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ABSTRACT. From the work [JONES, G. A.—SINGERMAN, D.: Theory of 
maps on orientable surfaces, Proc. London Math . Soc. (3) 3 7 (1978), 273-307] 
or [GROTHENDIECK, A.: Esquisse d'un programme. In: Geometric Galois Ac­
tions 1 (L. Schneps, P. Lochakeds, eds.). London Math. Soc. Lecture Note Ser. 242, 
Cambridge University Press, Cambridge, 1997] there is associated with every m a p 
on a surface, a geometric s tructure on the surface, which is either spherical, Eu­
clidean, or hyperbolic. A surface of genus g > 1 necessarily has a hyperbolic 
structure, but the torus can have either a Euclidean or hyperbolic structure. We 
study the genus 1 maps which have a Euclidean structure, both from the view­
point of graph embeddings and of elliptic curves. We also find an embedding of 
the complete graph K6 which necessarily has a hyperbolic structure and where 
the edges are hyperbolic geodesies. 

0. Introduction 

When considering graph embeddings in the torus it is usual to regard the 
torus as a purely topological object. Sometimes, we also consider the Euclidean 
structure on the torus. For example in the standard embeddings of the complete 
graphs K5 and K7 drawn in Figure 8 of this paper, the tori are obtained by 
identifying the opposite sides of Euclidean parallelograms and as such have in­
duced Euclidean structures. However, the more generic situation is for a graph 
embedding on the torus to relate to a hyperbolic structure with singularities 
corresponding to branch points. For example, in Figure 10 of this paper we show 
an embedding of K6 on the torus where the edges are hyperbolic geodesies. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 05C10, 57M15; Secondary 14G05. 
K e y w o r d s : graph embedding, geometric structure on a map, toroidal map, algebraic curve, 
elliptic curve, Riemann surface, Euclidean structure, hyperbolic structure. 

This is a survey article based on two talks given by the authors at the second workshop on 
Graph Embeddings and Maps on Surfaces at Banska Bystrica, Slovakia, June 2 9 t h - J u l y 4th. 
1997. 
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Another situation where this occurs is in the Grothendieck theory of dessins 
d'enfants ([Gro]). Here, a map on a surface of genus g corresponds to some 
algebraic curve of genus g defined over a number field. In the case of genus 1, 
the surface is a torus and the curve is an elliptic curve. Rational elliptic curves 
have proved very important in the solution of various diophantine problems 
such as Fermat's Last Theorem, and in [SSy] we showed that only 5 such curves 
correspond to Euclidean toroidal maps; the rest correspond to maps with a 
hyperbolic structure. 

The purpose of this work is to briefly describe these ideas to those whose 
primary interest is in the theory of graph embeddings. In § 1 we introduce the 
basic ideas involving maps and show how they relate to Riemann surfaces and 
algebraic curves. In §2 we introduce the idea of a geometric structure on a map. 
In §3 we give a brief introduction to elliptic curves. In §4 we describe the uniform 
(sometimes called combinatorially regular) maps on the torus. These are the only 
ones with a Euclidean Structure and include the well-known regular maps on the 
torus. In §5 we discuss the embeddings of the complete graphs K5, K6 and 
K7 on the torus. Now K5 and K7 correspond to regular maps and hence have 
a Euclidean structure, while for K6 we definitely need a hyperbolic structure; 
an example is given where there is one hexagonal face and 8 triangular faces. 
In § 6 we outline our proof that there are only 5 rational elliptic curves whose 
associated maps have a Euclidean structure. 

1. Maps and Riemann surfaces 

A map is informally an embedding of a connected graph Q into an orientable 
surface S such that the connected components of S \ Q (called the faces of the 
map) are simply connected (see [JS1]). We allow the graph Q to contain loops 
and free-edges. (A free-edge has only one end incident with a vertex, as shown 
in Figure 1. Free-edges are sometimes called semi-edges or half-edges.) 

©-

F I G U R E 1. A free-edge. 

