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GENERATED BY SCALAR AND MIXED PRODUCT 
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(Communicated by Stanislav Jakubec) 

ABSTRACT. We study two types of real sequences: Firstly, the sequence of scalar 
products bn • x n , n = 1,2,... , where bn, xn are statistically independent and 
uniformly distributed in [0, l ] 3 . Secondly, the sequence of absolute values of mixed 
products | (bn ' x bn ') • xn |, where bn , bn\ xn, are statistically independent 
and uniformly distributed in the 3-dimensional ball B(r) with the center (0,0,0) 
and radius r . We compute their asymptotic distribution functions and then we 
modify one-time pad cipher by using these distribution functions. All basic prob
lems are formulated for s-dimensional sequences. 

1. Introduction 

For a given continuous real function / (b, x), we can study a real sequence 
of the form / (b n , xn), n = 1,2,... , where bn and xn are statistically indepen
dent and uniformly distributed (briefly u.d.) sequences of 5-dimensional vectors 
in a Jordan-measurable bounded subset K of Rs with positive Lebesgue mea
sure \K\. Its asymptotic distribution function (briefly a.d.f.) is defined by 

l i m #{n<N:HI,n,*J<,} 
UK J IV->oo N 

where t G L40,._9J, and A0 = min /(b,x) and BQ = max / (b ,x ) . This 
(b,x )eK 2 (b,X)GK2 

distribution function (briefly d.f.) can be computed using relation 

\{(b,x)eK*: f(b,x)<t}\ 

\K? 9(t)= , ^ | 2 

2000 M a t h e m a t i c s S u b j e c t C la s s i f i ca t i on : Primary 11K31, 94A60. 
Keywords : sequence, uniform distribution, statistically independent sequences, distribution 
function, cipher, scalar product, mixed product. 
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We can express the a.d.f. of a sequence /(b^1 ' , b n
2 \ . . . , b ^ " 1 ' , x n ) , n = 1, 2 , . . . , 

with statistically independent and u.d. sequences b ^ , b n
2 ; , . . . 

...,bn
s~1\xn in K in a similar way. Note that u.d. and statistical indepen

dence of b£\ bn
2\ ..., bn

s~1\xn in K is equivalent to the u.d. of (bn
1}, b{2\ ... 

. . . ,-bn
s~1\xn) in Ks. For exact definitions and basic properties of u.d. se

quences and a.d.f.'s, see the monograph [DT]. 
Our study is motivated by a new application of the theory of u.d. in crypto-

logy,1 which is based on the following method for computing of the key sequence 
in a one-time pad type cipher: 

for f(bn,xn)e[A,B), 

0 îov f(Ьn,xn)ф[A,B), n I 0 

where bn is the secret, xn is random and the interval [A,B) satisfies g(B)—g(A) 

~ 2 * 

Part 2 of this paper is devoted to the study of a.d.f. g(t) of the sequence 
/(b n ,x n ) , where / is defined by the scalar product /(b, x) = b • x and K = 
[0, l ] s . For 5 = 1, 2,3 and t G [0,1] we will compute g(t) explicitly. 

In Part 3 we study a.d.f. g(t) of the sequence /(b^1), b n

2 \ . . . , b n

5 ~ 1 \ x n ) , 
n = 1,2,... , where / is defined by absolute value of the mixed product (i.e. the 
determinant) 

/ (6( 1 ) , . . . > b(- 1 ) ,x)-- |de t ( fc( 1 ) | . . . > 6(- 1 ) > x) | > 

where the vectors belong to the ball K = B(r) in W with center (0, . . . , 0) and 
radius r. We give g(t) explicitly, for s = 1,2,3. 

In Part 4 we describe a modification of one-time pad cipher, having private 
vector sequence b n and matrix sequence An. Contrary to the classical one-time 
pad, in this case, bn, An can be securely applied many times. In Part 5 some 
other modifications are also given. A cryptanalysis of such modifications will be 
discussed in a forthcoming paper. 

2. Sequence of scalar products of vectors in cubes 

Define 

fl,(t) = | { ( 6 , x ) 6 [ 0 , l ] 2 ' : 6 - x < t } | , t€[0,s]. 

For s = 1 we have 
gi(t) = t-tlogt, *S [0,1], 

^This paper has been presented during Journées Tchéco-Slovaco-Francaises, Saint-Etienne, 
April 4-5 , 2002; and T A T R A C R Y P T 2003, Bratislava, June 26-28, 2003. 

