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ON THE MAYER PROBLEM 
I. GENERAL PRINCIPLES 

VERONIKA CHRASTINOVÁ — VÁCLAV TRYHUK 

(Communicated by Michal Fečkan ) 

A B S T R A C T . Given an underdetermined system of ordinary differential equa
tions (i.e., the Monge system, the optimal control system) expressed by Pfaffian 
equations UJ = 0 ( w G f i ) where fl is a module of differential 1-forms on a space 
M , we determine submodules Jl C fi which satisfy the congruence df2 2. 0 
(mod ffc, H A ft) along a certain special subspace E C M of the total space M . 
Then ft and E may be interpreted in terms of Poincare-Cartan forms and Euler-
Lagrange equations for various Mayer problems that belong to the given Monge 
system. They yield a universal canonical formalism including the Weierstrass-
Hilbert extremality theory The occurrences of uncertain coefficients (Lagrange 
multipliers, adjoint variables) are suppressed and occasionally eliminated (e.g., 
for all Mayer problems arising from a Lagrange problem), the degenerate cases 
are not excluded. 

Introduction 

Given an underdetermined system of ordinary differential equations together 
with certain boundary conditions for the solutions P(t), 0 < t < 1, the 
Lagrange problem is concerned with such solutions that a curvilinear integral 
f P*a (where a is a 1-form) attains the extremal value and the Mayer problem 
deals with such solutions that a function g(P(l)) of the end point attains the 
extremal value. Everyone can be translated into the other, they may be regarded 
for equivalent. However, the Mayer problem corresponding to a Lagrange prob
lem is of a very special kind (with certain additional structure) and conversely, 
rather strange Lagrange problems (with extraordinary extremals) are related 
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to a given Mayer problem. Therefore the Mayer problem manifests itself as the 
more fundamental one and deserves a separate investigation. 

A huge literature is devoted to this topic mainly within the framework of the 
optimal regulation theory, see [5] and numerous references therein. In this ap
proach, the original underdetermined system is rewritten as the optimal control 
system 

dw dx = fҚx, w\ ..., wm, u\ ..., un), ,m. 

which involves two quite distinct families of variables: the common phase 
variables x,wl,... ,i/J7n and the new control parameters ( i t 1 , . . . , un) G K, 
where K C Rn is a given compact subset. The resulting stationarity condi
tions are partly of the classical nature d ^ / d x — J^^dfijdwx (where ipl are 
additional adjoint variables) and partly of rather unusual kind 

] T ^ T (x, v*1, • • •, ™m, u1,..., un) = max ] T ^ f (x,w\ ... ,wm,v\ ... ,vn) 

(v = (u 1 , . . . , L>n) G K, the maximum principle). It follows that some technical 
measures (e.g. the choice of the control parameters and of K ) strongly affect 
the final result which cannot be therefore easily transformed into classical terms 
if the maximum is attained at the boundary of K . Especially the classical de
generate variational problems are misinterpreted from this point of view. 

We propose a new approach based on a forgotten Cartan's observation [1]. 
The original differential equations are replaced by a Pfaffian system u = 0 
(LJ G ft) where ft is a module of differential 1-forms. There exists a submodule 
ft C -1 along a certain subspace E C M of the total space that is "infinitesi-
mally flat" along all solutions P(t) G E . These E , IQ, and P(t) represent the 
common Euler-Lagrange system, Poincare-Cartan forms, and extremals, respec
tively. In succinct terms, the final achievements are as follows. For a given un
derdetermined system of differential equations wre can characterize the family of 
extremals together with the Poincare-Cartan forms. They provide the "absolute 
structure" independent of any particular choice of coordinates in the widest pos
sible sense and determine the hierarchy of all reasonable variational problems (in 
particular, of all Mayer problems) relevant to the given underdetermined system 
together with the adapted Hamilton-Jacobi equations and geodesic fields needful 
for the extremality investigations. The algorithm is of the algebraical nature: we 
do not need any subtle existence of admissible variations subjected to various 
boundary conditions. 

A certain similarity to the "royal road" by Caratheodory is worth mentioning. 
Recall that it comfortably provides the sufficient global extremality conditions 
for the nondegenerate classical variational problems and rests upon the existence 
of (a little artificial and hypothetical) calibration function, see thorough com
ments in [4]. Our approach gives analogous result but, unlike Caratheodory 's 
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method, it applies to all constrained variational problems with quite general 
boundary conditions as well, and leads to a universal canonical formalism which 
is (in principle) free of various uncertain coefficients (e.g., of the Lagrange mul
tipliers) occurring in all common expositions. The advantage of our approach 
was already examined for the relatively easier case of the Lagrange variational 
problems which admit a simplified treatment, see the series of papers [3]. 