Plane trees embedded in the plane and the Platonic solids embedded in the 
sphere are all examples of maps. Figure 2 shows a map with one vertex, one 
face and three edges (one of which is free) embedded in a torus. The torus is 
obtained by identifying opposite sides of the square. 
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/ -

F I G U R E 2 . A map of genus 1. 

One can associate an algebraic structure to a map M as follows: whenever 
an edge intersects a vertex we put an arrow on the edge facing that vertex; every 
such vertex-edge pair is called a dart of M. Letting Q denote the set of darts 
of M, we define twro permutations of ft: r0 consists of cycles formed by going 
round each vertex in an anticlockwise direction, while rx is the permutation 
consisting of cycles which interchange the darts on an edge or loop, and fix 
the dart on a free edge. The product r2 = ( r ^ ) - 1 consists of cycles which 
define anticlockwise rotations about each face of M, where the composition is 
taken from left to right. We let G = gp(?'0,r1) < SQ. be the group generated 
by r0 and rx. Note that G is a transitive permutation group because the graph 
underlying M is connected. If r0 and r2 have orders ra and n respectively, we 
say that the map M has type (ra, n). 

For positive integers /0 , lx, /2 , the extended triangle group r*(/ ( ) , /1 , /2) is 
the group generated by reflections in the sides of a triangle with angles ~/l0, 
7i//1, 7r//2. Note that the triangle will lie on the sphere E, the Euclidean plane 
C or the hyperbolic plane H depending on whether l / / 0 + l / /x + l / / 2 > 1, 
= 1 or < 1 respectively. The triangle group r ( / 0 , / 1 , / 2 ) is the index 2 subgroup 
of T*(/0, /l512) consisting of all the orientation-preserving transformations. It is 
known (see [Mag]) that T(/0, /15 /2) has a presentation of the form 

1 [IQ, t-p t2) = g p \ # 0 , #-_, X2 I XQ — %\ — %2 — ^0*^1*^2 ~ 1 * 

These groups are the cocompact triangle groups; the quotient space is the sphere. 
Given a map M of type (ra,n) with G = gp(r 0 , r 1 ) as defined above, there 

is an epimorphism 9: T(ra, 2, n) —> G given by x0 H-> r0 , xx i-> rx and x2 h-> r2 . 
If we set Ga = {g G G | ag = a) for any a G . 1 , then M = 9~1(Ga) is called a 
canonical map subgroup for M. The quotient space X = U/M (where U = S , 
C or H) is a Riemann surface, and furthermore M can be embedded naturally 
into .Y so that the edges of M are geodesies in X. Conversely, if M < T(m, 2, n) 
is any finite index inclusion, then the Riemann surface A" = U/M contains an 
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embedding of some map M (for more details see [JS1]). (Dealing with a general 
triangle group r ( / 0 , / 1 , / 2 ) the combinatorial structures we obtain are hyper-
maps, not maps. However, associated with every hypermap there is a uniquely 
defined map (see [JS3]). Hence in the general theory it is sufficient to restrict 
our attention to maps.) 

We now briefly describe the connection between maps and algebraic curves. 
If T(x, y, z) G C[x, y, z] is an irreducible homogeneous polynomial with complex 
coefficients, then the algebraic curve 

CT = {[x,y,z]£P2(C)\ T(x,y,z) = 0} 

can be normalized to obtain a compact Riemann surface XT; conversely, given a 
compact Riemann surface X there exists an irreducible homogeneous polynomial 
T(x,y,z) G C[x,y,z] such that XT, the normalization of CT, is isomorphic to 
A" (see [Gri] for example). We say that a Riemann surface X is defined over 
a subfield F C C if X = XT for some polynomial T(x,y,z) G F[x,y,z]. A 
complex number (3 G C is an algebraic number if /(/?) = 0 for some non-zero 
polynomial f(x) G I*[x], and (3 is said to be an algebraic integer if f(x) is a 
monic polynomial. The set of all algebraic numbers forms a field, denoted Q . 
Using the theorems of B e l y i , W e i l and W o l f a r t (see [Bel], [CIW], [Wo] 
or [JS3]) we can characterize those Riemann surfaces that are defined over the 
algebraic numbers: 

THEOREM 1. A compact Riemann surface X is defined over Q if and only if 
X = U/A, where A is a finite index subgroup of a cocompact triangle group and 
U = S ; C or H. 