468 



ON DISTRIBUTION FUNCTIONS OF SCALAR AND MIXED PRODUCT 

with the density g[(t) = — logt. The gs(t) is an a.d.f. of the sequence 

s 

b • x„ = y^ b -x„ •, n = 1,2,... , 
n n / ^ n,i n,i ' ' ' ' 

ѓ = l 

where b n = (bnl,..., bn> J and xn = ( x n l , . . . , xns) are statistically indepen
dent and u.d. in [0, l ] 5 . Since the s-dimensional sequence 

\Pn,\Xn,\i ' ' ' '%,5Xn,5>) 

also has statistically independent coordinates, it has a.d.f. g(t), t = (£-_,..., ts), 
of the form 

g(t) = (t1-t1logt1)---(ts-tslogts) 

which gives 

9s(t) = (-iy J i.\ogt1...\ogt9dt1...dta. 
tl + '-'+ts<t 

0 < t i < l , . . . , 0 < t a < l 

In particular, for any decomposition Sx U S2 = { 1 , . . . , s}, the coordinates of the 
sequence 

I 7 J n,i П,І' / J n,i n,i J 
4 'c .Ç . ic<?n / kieSi ies2 

are also statistically independent. Thus 

9s(t)= I l-dg^dg^y) 
x+y<t 

and the Fig. 1 

s - j 
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implies that 
f t 

9Át) = { 

t — X 

Jdgó(x) J dgs_j(y) 
o o 
j t—x 
JdSj(x) J dg .fez) 
o o 
t-s+j 

for te[0,j], 

for t Є [j, s-j], 

/ ds-(_)+ / dff.(x) / dgs Ay) for te[s-j,s] 
O f - s + j 0 

for j < s — j . Its densities are 

' J^W,-/*-*)<-* for te[0,j], 
o 

£.(*) = { / ff5(-0$--,-(* - * ) d * for * € [j, 5-j], 

/ g'i(x)g's-j(t - x) dx for t Є [s-j, s]. 
t-a+j 

(1) 

Applying (1) we find: 

THEOREM l . Forte [0, l], 

g2(t) = f ((log*)2 - 3 log. + | - iTr2) , 

-_(*) = fi(-10og*)3 + f Oog*)2 + (--!- + fvr2) log* + S|- _ f „- - 9C(3)) , 

uj/iere £(5) &5 ̂ e classical Riemann's zeta function. 

Applying substitution xi = ^-, z = 1,2,...,_, for £ e (0,1), L. Habsieger 
(Bordeaux) found (personal communication) that 

gs(t) = (-l)sts J (logt + logx1)---(logt + logxJ)dx1---dxJ 

xi-\ \-xs<l 
0 < x i < l , . . . ,0<_: a<l 

= (-iyts^(s)(\ogty-i~9j, 

and then using substitution xx H + x- = 1 — yx • • • y-, he found 

/ log xг • • • log я̂ . d-ĉ  • • • dxj 

xi-\ \-xs<l 
0<x1<l,...,0<xs<l 

i r J 

=, _ -x, / n ( l o 8 y i + - - - + i o 6 y j - i + i o e ^ i 5
 JJ- J . -

[0,1]-
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He also observed that g. is a composition of integrals 

( - l ) m m! 
í{\ogx)mxn 

dx (n + l ) m + 1 ' 
o 

r °° 1 
J (log*)"V log(l - *) dx = (-l)^m! £ fc(fc + n + 1)m+1 
o k—1 

= a0 + a1C(2)H hamC(ra + l) for some a-GQ. 

Remark 1. The explicit form of gs(t), for t G [1,5], is open even for 5 = 2,3. 

3. Sequences of mixed products of vectors in balls 

Let K = B(r) be the 5-dimensional ball with center (0 , . . . , 0) and radius r . 
Consider the d.f. 

^ |{(b(-) , . . . , fc(- - - ) ,x)€B ' ( r ) : \det(bM,...,b(3-V,x)\<t}\ 
9.V,t)- | B ( r ) | s 

for t € [0, r3]. It can be seen that for 

A = i 

there exists d.f. gs(X) such that 

<?>,*) = 0S(A), AG [0,1]. 

The d.f. gs(X) can be found directly from the definition and also via the following 
application of Crofton's theorem (cf. [KM; pp. 25-27]): Let 

<7*M) = 
_ \{(b^\ . . . , fot*-1)) G B'-tjr) : |x| = r , X — fixed , | d e t ^ 1 ) , . . . , b(s-V,x)\ < t}\ 

IB(r)!-1 

where |x| is the norm of x. Then the d.f. gs(r,t) and g*(r, t) satisfy 

d r -W,«.) 5.(r,t)j d r | f l ( r ) | . (2) 

Using these two methods we find: 
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THEOREM 2. For A G [0,1] we have 

g2(\) = 1(1 + 2A2) a r c s i n A + | A v

/ l - A 2 - 2 A 2 , 

I 

$3(A) = 1 + | A /* a r C C ° S : r dx - |A 3 arccos A - ^ T ^ + | A 2 v 7 - ^ 2 , 

A 

where the final integral cannot be expressed in the form of a finite combination 
of elementary functions.2 

P r o o f . 
For g2(\): Put 

b = (b cos /?, b sin /?) = (b2, b2)' 

x = (x cos a, x sin a ) . 