This Part I of the article is devoted to the general theory. Several easy ex
amples of true Mayer problems will be shortly discussed in the next Part II. 
Regrettably, rather unusual tools must be employed. In order to explain the 
topic as clearly as possible, we therefore restrict ourselves to smooth category 
and the distinction between local and global properties is not thoroughly pointed 
out. Our aim is to describe certain explicit algorithm which can be applied to 
a large spectrum of particular problems. The use of a non-formal style enables 
us to explain the method on a reasonably modest space. The paper should be 
regarded for self-contained and easily accessible for anybody who is acquainted 
with the elements of differential forms and Pfaffian systems, we may also refer 
to monograph [2] involving thorough exposition of all fundamental but a little 
unorthodox concepts that will occur. 

Ordinary differential equations 

1. N o t a t i o n . 
We introduce (in general infinite-dimensional) underlying spaces M equipped 

with (local) coordinates h},h2,... and the structural ring T = T ( M ) (the 
abbreviation omitting M if possible) of all smooth real-valued functions / = 
f(h1,... ,hm) on M , where m = m(f). Admissible mappings n : N —> M 
between such spaces will satisfy n*T(M) C T ( N ) , in particular 

n ^ - E / ^ k 1 , . . . , ^ ) G T ( N ) , (1) 

where kl,k2,... are coordinates on N . If this mapping n is injective and a 
part of the family hl,h2,... can be taken for alternative coordinates on N , 
then N is called a subspace of M with the inclusion n : N C M and the 
restriction n* to N of functions and differential forms (see below). Following the 
common convention, the points P = nP and functions / = n * / are occasionally 
identified to simplify the notation. 

We also mention the ^(M)-module $ = $ (M) of differential forms ip = 
£ f dg2' (/*', 9{ G ̂ "(M), finite sum) and the dual T(M) -module T = T ( M ) of 

oo 

vector fields Z = Y zld/dhl (z% G .^"(M), infinite sum) with the duality pairing 
ip(Z) = Z\tp = EfZgi G R, in particular df(Z) = Zf = Y^df/dh1 G R is 
the directional derivative. The exterior differential d and the Lie derivative Cz 
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satisfying 

Czf = Zf, CZX = [Z,X], Cz<p = Z\dtp + d(Z\<p) (2) 

will frequently occur. Recalling the common abbreviation of restrictions n*(p = 
^n*fldn*gl = ]T/*dg l G $ ( N ) , we believe that it will not cause much con
fusion. 

Various J"(M)-submodules 0 C $ ( M ) may be introduced by means of 
T(M)-generators i /1 ,??2 , . . . G 0 , we denote 0 = {i?1 , ! /2 , . . . }. Generators pro
vide finite expansions of elements of 0 . Generators linearly independent along 
M (i.e., at every point of M ) constitute a basis of 0 and produce the unique 
finite expansions. Unless otherwise mentioned, the existence of bases of various 
submodules of $ ( M ) will be (as a rule tacitly) postulated in order to exclude 
various "singular" objects. Unlike this, one can observe that the vector fields are 
determined by infinite expansions in terms of a weak bases. 

Finite-dimensional spaces (subspaces) will also occur but they do not need 
any comments now. 

2. Diffleties. 
Diffieties represent a substitute for infinitely prolonged underdetermined sys

tems of differential equations in the absolute sense, i.e., relieved of all addi
tional structures. For the convenience of reader, two equivalent definitions will 
be stated. Recall once more that we restrict ourselves only to the general theory 
at this place and refer to the next part of the article, where the true sense of the 
following concepts is investigated. 

Let U C T = T ( M ) be a one-dimensional submodule, hence U consists of 
all multiples fZ (f G T = ^ ( M ) ) of a (nonvanishing) vector field Z G T . 
The orthogonal submodule U1 C $ = $ (M) (consisting of all ip G $ such 
that (p(U) = 0) is generated by all forms Zfdg-Zgdf ( / , g G T), however, 
better generators are available (at least locally). Let Zx ^ 0 for a certain x G T 
(the independent variable). Denoting X = - ^ Z , Xx = 1 and we obtain the 
forms a/ = dhl — Xh% dx G UL (i = 1,2,. . . ) which provide "more economical" 
generators of UL. Clearly CZUL = Z\ dUL C UL, in particular the forms of 
the kind 

u\ ^C^u1 = dXkhi-Xk+lhidxeUA- (i = 1,2,... , k = 0 , l , . . . ) (3) 

will frequently occur. 