From the above discussion we see that a Riemann surface X defined over 
the algebraic numbers carries a map M with map subgroup A (more generally 
we may have a hypermap, but as noted above we can replace this with a map). 
Often we say that X carries the map M. To understand this idea more clearly 
we introduce geometric structures on maps. 

2. Geometric structures on maps 

We first recall the standard theory concerning geometric structures on sur­
faces. There are 3 simply-connected surfaces with constant curvature, namely 
the sphere S with the spherical metric (constant positive curvature), the Eu­
clidean plane C with the standard Euclidean metric (zero curvature), and the 
upper half-plane H with the Poincare metric (constant negative curvature). The 
latter surface gives a model of the hyperbolic plane; the geodesies are the semi­
circles and straight lines orthogonal to the real axis. We often map H conformally 
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onto the open unit disc D and then find the model in which the underlying space 
is .D, and the geodesies are circular arcs and straight lines orthogonal to the 
boundary of the disc. This model is familiar in the works of Escher. 

A standard way of representing a torus is as a quotient space C/A, where A 
is a group generated by two independent translations. This has a parallelogram, 
with sides spanned by the generating vectors of A, as its fundamental region 
(see §3). This means that the torus has an induced metric of zero curvature (flat 
metric) and each geodesic can be thought of locally as a Euclidean straight line. 
The parallelogram and its images under A then form a tiling of the plane. The 
standard way of obtaining a surface of genus 2 is by identifying the sides of 
an octagon. However, as there is no tiling of the plane by octagons, we cannot 
find a flat metric on a surface of genus 2. On the other hand we can find a 
tiling of the hyperbolic plane by octagons and from this we get a hyperbolic 
metric on a surface of genus 2. By analogy with the torus it is convenient to 
represent a surface of genus 2 as a quotient of D (with the hyperbolic metric) 
by a discontinuous group A of hyperbolic isometries acting freely on D. The 
surface of genus 2 may now be represented as 15/A, and as A acts freely and 
discontinuously on D, the natural projection IT: D —» JD/A is a smooth covering 
map and induces a hyperbolic structure on the surface of genus 2. In a similar 
way we can obtain hyperbolic structures on all surfaces of genus g > 2. 

Now suppose that the group A acts properly discontinuously on U (where 
U = S , C or H), still pairing the sides of some fundamental region, but possibly 
having isolated fixed points. We can still form the quotient space W/A; this now 
has the structure of an orbifold and has cone points at the projections of the 
fixed points (which are the branch points of the cover). In 2 dimensions these 
orbifolds are homeomorphic to 2-dimensional manifolds, i.e. surfaces. The real 
difference is that at a branch point z the covering projection is locally p-to-1 for 
some p > 1 . This means that if we have pq geodesic segments emanating from 
z at equal angles, then on the quotient surface we have q geodesic segments 
emanating from the projection of z. 

Now, for a geometric structure on a map we want a metric on the underlying 
surface in which every non free-edge has the same length, every free-edge has 
half this length, and at every vertex of valency m each sector formed by two 
consecutive edges has angle 27r/m. To show such a metric exists we first consider 
the universal maps of type (m, n ) . (Our notation means that every vertex has 
valency m and every face has valency n.) We let U denote one of the three 
simply-connected spaces of constant curvature described above. Then for each 
pair of integers m, n > 2, U carries a regular map of type (m, n) , where U = S 
if 1/rn + 1/n > 1/2, U = C if \jm + 1/n = 1/2*, and U = M if 1/m + 
1/n < 1/2. (By a regular map we mean one in which the automorphism group 
acts transitively on the darts.) We denote the universal map of type (m,,n) by 
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M(m,n). Some of these universal maps are very familiar. For example, in the 
Euclidean case yVi(4,4) is the Gaussian integer lattice Z[i], and M(3,6) is the 
hexagonal lattice Z[p], where p = (l + y/-3 ) / 2 . 