Then 
|det(b,x)| = \bxsm(a-p)\. 

Putting x = r and a = 0 we have 

Thus 

which gives 

|de t (Ь,x) |<* <==* | ò 2 | < f . 

_ Қ b є В Д : | fc, |<t/г} | 
*2 Vil) - ҡr2 

9;{r,t) = ±^(±) + ±(±yi-(±)2. 

Solving the differential equation (2) we find the desired d.f. g2(A). 
For g3(A): The direct proof is divided into the following steps, 

(a) Let \u0\ = r2 (the Euclidean norm), then 

l"o • z\ = ҝ <t < 
t t 

and for the measure we get 

[ § 1TГÓ for Ţ2 > r. 

2Cf. [RG; p. 122]. 
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(b) Given vector u0, |u0| = r2 , and 0 G [0,1], define u = 0uo, then using (a) 
we get that the set {|z| < r : \u • z\ < t] has the measure 

|{|_|<r: K ^ K D h i f l ^ ' 0 ÌҠ{ U) 

l 7ГГ 

3 , t for ±<e, 
for X>9. 

(c) For vectors u0, \u0\ = r2 , and x0, |x0| = r, u0 • x0 = 0, define u = 6u0 for 
fixed 6 G [0,1] and x = 6xx0 with 0X G [0,1]. Every solution of the equation 
u = x x y such that |y| < r has the form 

u x x 

where a is any real number for which \y\ < r. Since 

U X X __!-___:-__. 
w" v~»i r ' 

and the minimum of (0r)/0l is attained at #-_ = 1, it can be seen that all 
solutions y, |y| < r, form a circle segment with height r - Or and thus 

| { | y | < r : u = x x y , u = 0uo , x = 0-xo , ^ G [ 0 , 1 ] } | 

= r2 (arccos(9 - 0\/l - 02 ) . 

(d) Since |{|x0| = r : u0 • x0 = 0, u0 — fixed}| = 27rr, we have 

|{(x,y) G-B(r) : x x y = 0uo , £i0 — fixed} | = 27rr3 (arccos 0 - 0\J\ - 02 \ 

and putting \{\u0\ = r2}\ = M we find that 

4 з 

rr 
/ 2тгr3 (arccos 0 - 0\Л - Ø2 ) dØ 

(|7rr3) 

i 

+ / 2 7 r r 3 ( a r ccos^ -^VTT^) (2 7rr2(^L) - \ ^ f ) d9 

Norming g3(r,t) = 1 for t = r3 we find M = |7rr3 which gives the desired 
g3(X). D 

Remark 2. Note that in a direct proof for g2(X) the fact can be used that if 
the sequence (bn,xn) is u.d. in B(r)2 and 

bn=(bnC0SPn>bnS™Pn), 
Xn=(XnCOSan^XnS^an), 
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then the coordinate sequence 

(K^n^n^n) 

has a.d.f. 
, N x2 u2 y v 

UK ' '*' } r2r22ir2n 

defined on [0,r] x [0,r] x [0,2TT] X [0,2TT]. 

Remark 3. For possible control of g3(r,t) via Crofton's theorem, we have 

1 

g;(r,t) = 1 + | A f *TCC°SX dx + |A3arccosA - \ / l - A2 + jA 2 >/ l - A2 , 

A 

where A = ^ . 

Remark 4. As mentioned, the explicit form of gs(X) for 5 > 3 is unknown. 
Also the form of d.f. is open if we replace 8-dimensional ball K = B(r) by the 
unit cube K = [0, l ] 5 . 

4. A modified one-time pad cipher 

(I) Two users X and Y agree on the 

• private vector sequence 

b n , n = l ,2, . . . , /V, 

in K C W , 

and 

• private sequence of regular (s + 1) x (5 + 1) real matrices 

A n , n = l ,2, . . . , /V, 

where IV is sufficiently large, 

and 

• continuous function 

f(b,x) for b,xeK, 

where the values f(b,x) form an interval [A0,B0]. 
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The users compute the d.f. 

and select an interval [A,B) C [.A0,i?0] such that 

g(B)-g(A) = \ . 

The interval [A, B) is also private. 
(II) If X wants to send a message written as 0-1 sequence (i.e. the plaintext 
digits) 

un, n = 1,2,..., IV, 
to F , he does the following steps: 

• X selects a random (or pseudo-random) sequence of vectors xn , n = 
1,2,..., IV, in the region K. 