DEFINITION 1. We speak of a diffiety UL (with the slope U)\i& basis of UL 

can be chosen from the family ujl
k (i = 1 , . . . , m, k = 0 , 1 , . . . ) where m is fixed 

and large enough. 
In slightly different terms UL is called a diffiety if there exist functions 

Z 1 , . . . , / 7 7 1 G T such that a p a r t of the family d(Zkfl) (Z G U, i = 1 , . . . , m , 
k = 0 , 1 , . . . ) can be used for a basis of the module $ . 
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Let alternatively fi C $ be a one-codimensional submodule, hence the or
thogonal submodule f2x C T (of all Z G T with Q(Z) = 0) is one-dimensional. 
Clearly CzSl = Z\ df) C fi for all Z G f2 x . 

DEFINITION 2. Let Z e QL be nonvanishing. If there exists a good filtration 
f^: fi0 C f2x C • • • C fi = |J fy °f ^ e module f2 satisfying (by definition) the 
conditions 

/C^fy C fi/+1 (for all / ) , fij + £zf2z = f i / + 1 (for i large enough) (4) 

with finite-dimensional submodules f7z C f2, then fi is called a diffiety (with the 
slope QL). 

By identifying ft = /r{-L and H = f-1, both definitions can be proved for 
equivalent. The former one has a nice geometrical interpretation: a diffiety /KL 

can be viewed as a vector field in R°° . We shall nevertheless prefer the latter 
dual conception: a diffiety f2 represents the system of Pfaffian equations u = 0 
(u G f2). In more detail, we have the finite system c j j = 0 ( i = l , . . . , m ) equiv
alent to dhl/dx = Xhl (i = l , . . . , m ) and the remaining equations u\ = 0 
(k > 0) provide a mere infinite prolongation. The module f2 can be organized 
by various appropriately adapted nitrations satisfying (4), this is the main ad
vantage of our approach. 

3. T h e finite-dimensional case . 
The above concepts simplify if M is of a finite dimension m . In terms of 

coordinates / i 1 , . . . , hm, where h1 = x is regarded for the independent variable, 
the forms d/V - fj dx (j = 2 , . . . , m , fj = P(h\...,hm) = Xhj) consti
tute a basis of ft and the simple one-term filtration with f2z = Q is possible. 
The diffiety Q represents the determined system of ordinary differential equa
tions dtV / dx = /•?. One can even achieve p = 0 by appropriate change of 
coordinates h2,...,hm. So we have the system d-V/dx = 0 and the diffiety 
fi = {d/ i 2 , . . . , d h m } has a basis consisting of total differentials of functions 
b,2,... , lV71, the /irs£ integrals. (If m = 1, then obviously Q = 0 is the zero 
module, this is a trivial case.) 

4. Subdiffieties. 
We introduce subdiffieties by the following definition. 

DEFINITION 3. Let n : N C M be an inclusion, fi C $ ( M ) and 0 C $ (N) 
be diffieties. Then 0 is called a subdiffiety of Q if 0 = n*f) is the restriction 
of Q to N . 

One can observe that 0 is a subdiffiety if and only if f i 1 is tangent to N in 
the sense that n * / = 0 implies n*Zf = 0 for all / G JF(M) and Z G f i 1 . 
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Hint. 
If 0 is a subdiffiety, then 

n*{Zf dg - Zgdf) = n*Zf • dn*G - n*Z.g • dn*/ G 0 for all / , g G T{M). 

Assuming n* / = 0, we obtain n*Z/-dn*a G 0 for all g. This implies n * Z / = 0. 
The converse can be verified as well. 

It follows that subdiffieties of ft could be constructed as follows: we choose 
a family J1 , / 2 , . . . G ^ ( M ) and if the subset N C M of all points satisfying 
Zlfl = 0 (i — 1, 2 , . . . , / = 0 , 1 , . . . ) is a nonempty subspace, then the relevant 
restriction 0 = n*ft may be regarded for a candidate of a subdiffiety. One 
can employ the restriction 0^ : 0O C Q1 C ••• C 0 = l j© z , ©/ = n*fi | 5 of 
the filtration (4) as the good filtration of the subdiffiety 0 . In all particular 
examples to follow, this procedure will not cause any difficulties. 

5. Solutions. 
In a somewhat formal terms, special one-dimensional subspaces n : N C M 

will occur such that the spaces N are certain open subsets of the real line R 
parametrized by the variable t and containing the universal interval 0 < t < 1. 
Then we speak of curves P(t) G M (0 < t < 1) where P is the restriction of 
ii to the interval: P(t) = h(t) if 0 < t < 1. Analogously (and less formally) we 
may speak of curves P(t; A 1 , . . . , An) G M (0 <t < 1) depending on parameters. 

DEFINITION 4. Let ft C $ ( M ) be a diffiety. The curve P(t) G M (0 < t < 1) 
is called a solution of ft if P*ft — 0. If P( •; A 1 , . . . , \n)*fl = 0, then we have a 
solution depending on parameters. 