It was shown in [JS1] that given any map M of type (m,n) on an orientable 
surface S (where m is the l.c.m. of the vertex valencies and n is the l.c.m. 
of the face sizes) there is a (possibly branched) covering map IT: U -» S such 
that 7r(jVf (m,n)) = M and the branch points (if any) occur at the vertices, 
face-centres and edge-centres. For example, if there is a map of type (8,12) 
with a vertex of valency 4, then there would be a branch point at a vertex of 
the universal map in order that a vertex of valency 8 projects to a vertex of 
valency 4. 

DEFINITION 2. A geometric structure on a map M of type (ra,n) lying on 
a surface S is a pair (iY,M(m,n)), where ir: U -> S is a (possibly branched) 
covering, 7r(yVi(m,n)) = M, and any branching of IT occurs at the vertices, 
face-centres, and edge-centres of M(m,n). 

By [JS1] we then find there is a subgroup M < T(m,2,n) such that 
M(m,n)/M = M with S underlying the Riemann surface X = U/M. We 
say that a map M of type (m, n) has a spherical, Euclidean, or hyperbolic 
structure if M(m,n) lies on S , C or H respectively. This just depends on 
1/m + 1/n as indicated above. (In [JSl] the groups of covering transformations 
are called map subgroups. In retrospect, these could have been called fundamen­
tal groups of the map since there is a close analogy with fundamental groups of 
orbifolds). 

On each of the 3 simply-connected surfaces there is a notion of angle, so that 
the darts incident with a vertex v of M(m,n) divide the neighbourhood of v 
into m sectors of angle 2n/m. Every such vertex v projects to a vertex n(v) of 
the map M; if v is a branch point of order k, then the darts of M divide the 
neighbourhood of TT(V) into m/k sectors of angle 2i\k/m. 

DEFINITION 3. A map M of type (m, n) is uniform if every vertex of M 
has valency m, every face has size n , and it either has no free-edges or all of its 
edges are free. 

We then have: 

(i) Every uniform map on the sphere is regular. 
(ii) Every Euclidean map on the torus is uniform, and conversely every uni­

form map on the torus has a Euclidean structure, 
(iii) Every map on a surface of genus g > 1 has a hyperbolic structure. 

Now (i) is proved as [JSl; Corollary 6.4] and (iii) follows since every surface 
of germs g > 1 has a hyperbolic structure, and never a spherical or Euclidean 
structure [JS2; Chapter 4]. To prove (ii) we observe that a uniform map on the 
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torus T corresponds to an unbranched cover n: U —> T. It is known that every 
cover 7r: C -> T is unbranched, and further that if ir: U —r T is an unbranched 
covering by a simply-connected surface U then we must have U = C. Note 
that it is possible to have Euclidean or hyperbolic maps on the sphere, and also 
hyperbolic maps on the torus. 

3. Elliptic curves 

An elliptic curve is a cubic curve of the form 

y2 z= ax3 + bx2 + ex + d, 

where the polynomial on the right-hand side has distinct roots. (More generally, 
an elliptic curve is defined to be a non-singular curve of genus 1. However, it 
can be shown that such curves are birationally equivalent to curves of the above 
form, see K n a p p [Kn].) By some easy transformations, we may normalize the 
equation to be in so called Weierstrass Normal Form 

y2 = 4x3 — px — q (1) 

with 
p3 - 27q2 ± 0 . (2) 

Now, (2) just says that the discriminant of 4x3 — px — q is non-zero, which is 
equivalent to the roots of the cubic being distinct. 

7 <öi+Ю2 

FIGURE 3. 

We first wish to explain the classical connection between elliptic curves and 
the torus. One of the common ways of obtaining a torus is to identify the opposite 
edges of a rectangle. For the purposes of graph embeddings this is usually enough, 
but here we are also interested in conformal structures, so that we now regard the 
torus as being obtained by identifying the opposite edges of a parallelogram in 
the complex plane with vertices 0,o;1,u;2,a;1 + LO2 , where -^ ^ R (see Figure 3). 
From these points we may construct a tessellation 

A = A(UJ1,LO2) = {muol + mo2 \ m,neZ} 
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of the complex plane, part of which is shown in Figure 4. 

