T± - a±) = Tx-ax dx = a1+B1 = Tx 

0 < B2 = 5(T2 - a2(Tx)) = T2 - a2(Tx) d2 = T2 

0 < Bn_x = 5(Tn_! - a^T^ . . . , Tn_2)) = Tn_x - a^T^ . . . , Tn_2) dn_x = Tn_x 

0 < B n = o-(Tn-an(T1,...,Tn_1))=Tn-an(T1,...,Tn_1). 

From this and from Definition (6.7.1) we successively obtain 

f i = B 1 + a 1 = ( r i - a 1 ) + a 1 = r i , 

f2 = B2+ a2(T\) - (T2 - a^T,)) + a , ^ ) = T2 , 

: > 

Tn = Bn +an(f,,..., fn_1) = (Tn-an(T1,...,Tn_1)) + an(T1,...,Tn_1) = Tn. 

So T(a) = T = T, what from Definition 3.2 implies, that problem (3.0.1) has 
for T{ = fi solution, what was to be proved. • 
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