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WEAK*-NORM SEQUENTIALLY CONTINUOUS 
OPERATORS 

ALIMOHAMMADY M O H S E N 

(Communicated by Michal Zajac) 

ABSTRACT. J . Bourgain in 1979 proved that T*, the adjoint of a operator 
T: c0 —> E*, is weak*-norm sequentially continuous. Moreover J. Bourgain and 
J. Diestel in 1984 showed a bounded operator T: E —> F is limited if and only if 
the adjoint of T is weak*-norm sequentially continuous. They also proved that if 
the adjoint of T is weak*-norm sequentially continuous, then T is strictly cosin-
gular. Here we study some properties of W* (E*, F), the space of all bounded 
weak*-norm sequentially continuous linear maps from E* to F equipped with 
norm topology We give characterizations of Grothendieck spaces and Mazur 
spaces by comparing W* (E*, F) and different spaces of operators. 

1. Introduction 

Throughout this note E, F will denote Banach spaces and E* the dual 
of E. The unit ball of the Banach space E will be denoted by BE, and the 
term operator will mean a bounded linear function. 

Let L(E,F), LW*(E*,F), K(E,F) and Kw*(E*,F) denote the Banach 
space of operators, weak*-weak continuous operators, compact operators and 
weak*-weak continuous compact operators between the two mentioned Banach 
spaces. 

A Banach space E is said to be a Mazur space if weak* sequentially continu
ous functionals A on E* are actually weak* continuous, i.e. A belongs to E. 

A Banach space E is said to be a Grothendieck space whenever, in the dual 
E* of E, weak* and weak convergence of sequences coincide. 

An operator T : E -» F is said to be strictly cosingular if LT: E —r G fails 
to be a surjection for every infinite dimensional Banach space G and for all 
operators L: F -> G. 

The reader may consult [5], [6] or [17] for unexplained notations. 

2000 M a t h e m a t i c s Sub jec t C l a s s i f i c a t i o n : Primary 46A32; Secondary 46B20. 
Key words : Grothendieck space, Mazur space, compact operator. 

357 



ALIMOHAMMADY MOHSEN 

2. W*(E\F) 

W*(E*,F) is here meant to denote the linear space of all weak*-norm se
quentially continuous operators from E* to F equipped with the norm topo
logy. It is easy to see that W*(E*,F) is a Banach subspace of L(E*,F), and 
W*(E*,F) forms an ideal in L(E*,F). Moreover, when F is a Schur space 
(when weak and norm convergence of sequences coincide) and E is separable, 
then W*(E*,F) = KW*(E*,F). The following two results emphasize the oper
ator theoretic aspects of Grothendieck and Mazur spaces and will prove useful 
in our considerations. 

THEOREM 1. The space E is a Grothendieck space if and only if W*(E*,F) 
contains K(E*,F) for any Banach space F. 

P r o o f . Suppose E is a Grothendieck space, and T G K(E*, F)\W* (E*, F). 
Therefore there is a weak* null sequence (x*n) C BE* such that | |Tx*|| > e 
(n G N) (by passing to a subsequence if necessary). From the compactness 
of T , (Tx*n) is a norm null sequence, which is a contradiction. Conversely, if 
K(E*,F) C W*(E*,F), then x** <g> y G K(E*,F), where 0 ^ y G F and 
x** G E**. Then x** ® y(xn) = x**(xn)y -> 0 (norm), where (xn) is an arbi
trary weak*-null sequence in E*. This shows (xn) is a weak null sequence in 
E, i.e. E is a Grothendieck space. D 

The following result gives an analogous characterization for Mazur spaces. 

THEOREM 2. The space E is a Mazur space if and only if W*(E*,F) C 
LW*(E*,F) for any Banach space F. 

P r o o f . Suppose E is a Mazur space, T G W*(E*,F) and (x*n) is a weak* 
null sequence in E*. Then T*y*(x*n) -» 0 (y* G T*), i.e. T*H* is a weak* 
sequentially continuous functional; so by the assumption it lies in E ([5]). For 
x*a -> 0 (weak*) in E*, and for each y* G T*, (T*y*)(x*) = y*(T(x;)) -> 0; 
so T G LW*(E*,F). By replacing C with T , the converse is straightforward. 

D 

R e m a r k . In general, there is no specific relation between W*(E* ,F) and the 
other known linear subspaces of L(E*,F): 

(a) W*(E*,E*) ^L(E*,E*), since I e L(E*,E*)\W*(E*,F). 

(b) Suppose F = C and J5 is not a Grothendieck space, then by Theorem 1 
W*(E*,F)^K(E*,F). 