The set A is called a lattice. Algebraically, it is a free abelian group of rank 2; 
geometrically, it is a discontinuous group of translations of the complex plane. 
It is always interesting to study functions that are invariant under the action of 
some group; for example trigonometric functions are invariant under the action 
of an infinite cyclic group. Now a meromorphic function (that is a function that 
is analytic except for poles) / : C —> C is called elliptic or more strictly A-elliptic 
if f(z + u) = f(z), for all a; £ A. Perhaps the simplest example of an elliptic 
function is the Weierstrass pe-function 

P(*) 
1 

+ E 
wЄЛ-{0} 

1 

(z-uў 

1 

uť 

It can be shown that p(z) and its derivative p'(z) generate the field of all 
A-elliptic functions and that we have the differential equation 

p'(z)2 = 4p(z)3 - g2p(z) - g3 

where g2, g3 are functions of the lattice. In fact 

£2 = 60 E ;-?> 
o;EA-{0} 

^3 = 140 E i 

(3) 

wЄЛ-{0} 
UГ 

(such series are called Eisenstein series). For all this see [JS2; Chapter 3]. 
From equation (3), we see that we have a uniformization (or parametrization) 

of the elliptic curve (1) with p = g2 and q = g3. Moreover, it can be shown 
that given any p , q with p3 — 27q2 ^ 0, we can find a lattice with p = g2 and 
q = g3 (see [JS2; §6.5]). Now, the quotient space C/jA is the torus obtained by 
identifying opposite sides of one of the parallelograms of the tessellation. If we 
let [z]A denote the A-orbit of z then the mapping (p(z), p'(z)) ^ [z]A sets up 
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a homeomorphism (even a complex-analytic homeomorphism) from the elliptic 
curve (1) to the torus C/A, where p = g2 and q = # v It is in this sense that 
we may regard an elliptic curve to be a torus. 

We now need to decide when two tori are to be regarded as equivalent. In 
topology, or for the purposes of graph embeddings, we use homeomorphism as 
the equivalence relation. For us the underlying conformal structure is important, 
and so our equivalence relation is conformal homeomorphism. It is the ratio 

T = UJ2/UJX 

that determines the shape of the parallelogram. By interchanging UJ2 and UJ1 if 
necessary, we may assume that T has positive imaginary part. Thus letting H 
denote the upper half of the complex plane, we see that each r G H determines a 
torus. The lattice determining the torus is the one generated by 1 and T . How­
ever, it is possible for different r to determine the same torus. This is because we 
can change the basis of a lattice. One can easily show that A(o;1, UJ2) = A(UJ[ , UJ'2) 
if and only if there exist integers a,b,c,d G Z with ad — be = ±1 such that 

UJ'2 = auJ2 -F I)UJ1 , 

UJ[ = cu)2 + duJi 

(see [JS2; 3.4.2]). If we let r = UJ2/UJX, T' = UJ'2/UJ[ and choose T,T' G H, then 

the condition for T , T' to define the same torus is that 

. aт -\-b , , r-, . -. /. ч 
т = a, ò, c, d Є Ћ , ad -bc=l. (4) 

cт + d 

Another way of saying this is that r, T' define the same torus if and only if r , 
T' lie in the same orbit under the modular group PSL(2, Z) which consists of all 
Mobius transformations of the form (4). The modular group has the well-known 
fundamental region T shown in Figure 5. Thus every torus can be represented 
by a point in T. This representation is unique except that the transformation 
T i-> T -F 1 identifies points on the vertical boundaries, and T I-> — 1/T identifies 
points on the boundary, which lie on the unit circle \T\ = 1. These identified 
points correspond to the same torus. Particularly important for us will be the 
points i and p = ( l + \/—3)/2, for as we shall see, these are the only tori to 
carry regular maps. 
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T 

zJdVEҘ 
2 

'i±y£ 
2 

FIGURE 5. 

