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SCHINZEL'S CONJECTURE AND 
DIVISIBILITY OF CLASS NUMBER h+ 

STANISLAV JAKUBEC 

(Communicated by Pavol Zlatoš) 

ABSTRACT. In this paper, we consider the class number of real cyclotomic 
fields for a prime conductor p satisfying that both --̂ — and - - j - are primes. 
According to Schinzel's conjecture, for the polynomials X, 2X + 1, 4K-f 3, there 
are infinitely many primes p with this property. We investigate divisibility of the 
class number h+. 

In this paper we consider the class number of real cyclotomic fields for a 
prime conductor p satisfying that both £=-*- and £=p- are primes. According to 
Schinzel's conjecture, for the polynomials X, 2X + 1, 4X + 3, there are infinitely 
many primes p with this property. For this type of primes, the following theorem 
has been proved in [2]. 

THEOREM. ([2; Theorem 1]) Let p = 8k(2m + 1)!! - I be a prime with the 
property that I = 4k(2m + 1)!! — 1 and 2k(2m + 1)!! — 1 are primes. Then 
( / i+ , (2m+l)! ! ) = l . 

The aim of this paper is to prove the following two theorems. 

THEOREM 1. Let m . M . A be any positive integers such that 

(i) (m, M) -=- 1 , mM = 1 (mod 2) , and M is square-free; 
(ii) A = ±1 (mod m ) . and Aq~l __ 1 (mod q2) for any prim,e divisor q 

ofM. 

Then for each prime of the form p = —m + MA + kmM2 for some integer k 
satisfying (fc, M) = 1, we have (/ij",M) = 1. 
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THEOREM 2. Let m, M, a, A be any positive integers such that 
(i) (m, M) = 1 ; mM = 1 (mod 2) ; and M is square-free; 

(ii) aA = ±1 (mod m), (aA,M) = 1 and aq~l ^ 1 (mod q2) for any prime 
divisor q of M. 

Then for each prime of the form p = -m + kaAM for some integer k satisfying 
(fc,M) = 1, we have (h+,M) = 1. 

These theorems will be proved using [1; Theorem 1]. The following text is 
taken from [1]. 

Let q be an odd prime. Define the numbers A0, Ax, A2,..., A _1 as 
follows: 

A 0 = 0 , Aj = Y,j for j = l , 2 , . . . , g - l . 
2 = 1 

Let 5 be a rational ^-integer. Put As = A- for an integer j , 0 < 
j < q, s= j (mod q). 

Let m , n be natural numbers m = 1 (mod 2), (m,n) = 1. 
Associate to the number n the permutation cpm n of the numbers 
1 , 2 , . . . , ^ as follows: 

m — 1 
0mjf l(x) = ±nx (mod m) for x = l , 2 , . . . , — - — . 

Further, associate to the number n the following quadratic form: 

m - l 
2 

Qm,n\X^X2^ " ' ̂ X^f-) = Xl+Xl + - ' + Xllfl-22 XiX<t>m,n(i) ' 
i=l 

The following Theorem holds: 

THEOREM. ([1; Theorem 1]) Let q be an odd prime. Let I, p be primes such 
that p = 2Z + 1 ; / = 3 (mod 4 ) ; p = —m (mod q), m = 1 (mod 2), m > 0, and 
let the order of the prime q modulo I be l-~-. Suppose that q divides n +

 ; the 
class number of the real cyclotomic field Q(CP + C"1) • Then for each divisor n, 
(n, q) = 1, of the number p + m, the following congruence holds 

(i) P+
2q

mn9~q~
1 ^ . " O ^ ' ^ ' - - - ' ^ ) {m°dq)-

Ifnq\^,then 

]+_ 
2q 
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P r o o f of T h e o r e m 1 . Because for a prime p, both ^ - and ^ ^ are 
primes, it follows that every prime g, q ^ ±1 (mod 1) (I = -̂ =---) either is a 
primitive root modulo / or generates a group of quadratic residues modulo I. 
Hence either q does not divide h+ according to [3; Example 1] or the assump
tions of [1; Theorem 1] are satisfied. 

Put n = A+kmM, hence n divides p+m. Now we shall apply [1; Theorem 1] 
for prime q and n = A + kmM. Since n = ±1 (mod m), the permutation 
(j)rn n(x) is identical and hence Qmin(XltX2,..., Xt) = 0. If q divides the class 
number /i+, then 

p + m nq~l - 1 _ , . 
Z— = 0 (mod?). 

2q q 
Hence 

(AK + km^.)^ + k^)9-1-^o (mod,). 

Clearly AK+kmM^- =£ 0 (mod q). The number A + t e M has the form A+Kq, 
where K ^ 0 (mod r/). Since 

A9"1 - 1 
— = 0 (mod q), 

we have 

( d - t S E - ^ , 1 0 (mod,). 
9 

This implies that q does not divide the class number /i+. • 

P r o o f of T h e o r e m 2 . We apply [1; Theorem 1] to the prime q. Let 
n = aA. Since aA = ±1 (modm), the permutation (/>mi(lA(x) is identical, 
hence Qm,aA(Xi,X2,... ,Xt) = 0. Now, we will apply [1; Theorem 1] again; 
first for n = a and in the next turn for n = A. Since aA = ±1 (mod m), 
it follows that the permutations <j>ma(

x) anc* <^m,A(a;) a r e mutually inverse, 
hence QmJX^X^ ...,Xt) = Qm A(Xl9X2i... ,Xt). Therefore for the Fermat 
quotient we have Qq(a) = Qq(A) (mod q) and hence 

0 = Qq(aA) = Qq(a) + Qq(A) = 2Qq(a) (mod q). 

This implies that Qq(a) = 0 (mod q), a contradiction. D 
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COROLLARY 1. Let m, M . s be any positive integers such that 

(i) ( ra,M) = 1, raM = 1 (mod 2). and M is square-free; 
(ii) 5 = 1 (mod 2) . {sm ± 1, M ) = 1 and 2q~l ^ 1 (mod q2) for any prime 

divisor q of M. 

Then for each prime of the form p = —ra + 2fc^-4-—-M for some integer k 
satisfying (M, k) = 1, we have (/i+,M) = 1. 

Remark. Two primes are known such that Qq{2) = 0 (mod q). They are q = 
1093 and 3511. 
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