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COMPUTATIONAL P R O O F O F SOME 
THEOREMS ON CLASS NUMBERS 

STANISLAV JAKUBEC 

(Communicated by Sylvia Pulmannová) 

ABSTRACT. In this paper, an explicit form is given for a prime q such that 
(h+,p) = i . 

Introduction 

NOTATION. 

B2i Bernoulli number, 

Q2 =
 2P ~l Fermat quotient, 

rec(/(X)) the reciprocal polynomial to the polynomial f(X), 

coeff(/, X, i) the coefficient at X1, 

resultant(/,#, x^) the resultant of the polynomials / , g 
according to the variable xi. 

In this paper we consider the divisibility of the class number /&+ of real 
cyclotomic fields Q(C^ + C^1) f°r primes q such that q = — 1 (mod p) and 
^-, --^ are primes. Let p be a prime which does not satisfy the Wieferich 
congruence 2P _ 1 = 1 (modp2) . We shall show an explicit form for prime q 
such that (h+p) = 1. The following two theorems will be proved: 

THEOREM 1. Let d1,d2,..., d^^. be odd numbers such that di ̂  ±1 (mod p) 

and d{ ^ ±d (mod p). Let q — — 1 (mod p) and d{ \ q-fl for i = 1, 2 , . . . , d^^.. 

Then (h+p) = 1 for all p except a finite number. 

Note. All primes p which are exceptions can be determined. There holds 

rjp«io4000. 

2000 M a t h e m a t i c s Sub j ec t C l a s s i f i c a t i o n : Primary 11R29. 
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THEOREM 2. Let r = 1 (mod 2) be a primitive root modulo p. Then the 
following holds: 

(i) If q = 2kpr^ - 1, then (h+,p) = 1 for all p > 127. 

(ii) If q — 2kp • 3^~ — 1 and 3 is a primitive root modulo p, 
then (/ij~,p) = 1 for all p except for a finite number. 

The proofs of these theorems are based on the following Proposition. 

PROPOSITION. Let 

i = l 

Le£ lbe polynomial F(X) have 2n different roots in Z/pZ. Let q = — 1 (mod p) 
and q±l have n odd divisors dx, d2,..., dn , d{^±l (mod p), d{^. ±d- (mod p). 
Then there holds (h+p) = 1. 

P r o o f . On the basis of results of [1] and [2] we get that if (h+p) were equal 
to p , then there would exist a root y £ Z of the polynomial F(X) modulo p 
such that 

T/, dxy, d2y, ..., dny 

would be roots of F(X) mod p. Hence F(X) would have 2(n ± 1) roots 
modulo p 

±y, ±dxy, . . . , ±dny, 

which is a contradiction. • 

Proofs 

The proofs of Theorem 1 and Theorem 2 are based on the following procedure 
for estimation of the number of roots of the polynomial F(X) in Z/pZ. Suppose 
that F(X) has p — 3 — 2m different roots modulo p. Consider the polynomial 

G(X) — reef ^ ' J . The number of roots of G(X) is greater or equal to the 

number of roots of F(X). To show that G(X) has at most p — 3 — 2m roots 
modulo p it is enough to prove that the following congruence does not hold: 

YP~ 1 _ 1 
'X2m~2+aiX

2m-4+- • •+am_1) - G(X) (mod p), 
X2m+A1X

2m~2 + ---+A 
(1) 
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It is easy to see that if (1) were true, then there would also hold 

j — ^ — — 5 - - - ^ r e c ( X 2 m ~ 2 + axX
2m'^ + • • • + am , ) 

vec(X2m + AtX
2m~2 + • • • + Am) v 1 m~1J 

= iec(G(X)) (modp ) . 
(2) 

Consider the congruence (1) modulo X4m+2 since Am + 2 < p - 1, hence 

_ 1 - ( ^ 2 m - 2 + ^ 2 m - 4 + - " + ^ - i ) X2m + AxX
2m~2 + ... + Ar 

= G(X) ( m o d X 4 m + 2 ) . 

By the decomposition of the function 

1 
X2m + AXX2™-2 + -.. + Am 

into Taylor series, the inverse element to X2m + AxX
2m~2 + h Am modulo 

jY"4m+2 W^JJ k e determined. 

Denote 

K*) = -To T------- 1 " ( X 2 m " 2 + a, X 2 m " 4 + • • • + am_-) 
v > X2m + AxX

2m~2 + • • • + Am
 v 1 m 1J 

(mod X 4 m + 2 ) . 

Now l(X) is a polynomial in X the coefficients of which are rational functions 
in 

-41? - 4 2 , . . . , A m , a l 5 a 2 , . . . am_1 . 

The following congruences hold 

top-3 - l ) ( 2 p - 2 - 1) B9Bn * 
-coeff(,m,.Y,.) . P

 (pJ)2r-3 ' 2
Qf3 <-°*l», 

-c„eff(.(.Y),A,2) , ( 2'"' (;_1„ (
)2:: ,r"B^-5 (mod.), 

« / . , , - , , . , > ( 2 . -»-4m _ ! ) ( _ . - ! - . . _ _) B 4 m + 2 B __4m 
- coeff (l(A-), A-, 4 m ) E ( . _ . _ 4 m ) 2 , _ . _ 4 m ^ ( m o d , ) . 

We shall apply an analogous procedure on the congruence (2). Denote 

L ^ - l + A^-.+AnXlm (l + ^X2 + - • - + « m - ^ 2 m - 2 ) (Pmod X^2) . 
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Now L(X) is a polynomial in X the coefficients of which are polynomials in 

A1,A2,... , .A m , a_ , a 2 , . . . ,am___ . 