4. Uniform maps on the torus 

The regular maps of genus 1 have either square, triangular or hexagonal 
faces and are denoted by their Schlani symbols { 4 , 4 } M , {3,6}p ( ? or {6, 3} p 

respectively (see [CMo]). We have proved that the uniform maps on the torus are 
precisely the toroidal maps with a Euclidean structure and so, coming from the 
universal Euclidean maps M(A, 4), yVf(6, 3) and ,M(3, 6), must have type (4,4), 
(6,3) or (3,6). The following lemma, proved in [SSy], defines a correspondence 
between toroidal maps with a Euclidean structure and elliptic curves with moduli 
r G Q(i) or r G 

LEMMA 4. The values of r G EI that correspond to maps on the torus with a 
Euclidean structure are precisely those for which r = (p+iq)/r or r = (p+pq)/r, 
where p, g, r G Z and q) r > 0. 

Elliptic curves with moduli r G 
ian integer lattice 

(i) correspond to sublattices of the Gauss-

A(l, i) = {m + ni | 7Ti, n Є Z } . 

Given a sublattice A < A(l,i) the corresponding uniform map of type (4,4) 
is obtained by taking the natural projection A(l,i) —> C/A. For example if we 
take A(l — i, 2 -f- 3 i) < A(l, i), then the corresponding map is shown in Figure 6. 
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/..Ч 
/ " ' , " 

4 .,'' 
V 

' 
\ / 

FIGURE 6. 

Elliptic curves with moduli r G Q(p) correspond to sublattices of 

A(l,p) = {m + np | m,neZ], 

where p = (l + \/—3 )/2. If we consider a sublattice A < A( l ,p) , the corre­
sponding uniform map of type (6, 3) is obtained by taking the natural projection 
A(l,p) —> C/A. For example if we take the lattice A(2,2p) < A(l ,p), then the 
corresponding map of type (6, 3) is shown in Figure 7(a). Every uniform map of 
type (3, 6) occurs as the dual of some uniform map of type (6,3), and the map 
of type (3,6) corresponding to the lattice A(2,2p) is shown in Figure 7(b). The 
maps in Figure 7 form a dual pair. 

(<*) 

FIGURE 7. 

We recall that elliptic curves are parametrized by the set of moduli in the 
modular fundamental region r G T (we assume the equivalence relation on 
the boundary points of T induced by the side-pairing transformations); using 
this classification of elliptic curves we can derive a classification of the toroidal 
uniform maps of type (4,4) and (6,3) extending the notation of Coxe;er and 
Moser (for precise details see [Sy]). 

Given a sublattice A < A(l, i) we choose a basis A = A(a + /? i, 7 + S i) such 
that r = (7 + <Ji)/(a + /?i) G T. Writing 

a + /3i =(p + r/i)(a + bi), 

7 + £i =(p + </i)(c + d i ) , 
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where (a-fb i ) and (c + di) are coprime Gaussian integers, we use the notation 

to describe the corresponding uniform map of type (4,4). Similarly, every genus 
1 uniform map of type (6,3) can be expressed in the form 

(c + dp\ 
\a + bp)p+q/ 

where r = (c + dp)/(a + bp) G T and a + bp, c + dp are coprime in the ring Z[p]. 
The map in Figure 6 can be expressed as { ~^M-} while the map in Figure 7 (a) 
has the form {p}2 • Hence every toroidal uniform map of type (4,4) or (6,3) has 
the form {T}P+QI for r G Q(i) or {T}pJrqp for r € Q(p). The following lemma 
is proved in [Sy]: 

L E M M A 5. 

(i) Let T,T' G Q(i) with T,T' G T. Then the uniform maps {T}P+Q1 and 
{T'} / + ,j are isomorphic if and only if T = T' (or are equivalent boundary 
points) and p + qi, p' + q' i are associates in Z[i]. 

(ii) Let T,T' G Q(p) with T,T' G T. Then the uniform maps {T}p+qp and 
{T'} , + , are isomorphic if and only if T = T' (or are equivalent boundary 
points) and p + qp, p' + q'p are associates in Z[p]. 