If 0 = n*fi C $ (N) is a subdiffiety of ft, then every solution P(t) G N 
of 0 clearly yields the solution nP(t) G M . If moreover N C M is a finite-
dimensional space, we obtain a solution depending on d imN — 1 parameters. 

The crucial algorithm 

6. Our task. 
Let ft C $ (M) be a diffiety. We are interested in nontrivial finite-dimensional 

submodules ft C ft such that the congruence dft ~ 0 (mod ft, ft A ft) is valid 
along a subset M C M (i.e., at every point of M ) . In more explicit terms, the 
requirement can be expressed by either of the equivalent inclusions 

d f t c f t A $ + ftAft + ra(M)$ A $ , £ z f t C ft + m(M)ft , (5) 

where $ = $ ( M ) , Z G ft"1 is a nonvanishing vector field, and m(M) C J-(M) 
is the common maximal ideal of the subset M C M including all functions 
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vanishing at every point of M . (This is a mere preparatory task, such a space 
M will be replaced by a narrower subspace E C M to obtain a subdiffiety of fi 
on E , see Section 11 below.) 

7. T h e idea of cons t ruc t i on . 
Our aim is to search for "optimal solution" with the "maximal possible" 

ft and M . The algorithm will employ a good filtration fi^ and a nonvanishing 
Z G - I 1 as a mere technical tool. For the convenience of reader, we shall mention 
separately the simple particular case when M = M . 

The following preparatory adaptations are of independent importance. Let 
M{ — Ql/Ql_1 (I = 0 , 1 , . . . , Vt_1 = 0) be factormodules. In virtue of ( 4 J , 
operator Cz induces certain ^(M)-homomorphisms 

£z:nl->Ml+v Mt->Ml+l 

denoted by the same letter. Due to (42), both homomorphisms are surjectivities, 
hence the modules M{ are bijectively mapped on Ml_^.1 for / large enough, say 
for 1>L. 

DEFINITION 5. For any submodule O C ft of our diffiety ft and Z G ft1 a 
nonvanishing vector field, let Ker 6 C 0 be the submodule of all d G O such 
that Czd G 0 . 

The real choice of Z is irrelevant here, moreover Kerf t j+ 1 = ft; if / > L by 
virtue of the definition of L. Repeatedly applying Ker to the module ftL, the 
strongly increasing sequence 

• • O ftL+i D n L = Ker0 ttL D Ker ftL D Ker2 VtL D • • • (6) 

necessarily terminates with a stationarity Ker flL = Ker + 1 flL. Denoting 
Q = KevK flL, obviously Kerjfi = £1 whence CzVt C $7. We are done: there 
exists even the greatest submodule fi C ft which satisfies the last inclusion. It 
follows that the final result does not depend on the technical tools and we may 
denote 

ft(ft) = £2. 

Altogether, n(Q.) is the greatest finite-dimensional submodule of fi satisfying 
the (equivalent) conditions 

czn(n)cn(n) (Zen1-), dn(n)~o (modn(si), SIAQ). (7) 

8. A shor t d igress ion. 
Values at a point P G M may be occasionally denoted by lower indices, 

e.g., ipp G $ ( M ) P is the value (lying in the cotangent space at P) of the form 
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ip G $ ( M ) , analogously Zp G T ( M ) p is a tangent vector at P , and so like. 
(Alternatively f(P) = fP for a function / G T(M).) 

Let 0 C $ ( M ) be a submodule. Recall that tf1, tf2,... G G is a baszs of 0 
if the values til

P,'d2
P,... G $ ( M ) P are linearly independent for every P G M 

and i?1, i ? 2 , . . . generate the JF(M)-module 0 . We shall mainly deal with finite-
dimensional 0 . Then the last requirement is equivalent to the condition that 
i?p, t / p , . . . is a basis of Qp for every P G M and one can see that a form d G 
$ (M) belongs to 0 if and only if tfp G QP for all P G M . If 0 C 0 C $ ( M ) 
are finite-dimensional submodules which have bases, then every basis of 0 can 
be (locally) completed to give a basis of 0 and the additional terms provide a 
basis of the factor 0 / 0 . 

DEFINITION 6. Let N C M be a subset, 0 C $ ( M ) a finite-dimensional 
submodule. A family i?1 ,??2 , . . . G $ ( M ) is called a basis of 0 along N if 
rdp,'d

2
p,... is a basis of Qp for every P G N . 

In this case, if <p G $ ( M ) and </? G © along N (i.e., tpp G 0 P for all 
P G N ) , then <p = tf along N for appropriate tfG0.If©C0C $ ( M ) 
are finite-dimensional submodules which have bases along N , then every such 
a basis of 0 can be (locally) completed to give a basis of 0 along N and the 
additional terms provide a basis of the factor 0 / 0 along N . 