• X computes enciphering sequence (the key digits) 

(1 toTf(bn,xn)e[A,B), 
n l o for f(bn,xn)£[A,B). ( ) 

• X enciphers un to the sequence (ciphertext digits) 

yn = un+ xn ( m o d 2), n = l ,2, . . . ,IV. 
• X mixes the sequence (xn, yn) of s +1-dimensional vectors by matrices 

A » t o 

zZ = K'(xn>yn)T> 
and then sends zn to y through public line. 

(III) Y decrypts the received ciphertext as follows: 
• Y decomposes zn applying formula 

(xn>yn) = Kl-zZ-
• Using xn he computes xn in the same manner as X. 
• He finds the plaintext digits 

un = yn
 + xn ( m o d 2) > n = 1,2,... ,IV. 

Remark 5. In the classical one-time pad cipher (i.e. Vernam cipher, cf. [MvV; 
Chap. 6]), two users X and Y have a common private 0-1 key sequence xn, 
n = 1,2,..., N, and X sends the 0-1 plaintext sequence un, n = 1,2,..., IV, 
to Y as cipertext sequence yn = un + xn (mod 2). If un is disclosed, and since 
yn through public line, the key sequence xn is also disclosed. Thus a secure 
application of xn is only one time. Now, assume that 

• An , n = l ,2, . . . ,IV, 
• un, n = 1,2,...,IV, 
• [A,B) 
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are disclosed. Then (since z n , n = 1,2,... , JV, through public line) xn and xn 

also are disclosed, and for secret b n , n = 1,2,... , we have only 

fanG/-1([A,B),xn) or bntf-
1{[A,B),xn), 

where / - 1 ( J , x) = {b G -flf: /(b,x) G i~}. Therefore b n can be used several 
times. The detail security analysis will be investigated in our forthcoming paper. 
For the quality of the key sequence xn we only note that any given 0-1 u.d. 
sequence xn can be constructed by (3) using suitable u.d. b n and x n . 

5. Other modifications 

*" = {o 

9(t) = 

(A) The cryptosystem of Part 4 can be modified taking a function f(b^\... 
. . . , b^ 5 - 1 ), x) and vector sequence (bn

l\ . . . , bn

3~l\xn) in K3, where 

• (bn

l\ . . . , b ^ - 1 ) ) is a common secret sequence for both users X and Y; 
• xn is a random choice sequence for X; 
• The enciphering sequence is computed by 

1 for f(bnV,...,bn°-»,xn)e[A,B), 

for f(bnV,...,bn°-V,xn)t[A,B), 

where g(B) — g(A) = | and 

l { (b( 1 ) , . . . ,b(- 1 ) ,x)G^: /(b( 1 ), . . . ,b(- 1 ),x)<^} | 
\K3\ 

Note that the function / involving determinant as in Part 3, can be used. 
(B) A further modification of one-time pad is as follows: 

• The users X and Y have a common secret sequence 

(bn
l\...,b^), -1 = 1,2..... 

Before the encryption of a message, users X and Y exchange through 
public line two sequences xn and yn computed as follows: 

• X selects x n
s _ 1 ) randomly; 

• Y selects xn
5) randomly; 

• X sends to Y through public line a sequence of vectors 

bi 

x„ = 

*i 
b{l\ 

Ł ( — 2 ) 
n,l 

r(»-D 
Ł n , l 

', 
6<Ч 

fe(--2) 
n,s 

r ( ä - ! ) 
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where /1 , /"2 , . . . , / s are 5-dimensional unit vectors and faW 

(b{i\ b(i\ b«V 
\un,Hun,2> ' ' ' >un,s) ' 

• Y sends to X through public line the sequence 

y„ = 

'1 
Ò(1) 

°n,l 

ds-2) 
°n,l 

т(-) 
xn,l 

6(1) 
n,s 

Ь(Г2) 

n,s 

т(-) 
• X and Y compute the common sequence of absolute values of scalar 

products 

«„ = k-^ )l = |y»-^-1,|; 
• X and Y compute the key sequence xn by 

f 1 foivne[A,B), 
Xn \ 0 f o r t ^ A - f l ) -

where g(jB) — g(A) = | and g(t) = gs(r,t) as in Part 3. 

It can be proved that this method is equivalent to the method of Part 4 with 
scalar product, without scrambling matrices and having s2-dimensional vectors. 
(C) In all of the above modifications, the intervals [A, B) can also be replaced 
by m non-overlapping intervals [Av B{), i = 1,2,..., m, satisfying 

111 

EíKąj-íM)--!. 
i=l 
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