In particular, if T = i or r = p . we obtain the regular maps 

{i}p+qi *-> { 4 , 4 } M or {p}p+qp ^ &Q}P,q 

in the notation of [CMo]. 

5. To ro ida l e m b e d d i n g s of s o m e c o m p l e t e g r a p h s 

We now look at some examples involving both Euclidean and hyperbolic maps 
on the torus. It is well-known that the complete graph Kn can be embedded as 
a toroidal map for n = 5, 6, 7. Figure 8 shows the complete graphs Kb and K7 

embedded into the torus as the regular maps {i}2+i a n d
 { P J 2 + P respectively; in 

particular we note that they are maps with Euclidean structures. 
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FIGURE 8. 

One might ask about the embedding of K6 into the torus. Of course, the 
obvious way of obtaining K6 on the torus is to take the genus 1 embedding 
of K7 (shown in Figure 9 (a) with a slightly shifted fundamental parallelogram) 
and to remove one vertex and all incident edges, as shown in Figure 9(b) . We 
note, however, that the Euclidean structure of the map has now been lost, since 
the vertices of the map have valency 5 and not all the angles are equal to 27r/5 
(see the note before Definition 3). 

(a) (b) 

FIGURE 9. 

In Figure 9(b) all regions are hexagons or triangles, and all vertices have 
valency 5 . Therefore, the genus 1 embedding of K6 must have a hyperbolic 
structure, and come from the universal map yVf(5,6). In Figure 10 we show 
such a hyperbolic embedding of K6 into the torus. The map has 30 darts, so its 
associated map subgroup A < T(5,2, 6) must have index 30. The map is found 
by gluing together 30 fundamental regions of the T(5,2,6) triangle group. Ob­
serve that the torus is now obtained by folding up a hyperbolic 18-gon, and 
contains a cone point in the centre of each of the triangular faces. However, as 
can be seen from Figure 10, the polygon is "essentially" still a hexagon with 
opposite sides identified. (For those interested in Fuchsian groups, the map sub­
group has signature (1; 2, 2, 2, 2, 2, 2, 2, 2) < T(5, 2,6), where the eight periods 2 
correspond to the eight cone points.) 
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E D 

E 

F I G U R E 10. A hyperbolic embedding of K6 into the torus. 
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GEOMETRIC STRUCTURES ON TOROIDAL MAPS AND ELLIPTIC CURVES 

6. Elliptic curves defined over Q 

We return to elliptic curves. We would really like to know when a torus 
corresponds to an elliptic curve defined over the rationals Q. This question is 
too difficult, but there is a beautiful answer to the question as to when an elliptic 
curve is defined over the field Q of algebraic numbers. This is a special case of 
Theorem 1: 

THEOREM 6. A torus defines an elliptic curve defined over Q if and only if 
it carries a map. 

Graph theorists might object to this, since in their context every torus carries 
a map! What we mean here is that the torus carries a map with a geometric 
structure as described in § 2. This geometric structure then defines a map sub­
group, which in turn defines a torus. Belyi's Theorem then implies that this 
torus corresponds to an elliptic curve defined over Q. Our aim is to give some 
examples so that we can relate the value of T defining the torus to the equation 
of the elliptic curve. In order to do this, we introduce the remarkable function 
J(T), called the elliptic modular function. This is defined as a function on H as 
follows: 

1728g3 
3{) 9l-27gr 

We note that the functions g2, g3 are functions of a lattice, and not of a complex 
number. However, if we pass from a lattice to a similar lattice by multiplication 
by a non-zero constant c, then this constant cancels in the above formula. Hence 
J(T) is really a function of the similarity class of the lattice and so depends only 
on one complex number T G H. 

Properties of the j -function: 

(a) j(T(r)) = J(T) for all T G PSL(2 ,Z) . Thus j is invariant with respect 
to the modular group. Also j : M —> C is an analytic function. 