DEFINITION 7. Let N C M be a subset, Q C $ (M) be a diffiety, 0 C fi be 
a finite-dimensional submodule. We introduce the submodule KerN 0 C 0 of 
all i? G 0 such that Czd G 0 (Z G ft1, Z 7- 0) along N . 

One can see that the real choice of Z is irrelevant and the abbreviation 
Ker 0 = Ker M 0 is possible. Unfortunately, the modules appearing in this way 
need not have a basis in the common sense. However, since the behaviour of the 
module KerN 0 beyond N will be unimportant (see Sections 9-11 below), we 
may suppose only the existence of a basis along N to exclude the singularities. 

9. The calculation of kernels. 

Passing to our task, the most important technical details will be discussed in 
this section. For better convenience, let us again mention the calculation for the 
particular case Ker = KerM leading to the chain (6). 

One can observe that the chain (6) is the result of the repeated application 
of the following step. We have finite-dimensional submodules 0 C 0 C ft of a 
diffiety n G 3>(M). The existence of bases is assumed here: let i / 1 , . . . , da be a 
basis of 0 which can be completed by 7T1,..., 7r6 to obtain a basis of ©, hence 
Tr1 , . . . ,^6 represent a basis of the factor M = 0 / 0 . Assuming CZQ C 0 , 
we are interested in Ker©. More explicitly, if £z$

l = ^a^ir1 G Ai for the 
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induced homomorphism Cz: 0 -» M, then t? = ^ bzi/z G Ker 0 if and only if 
Czd = 0 G yVf which gives the system 

5>5&»' = o (i = i,...,b) (8) 

for the unknowns bl,..., ba G ^*(M). It follows that Ker 0 is nontrivial if 
rank(ap = const < b. (In practice, some "exceptional points" of M must be 
deleted to obtain an open subdomain where the rank is constant.) Then the 
module 0 = Ker© has a (local) basis and we may continue with the triple 
0 C 6 C 11 in the same way. Starting with 0 = QL C 0 = J \ + 1 C ft, the 
chain (6) appears here as the final (and already well-known) result. 

In full generality, in order to obtain the subset M C M and the submodule 
i l C i l satisfying (5), the bases along certain successively appearing "notable 
subsets" must be taken into account. 

Let 0 C 0 C ft be submodules which have the bases denoted as above, but 
only along a subset N C M. Then Cz ( £ &*#% = 0 G MP if and only if (8) is 
satisfied at the point P G N under consideration. We are coming to the crucial 
point. Let N(c), N(>c), N(<c) be subsets of N, where rank(a*) is c, > c, 
< c, respectively. (We prefer 0 < c < b. If rank(aj) > 6, then KerN 0 is empty. 
Clearly N(>c) is an open subset, N(<c) is a closed subset of "notable points" 
for every fixed c.) A subfamily of c linearly independent equations (8) can be 
resolved along N(>c). This yields the true solution also along N(c), hence it 
provides the module KerN(-cx 0 . (One can observe that N is the union of all 
subsets N(c) for various c, and it follows that we have "the largest possible" 
solution.) Denoting 

6 = Ker N ( c ) 0 , 

we may continue with the triple § C 0 C fi along the new subset N(c) C M 
instead of the previous N C M. 

10. Summary. 
We have the following algorithm to determine Cl and M. Starting with the 

triple 0 = Q,L C 0 = - \ + 1 C ft along the total space M, the above kernels can 
be successively calculated for various possible ranks of matrices. A finite family 
of chains 

• • O ftL+1 D ftL = Ker0 ftL D KerN(ci) QL D KerN(c2) KerN(ci) VtL D • • • (9) 

does appear together with certain subsets M D N(cx) D N(c2) D • • • . Every 
such a chain terminates with the stationarity 

Ke-N(c*) « = " ( « = K e rN(cK) * • * K e r N ( C l )
 fi£ ) ( -0) 
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for K large enough which means that £ z f t C ft along N(c/<0 and we may 
choose 

M = N ( c K ) . 

The inclusion (52) is clearly satisfied and one can observe that "more 
complete solution" does not exist. In this sense, the final result does not 
depend on the choice of the technical tools, however, both the final objects 
ft = ft(c15..., cK) and M = M ( c 1 , . . . , cK) depend on the choice of the ranks, 
of course. 

11. An important adaptation. 
The module ft was explicitly expressed along M but the behaviour beyond 

M remains ambiguous. Fortunately, we do not need more precise result: only 
the values along rather special subsets E c M will be employed in the following 
applications and then the original ambiguous module ft may be replaced by any 
submodule ft C ft such that ft = ft along E . 