(c) If T: c0 —> ̂  is the natural inclusion map, then T*: f*^ -> ^ is a 
bounded linear projection. But tx is a Schur space and i^ is a Grothendieck 
space, therefore T* maps weak* null sequences to norm null sequences, i.e., 
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T* G W * ^ , ^ ) , but T* is not weakly compact. This shows that W*^,^) 7-

(d) In the case that F is a dual space, W*(E*,F) contains the space of 
adjoints of all limited operators between the predual of F and E ([3]). 

The following result is essentially due to J. B o u r g a i n and J. D i e s t e 1 [3]. 
It elaborates the relation between the space of all strictly cosingular operators 
and W*(E*,F). We can also demonstrate its proof in a more simple way. 

THEOREM 3. An operator T : E -> F between the Banach spaces E and F 
is strictly cosingular if T* G W*(F*,E*). 

P r o o f . Suppose q2T = q1, where T* G W*(F*,E*), qx and q2 are sur-
jectives, then T*q2 = q*. By the Josefson-Nissenzweig Theorem ([5]), there is 
a normalized weak* null sequence (zn) in E*. Since q*(z*^ -> 0 (weak*) and 
q2(zn) -> 0 (weak*), T*q2(zn) = q{(zn) goes to zero in norm, which is a con
tradiction, since q* is an embedding. • 

A denotes the set of all those bounded operators from E to F whose adjoints 
lie in W*(F*,E*), and A! its adjoint class. 

The following Theorem establishes another characterization for Mazur spaces. 

THEOREM 4. The space F is a Mazur space if and only if for every Banach 
space E, A' = W*(F*, E*). 

P r o o f . Let F be a Mazur space. It is clear that A' C W*(F*,E*). By 
Theorem 2, each T G W*(E*,F) is weak* to weak* continuous; so T G A'. 
For the converse, set E = C. Since TV*(T*,C) = A', any element A: F* -> C 
which is weak*-sequentially continuous belongs to A'. Therefore there exists a 
bounded operator S: C -> F such that A = S*. It follows that A G T , i.e. F 
is a Mazur space. • 

There is a natural isometric isomorphism T \-^ T* from KW*(E*,F) onto 
KW*(F*,E) ([4]). Here a similar result for VV*(£*,F) is given. 

We say a Banach space E is w*-sqcu if the unit ball of its dual is wreak* 
sequentially compact (cf. [5; Chapter 13]). 

THEOREM 5. Let E be w*-sqcu Banach space. Then h i-> h* from W*(E*,F) 
into W*(F*,E) is a linear isometry. If in addition F is a w*-sqcu Banach 
space, then this isomorphism is a surjection. 

P r o o f . By the assumption, W* (E* ,F)CKW. (E*, F). For h G W* (E*, F) 
we have h* G Kw+ (F*,E). We show h* is in fact weak*-norm sequentially con
tinuous. Suppose on the contrary, there is a weak*-null sequence (yn) in E* 
(by the Banach Steinhaus Theorem we can assume (y*) C J5F*) such that 
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ll^*y*JI > e ( n ^ ^0 ^or s o m e £ > 0- There exists (xn) C I?£*, such that 
\xnh*yn\ > e (n G N). But E is tv*-sqcu. so there exists a subsequence (xn )k 

weak* convergent to x*. Then h(xnk) —> h(x*) (norm), and for a suitable 
kx G N, we get \\h(x*nk-x*)\\ < f (for all fc > kx). Hence \ynh(x*nk ~x*)\ < §. 
But ynk —> 0 (weak*) therefore 

3fc 2GN Vfc>fc2 \Vnk(K**))\ < % • 

Set fc3 = max{fcl5 fc2}; then for fc > fc3 

e < Kkhx*nk\ < \y*nh{xnk - **) | + \ynh{x*)\ < f . , 

which is a contradiction. Thus h* G W*(F*, E), and ft »-> /i* is a linear isometry 
from TV*(E*,F) to W * ( F * , E ) . A similar argument in case F is also Hj*-sqcu. 
completes the proof. D 

D E F I N I T I O N . A subset L of E is said to be a (V*)-set if 

l imsup|x*(x) | = 0 , 
xeL 

where Sx* is w.u.c in E*. 
The Banach space E has the (V*) -property if all its (V*)-subsets are rela

tively weakly compact ([1], [4]). 

THEOREM 6. Let E* be a separable Banach space and let W* (E*, F) be weakly 
sequentially complete. Then F has the (V*) -property if and only if W*(E*,F) 
has the (V*)-property. 

P r o o f . Certainly if W*(E*,F) has the (V*)-property then F does so. 
Now suppose M C W*(E*,F) is a (F*)-set, (hn)n is an arbitrary sequence 
in M and A = {x*n : n G N} is a dense subset of E*. Since (hn(x*)) is a 
("V*)-set for all x* G E*, therefore there is a subsequence (k(n)) of N such 
that, (hkrn\(x*)) is weakly Cauchy in F for all x* G A. By density of A in 
E*, (hkfn)(

x*))n
 ls w e a k ly Cauchy in F for all x* G E*. A characterization of 

extreme points of linear subspaces of KW*(E*,F) that contains E eg) F due to 
W. R u e s s and C. P. S t e g a l l [20] together with the theorem of Rainwater 
([5]) and our assumption show that (hk,n\)n is weakly convergent. D 

In the two next theorems wTe will show that weakly sequentially completeness 
of W*(E*,F) in the above result can hold. 