(b) J(TX) = J(T2) if and only if there exists T G PSL(2, Z) such that 
T(TX) = T2. (Thus j is one-to-one on the fundamental region T', ex­
cept that j will take the same value on equivalent boundary points.) 
Given an elliptic curve, we can determine a value of T and now we see 
that the values of j(r) determine this curve. 

(c) If T is a quadratic imaginary (i.e. ar2 + br -f c = 0 for a,b,c G Z , where 
a > 0, (a, b. c) = 1 and b2 — 4ac < 0), then j(r) is an algebraic integer 
of degree h(d), where d = b2 — 4ac < 0 is the discriminant of T , and 
h(d) is the class number of d as defined below. 
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The class number. 
A primitive (binary) quadratic form is a function of x and y of the form 

ax2 + bxy + cy2 , 

where a^b^c^lL and (a, 6, c) = 1. A fundamental problem in number theory is 
to determine which integers arc represented by such a form (for example, which 
integers are sums of two squares). The discriminant of the above form is defined 
by d = b2 — 4ac. If we perform a change of variable by 

X\ = (p q\ (x 
Y) \r s)\y 

where p , g , r , s G Z and ps — qr = 1, then we get a new quadratic form AX2 + 
BXY + CY2, which we call equivalent to the above form; they clearly represent 
the same set of integers. Under such a transformation it can also be shown that 
the discriminant d is unchanged. We define the class number h(d) to be the 
number of equivalence classes of primitive quadratic forms of discriminant d. 
A classical problem going back to the time of Gauss is Lo find the values of 
d < 0 for which h(d) = 1. This was finally solved around 1960 by Baker, 
Heegner and S t a r k who found that the values of d < 0 for which h(d) = 1 
are d = - 3 , - 4 , - 7 , - 8 , - 1 1 , - 1 2 , -1G, - 1 9 , - 2 7 , - 2 8 , - 4 3 , - 6 7 , - 1 6 3 . ([St]). 

We now use these results to find the values of r representing Euclidean 
toroidal maps that give rational elliptic curves. Lemma 4 tells us in this case 
that r = (p+iq)/r or r = (p+pq)/r, where p, q,r G Z and r/, r > 0 (we will also 
assume that (p, q,r) = 1). Thus r is a quadratic imaginary with discriminant d. 
If the elliptic curve corresponding to r is rational then by property (c) of the 
j-function above, h(d) = 1. Now, if r = (p + ig ) / r , then 

(TT - p)2 + q2 = 0 

and thus 
r2T2 - 2prr + (p2 + q2) = 0 . 

Therefore, the discriminant 

d = 4p2r2 - 4(p2 + q2)r2 = -Aq2r2 

and thus the discriminant is —4 times a square. Similarly, if r = (p + pq)/r, 
then we find that the discriminant is —3 times a square. By comparing this with 
the solution of the class number 1 problem above, we obtain 

d= - 3 , - 4 , - 1 2 , - 1 6 , - 2 7 . 

Thus we have proved the following theorem: 
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THEOREM 7. There are 5 rational elliptic curves that correspond to Euclidean 
toroidal maps. All other rational elliptic curves (by Belyi's Theorem) correspond 
to hyperbolic toroidal maps. 

Given d, it is easy using the above computations to find the value of T in 
the fundamental region T with discriminant d. The values of J(T) can then be 
found from the classical literature, and knowing J(T) we can find the equation 
of the elliptic curve. We include the details in Table 1. In [SSy] we also found 
those elliptic curves defined over quadratic and cubic extensions of Q which 
correspond to Euclidean toroidal maps. 

T A B L E 1. T h e five rational elliptic curves 

which correspond to Euc lidean toroidal maps. 

d т j{r) Elliptic curve Eт 

- 3 P 0 y2 = 4x3 - 1 

- 4 І 1728 y2 = 4x3 — x 

-12 - 1 + 2/9 54000 y2 = 4x3 - 15x - 11 

-16 2i 287496 y2 = 4x3 - l l x - 7 

-27 - 1 + 3/0 -12288000 y2 = 4x3 - 120x - 253 
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