In more detail, let us assume that M C M is a subspace, not a mere subset. 
(Recalling that M is defined by certain rank conditions, this requirement is 
satisfied in common practice. If necessary, some closed subsets of "exceptional 
points" of M should be deleted.) We shall be interested in the largest subspace 
e: E C M such that the restriction e*ft C $(E) is a diffiety (a sub diffiety of ft). 
In accordance with Section 4, if m(M) is the maximal ideal of the subspace 
M C M , such subset E is uniquely determined by its maximal ideal 

m(E) = m(M) + Zm(M) + Z2m(M) + • • • C T(M), 

where Z G ft1 is a nonvanishing vector field. Then, dealing with E instead of 
M , the ambiguous module ft can be replaced by any submodule ft C ft such 
that ft ~ ft (mod m(E)) because then Cz(l C ft along E . (This follows from 
the inclusion 

Cz (m(E) • ft) C Zm(E) • ft + m(E) • £ z f t C m(E) • ft , 

where Zm(E) C m(E) is employed.) The last inclusion is equivalent to either 
of the (equivalent) requirements 

d f t C f t A $ + ftAft + m ( E ) $ A $ , £ z f t C ft + m(E)ft, (11) 

quite analogously as in (5). With this final adaptation, our algorithm is done. 
In accordance with further investigations, E C M C M is called the Euler-

Lagrange (EC) subspace of M (in M , corresponding to ft), the submodule 
e*ft C 3>(E) is called the £C diffiety (on E , corresponding to ft), solutions 
P(t) E E ( 0 < t < l ) of the EC diffiety are extremals, and any finite-dimensional 
submodule ft C ft such that ft = ft along E will be called the Poincare-Cartan 
(VC) module. 
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Stationarity and extremality 

12. A var ia t iona l formula . 

At this place, our intentions can be eventually clarified as follows. For a given 
diffiety ft C $ ( M ) , certain greatest possible subsets M with the relevant sub-
modules i l c f i satisfying (5) are already determined. It can be shown that the 
equations to = 0 (cO G ft) in a certain sense represent an "autonomous infini
tesimal leaf" of ft at every point P G M . We are, however, not interested in 
isolated points but rather in the curves P(t) G M (0 < t < 1) which are solu
tions of ft. This adaptation in Section 11 fulfills the above mentioned demand: 
we have obtained even the subdiffiety e*ft C $(E) on the greatest possible sub-
space E C M and a simpler submodule ft C ft satisfying (11). By virtue of 
(11), we prove now that this module ft determines an "autonomous infinitesi
mal band" along the extremals P(t) G E (0 < t < 1). This is the crucial result 
which provides the true geometrical sense of our approach. 

Let Q(t]X) G M (0 < t < 1, -e < X < e, where e > 0 is fixed) be a 
one-parameter family of curves; we shall abbreviate P(t) = Q(t\ 0). 

DEFINITION 8. A vector field V G T(M) such that 

W = | : W ' - ) V ) | A = o ( / G ^ ( M ) , 0 < t < l ) 

is called a variation of the curve P(t) in the family Q(t;X). 

This vector field V is uncertain beyond the points P(t) G M , nevertheless, 
the well-known formulae 

Q( •; A)*/ = P*f + XP*Vf + o(A), Q( •; A ) > = P > + \P*Cv<p + o(A) 

equivalent to the usual definitions of Vf and Cvtp (f G ^ ( M ) , ip G $ ( M ) ) 
at the points of the curve P(t) make a good sense. Assuming that Q(-]X) 
is a solution of the diffiety ft G $ ( M ) , Q(-;A)*ft = 0 hence P*ft = 0 and 
P*Cvfl = 0 is obtained for the choice cp = to G ft. Let moreover e: E C M be 
an £C subspace and P(t) = eP(t) G E ( 0 < K 1 ) , that means, let P(t) be 
a solution of the relevant £C subdiffiety e*ft C $(E) (i.e., an extremal). Let 
LJ1 , . . . , u)c be a basis along E of the relevant VC module ft. Denoting by x the 
independent variable, the inclusion (ll-^) ensures certain expansions 

duo1 = Y2 a)uj A dx (mod ft A ft) (12) 

along E . Using (23), it follows that 

CZJ = - Y, a)uj(Z) dx + du\Z) (mod ft) (13) 
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for all Z G T ( M ) whence 

0 = P*£VOJ1 = J2 by dP*x + dyi (b) = p*aj > ^ = -P*w W ) 

for the particular choice Z = V (the variation). Assuming moreover dP*x -̂ 0 
(i.e., the possibility of the parametrization £ = t(x) is guaranteed) we obtain 
the system 

dvl/dx = -J2b)vj (b)=P*a), vl=P*ul(V)) (14) 

for the values vl = P*ul(V). 