THEOREM 7. Suppose E and F are weakly sequentially complete Banach 
spaces, E is w*-sqcu and F is a Schur space. Then W*(E*,F) is weakly se
quentially complete. 

P r o o f . It is easy to see that in this case Kw* (E*,F) — W*(E*. F). Thus 
an appeal to [4; Proposition 3.1] completes the proof. D 
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THEOREM 8. Suppose KW*(E*,F) is weakly sequentially closed subspace of 
L(E* ,F), and F is w*-sqcu and also weakly sequentially complete Banach space. 
Then W*(E*,F) is weakly sequentially complete. 

P r o o f . Suppose (hn)n is a weakly Cauchy sequence in W*(E*,F). Then 
(hn(x*)) is weakly Cauchy for all x* G E*. Since F is weakly sequentially 
complete hn -» h (weakly) in Kw*(E*,F). In order to prove h G W*(E*:F), 
suppose on the contrary (xn)n is a weak*-null sequence in E* such that 

V n € N | | M < ) I I > £ -

We can assume there is a sequence (yn) C BF* with yn -» y* (weak*) and 

Vnhxn > e > 

for some y* e F*. But (yn — y*)h(xn) tend to zero, which is a contradiction 
with h(x*n) -» 0 (weakly). D 

In the following we state some of the properties of W*(E*,F). The proofs 
are direct and will be omitted. For undefined notations and definitions we refer 
to [9]. 

THEOREM 9. Suppose E and F are two w*-sqcu and L C W*(E*,F) then: 

(a) L is a Dunford-Pettis set (D.P) if and only if L* = {h* : h G L} is a 
Dunford-Pettis set in W*(F*,E). 

(b) / / E and F have (DPrcp) and L is a (D.P)-set, then L(x*) = {h(x*) : 
h G L} (resp. L*y*) is relatively compact in F for all x* G E*). 

(c) Only by assuming E is w*-sqcu, then every T G W*(E*,F) is a 
Dunford-Pettis and limited operator. 

J. B o u r g a i n [2] in 1979 proved LX(E) is not a dual space if E contains a 
copy of c0 . We state a similar result for W*(E*, F). 

THEOREM 10. Suppose E and F are two Banach spaces, dimFj* = oo. and 
F has a copy of c0. Then W*(E*,F) is not a dual space. 

P r o o f . By the Josefson-Nissenzweig theorem there exists a normalized 
weak* null sequence (xn) in E*. Choose (xn) in E such that 

x*nxn = l, | | x j | < 2 ( n € N ) . 

Suppose S: c0 —>• F is an isomorphic embedding. By the Hahn-Banach Theorem, 
there is a bounded sequence (yn) in F* such that yn(S(en)) = 1 (n G N), where 
(en)n is the standard unit vector basis of c0 . It is easy to see that <f>n = x*n g)H* G 
(W*(E*,F))* and dn -> 0 (weak*). An easy argument shows that xn <g S(en) 
is equivalent to the basis of c0 in W*(E*,F). Therefore there is an isomorphic 
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embedding §: c0 ~* W*(E*,F) such that S(en) = xn ® 5'(en). Suppose now 
that W*(E*,F) is a dual space. Then there exists an isomorphism I from 
W*(E*,F) onto Z* for a Banach space Z. So (IS)* and (5)* are weak*-norm 
sequentially continuous. Therefore (S)*((/>n) -r 0 (norm). On the other hand 

ll(Sn*„)ll > (SY(<t>n)(en) = <t>n(S((en))) = <t>n(xn ® SOJ) = 1 (n 6 N), 

which is a contradiction. • 

By the same line of proof of above theorem, one can show an analogous result 
for the space KW.(E*,F). 

COROLLARY 11. If F contains a copy of c0, then KW*(E*,F) is not a dual 
space. 

A bounded set B C E is called a limited set if lim sup \xn(x)\ = 0, for every 
n xeB 

weak* null sequence (xn) in E*. 
E is said to be a Gelfand-Phillips space if every limited set in E is relatively 

compact ([7]). 

THEOREM 12, Suppose E is w*-sqcu. Then F is a Gelfand-Phillips space if 
and only if W*(E*,F) is a Gelfand-Phillips space. 

P r o o f . It is well known that on the assumption Kw* (E*,F) is a Gelfand-
Phillips space, and the Gelfand-Phillips property is inherited by closed subspaces 
([8]), which completes the proof. • 
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