CONCLUSION. Let V G T(M) be the variation of an extremal P(t) G E 
(0 < t < 1) in a family Q(t,X) G M (0 < t < 1) of solutions of a diffiety 
Q C <£>(M). let ujl (i = 1 , . . . , c) be a basis of the relevant VC module. Then the 
variational formula (14) holds true. 

13. The stationarity. 
It is easy to interpret the variational formula in terms of the stationarity. As a 

result, a large spectrum of corresponding variational problems can be naturally 
introduced for the original difriety ft by using the VC module Ct. Retaining 
the notation of previous Section 12, we restrict ourselves to the most necessary 
indications and one can observe with pleasure that only quite simple consequence 
of (14) will be sufficient for the most important classical cases mentioned in (t) 
below: if vl(a) = 0 (i = l , . . . , c ) for a certain value x = a. then vl = 0 
identically. 

(t) The classical problems. 
Let H1,... jH 7 " ,^ 1 , . . . , z n , g G JF(M) be functions such that 

"p(0) c W , • • • > dym}p(o) > d£P(i) € n p ( 1 ) + { d z \ . . . , dzn}p{l) . (15) 

Assume moreover 

y*'(Q(0;A))=0, ^ ' ( g ( l ; A ) ) = 0 (t = l , . . . , m , j = 1 , . . . , n ) . (16) 

Recalling the variation V G T ( M ) . i^ follows that the stationarity of the value 
g at the end point P(l) is of the form: 

d ^ ) p ( 1 ) = ^ 5 ( g ( l ; A ) ) | A = 0 = 0 . (17) 

Indeed, the relation (16x) implies dyl(V) = 0 at P(0), hence Uz(a) = 0 by using 
(152) where the value x = a is defined by ^(a) = 0, therefore vl = 0 identically 
and then (152) together with (162) imply (17). 

566 



ON THE MAYER PROBLEM I. GENERAL PRINCIPLES 

The result can be rephrased as follows. Let us consider all solutions Q(t) £ M 
(0 < t < 1) of n satisfying yl(Q(0)) = zj(Q(l)) = 0 and let us try to obtain the 
extremal value g(Q(l)). This is a variational problem and (16), (17) mean that 
the extremal P(t) G E ( 0 < K 1 ) satisfying moreover (15) may be regarded for 
a hopeful candidate of the solution. The particular choice n = m — 1 includes the 
classical Mayer problem and much more. The common transversality conditions 
at the end points are latently involved in the requirements (15), of course. 

(a) Joint conditions. 
The linearity of the system (14) ensures certain identities 

or, in more detail, the identities 

^)p(i)=£cyao/>(o) (is) 
with universal coefficients cl- for all variations V. With this preparation, 
let kl,... ,km ,g € ^"(M x M) be functions of couples of points from M such 
that the inclusion 

d2(P(o),P(1)) € {dfc1,..., dfcm, £ c)p{(J - p*ui : i = 1 , . . . , c } ( p ( 0 ) j P ( 1 ) ) (19) 

is satisfied, where ^ : M x M -> M (i = 1,2) are natural projections onto 
the ith factor. Assuming moreover kl(Q(Q\ A),Q(1; A)) = 0 (i = 1, . . . ,ra), the 
stationarity of g at the couple of the end points 

MV, V){P{0)<P{1)) = -j^g{Q(0; A), Q(l; A)) |A = 0 = 0 (20) 

holds true. 
(The proof is analogous as above.) 
Similarly to (i), one might again introduce a large family of variational prob

lems where the extremals satisfying (19) represent the hopeful solution. One can 
observe that the functions of triples, quadruples, . . . of points do not bring much 
novelty. 

(in) Continuation. 
Assuming cl- = Sl-, the inclusion (19) reads 

dff(P(o),P(i)) = (Y,Aidki + T,BJ(P&-P*2<S)) (21) 
V / ( P ( o ) , P ( i ) ) 

for appropriate coefficients A1, Bj . This is equivalent to the existence of a form 
u e Q (namely u = ^B^u^) and coefficients A1 such that the boundary 
conditions (with partial total differentials) 

V / P(0) \ / P(l) 
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are satisfied. The assumption cl- = 5%- can be ensured by appropriate choice of 

the basis u1,..., uc of ft. 

(LV) A digression. 
We shall recall a well-known result omitting the proof. 
Let O C $ ( M ) be a finite-dimensional submodule and 

Adj0 = {t9,ZJdtf : tfG0, Z G G 1 } C $ ( M ) (23) 

the submodule generated by all the mentioned forms d, Zjdfl. Then Adj 0 is 
completely integrable, i.e., it has a basis Adj 0 = { d / 1 , . . . , d / m } consisting of 
total differentials of certain (so called adjoint to 0 ) functions. Moreover, there 
exists a basis 

e = {i?\...,in, ^ = "£F;(f\...jm)dp (24) 

expressible by adjoint functions. 

(v) Trivial variational problems. 

The formula (7) with the £C subspace E = M (hence the trivial £C diffiety 
e*ft = ft) and the VC module ft = ft = TZ(ft) deserve a short notice. Recall 
that this 1Z,(ft) is the greatest finite-dimensional submodule of ft satisfying the 
(equivalent) conditions (7). We can see that in reality 

CzTl(ft) C TZ(ft) (Z G ̂ ( f l ) 1 - ) , dK(ft) ~ 0 (mod K(ft)), (25) 

that means, 7l(ft) is a completely integrable module. 

As for the proof, let us abbreviate 0 = TZ(ft). Then dAdj 0 ~ 0 (mod Adj 0 ) 
in virtue of complete integrability of the submodule Adj Q C ft, hence (trivially) 
dAdj 0 ~ 0 (mod Adj 0 , ft A ft). Owing to the mentioned maximality of 7l(ft) 
it follows that 0 D Adj 0 , therefore 0 = Adj 0 and we are done. 

(VL) Concluding remarks. 
Let us mention the inclusion 

A d j f t c f t + m ( E ) $ (26) 

equivalent to (ll-_). If Adj ft = { d / 1 , . . . , d / m } is a basis with differentials of ad
joint functions, then (26) implies df% G ft along E . It follows that e* dfl G e*ft 
(equivalently e* dfl G Tl(e*ft)) and in the classical terms, functions f1,..., / m 

are first integrals for the extremals. If moreover ft = {a;1 , . . . ,uc} is a basis of 
ft expressible in terms of the adjoint functions, then du/ G ft Aft by easy direct 
verification and therefore a1- = bl.• = 0 in formulae (12), (13), (14) rewritten for 
the new basis CJ1, . . . ,CJC. It follows that the assumptions cl- = 5l- in (LLL) are 
satisfied for this choice. 
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14. The extremality. 
Recalling the data, let fi C $ ( M ) be a diffiety, e*fi C $ (E) the £C sub-

diffiety on the EC subspace e: E C M , and Cl C ft the VC submodule satis
fying (11) along E . If Q(t]X) G M (0 < t < 1) is a one-parameter family of 
solutions of the diffiety ft such that Q(t]0) = P(t) G E is even an extremal, 
we have already obtained certain sufficient conditions of stationarity of certain 
functions g, see (17), (20). The sufficient conditions for the extremality cause 
more difficulties. The following increment formula (30) will permit us to cope 
with this task in certain very large family of favourable cases, including the so 
called nondegenerate variational problems. 

The principle is quite simple. Let UJ G ft be a differential form, 1: L C E be 
a subspace such that 

r(u-dW) = 0 (We f(M)) (27) 

for appropriate W G T(M). Let Q(t) G M and P(t),R(t) G L (0 < t < 1) be 
three curves satisfying 

W(R(0)) = W(P(0)), W(Q(1)) = W(R(1)) , (28) 

where P(t) is moreover a solution of Cl (hence an extremal). Then 

W(P(1)) - W(P(0)) = f P* dW= I P*u = 0, 

W(Q(1)) - W(P(0)) = W(R(1)) - W(R(0)) 

= f R*dW = f R*u>, 

therefore 

W{Q(1)) - W{P(1)) = W{Q(1)) - W{P(0)) = J R*UJ . (29) 

CONCLUSION. 7/ P(t) G L (0 < t < 1) is an extremal and Q(t) G M . 
R(t) G L (0 < t < 1) are two curves satisfying (28). then the values of the form 
R*u determine the sign of the difference W(Q(1)) — W(P(1)) . 

The result will be applied with the following additional assumptions. First of 
all, we suppose that CJ G f2 belongs to the VC module. Second, L c E will be 
the maximal subspace satisfying (27), the so called Lagrangian subspace (to Co). 
Then (27) provides the (generalized) Hamilton-Jacobi (T~LJ) equation (better: 
involutive system) for the unknown function W and L may be interpreted in 
terms of generalized Mayer field of extremals. Third, a solution of ft will be 
taken for the curve Q(t). Four, appropriate "approximation" of Q(t) satisfying 
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even W(Q(t)) = W(R(t)), 0 < t < 1, will be taken for the curve R(t) G L. 
Fifth, clearly R*u = £ dt with a certain function £ and then (29) reads 

i 

W(Q(1))-W(P(1)) = je(t)dt. (30) 

Therefore £ is a substitute and a far-going generalization for the famous Weier-
strass function. 
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