The following congruences hold * 

coeff (F(X), X, 0) = 1 (mod p), 

c o e f f ( L ( X ) ^ ( m o d p ) , 

coeff(F(X),X ,4) = ( ^ " ^ f " 1 } ̂ - 5 ( m o d p ) , 

/o4m i \/o4m+l _ l\ R P 
coeff(L(X),X,4m) EE {2 ; ) [ \ _ " 4 m * - - i - 4 m ( _ } v v ; ' ' ! 4 m - 2 4 m Q2

 v F ; 

Denote 

//(i) =coe f f ( / (X) ,X ,2z -2 ) , 

LL(i)=coeS(L(X),X,2i) for . = 1,2,. . . , 2 m . 

Let 

tf(i) = tfi(^l1,A2,...,Am,a1,a2,...,am_1) 

Ai (rrt-s 2 i + 1 2 2 i + 1 - 1 7 , . ^ \ 

If the congruence (1) were true, then there would hold 

H(i) = J f f . ( A 1 , i 4 2 , . . . , A m , a 1 , a 2 , . . . , a m _ 1 ) = 0 for i = 1,2,.. . , 2 m . 

For a concrete m we construct this system by the program Maple V. 
Then we construct resultants 

R(i) = resultant(H(z),H(l) ,a_) for z = 2 , 3 , . . . , 2m . 

Further we construct the resultants of the resultants by a2 , e t c . Finally we 
construct the resultant R by the variable Am, Am 7- 0. Suppose that I? 7- 0. 

Conclusion: If the prime number p does not divide i?, then the system 
H(i) = 0 (mod p) does not have a solution, therefore the polynomial F(X) has 
at most p — 3 — 2m different roots modulo p. 

P r o o f of T h e o r e m 1 . We shall prove that the polynomial F(X) has 
at most p — 9 roots modulo p, m = 3. 

R(i) = resultant(H(i), H(l), a_) for i = 2, 3 , . . . , 6 . 

RR(i,j) = resultant(i?(i),It(j>), a2) . 

530 



COMPUTATIONAL PROOF OF SOME THEOREMS ON CLASS NUMBERS 

Denote 

W(l) = resultant(RR(2,5), RR(2,3), At) , 

W(2) = resu\t&nt(RR(3,4),RR(2,Z),A1) , 

W(3) = resu\tant(RR(2,4),RR(2,S),A1) , 

W(4) = resultant (iU2(4,6), RR(2,3),AX) . 

T(l) = resul tant(W( l ) , W(2), A2) , 

T(2) = resultant(W(3), W(4),A2) . 

Then there holds 

gcA(T(l),T(2))=KAfl. 

It follows that for all primes except for a finite number, the polynomial F(X) 
has at most p — 9 different roots. Let 

R = résultant ( — ^ , ~rkw ) ¥" 0 • 

All primes for which Theorem 1 does not hold are divisors of R. Also other 
non-zero resultants were found; their gcd (greatest common divisor) being ap
proximately 104000 and this number failed to be decomposed into primes. The 
program Maple V has not managed the computation of the resultants for m -= 4. 

• 

P r o o f of T h e o r e m 2 . Let q+1 be divisible by r~^~~m . If (h+p) = p , 
then there exists a root of a polynomial F(X) modulo p, denoted by - , such 
that 

- 3 1 1 1 2 1 - - -
— ,—Г ,—Г , . . . , — Г 2 

У У У У 

•771 

are roots of F(X). Hence reef cj) n a s r o o t s 

У,yr l,yr 2 , . . . , H r " 

It follows that we can apply the above described procedure, where 

771 

X2m + AxX
2m~2 + • • • + Am = H(X2 - r2iy2) . 

2 = 1 

Let R(i) = resu l tan t(H( i) ,H( l ) ,a 1 ) for i = 2, 3 , . . . , 2m. 
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Now we shall construct resultants K(i), KK(i), KKK(i) by the following 
commands (in Maple V code): 

K(i) := R(i), KK(i) := R(i), KKK(i) := R(i) for i = 2, 3 , . . . , 2m. 

for j from 2 by 1 to m — 1 do 
for i from j + 1 by 1 to m + 1 do K(i) := resultant(K(i), K(j), o^) od;od: 

for j from 2 by 1 to m — 1 do 
for i from j + 2 by 1 to m + 2 do KA"(i) := resultant(KK(i), A^K(j + 1), a ) od;od: 

for j from 2 by 1 to m — 1 do 

for i from j + 3 by 1 to m + 3 do KKK(i) : = resultant(KKK(i), A'K(j + 2), o j od;od: 

Finally we get three integral polynomials K(m), KK(m -f-1), KKK(m + 2) 
in H. In all cases we have computed that there holds 

gcd(K(m),KK(m + 1)) = Kxy
n' , gcd(K(m):KKK(m + 2)) = A^2H"2 , 

gcd(KK(m + 1), KKK(m + 2)) = Af3H
n3 , 

where nx , n2 , ri3, A^, J\"2, A^ are natural numbers. 
Therefore the polynomial PXA") has at most p — 3 — 2m roots modulo p for 

all p except for a finite number. 
Now put 

V 2/ni 2/ni / 
(K(m) KKK(m + 2) \ /n 

B = resultant v ) , , y) ^ 0 . 

The primes for which the limitation imposed on the number of roots does not 
hold are divisors of the number 

C = gcd(A,B). 

Now C is a polynomial in r the irreducible factors of which are the following 

r 2 ± r + l , r4 + l, r8 + l, r 4 - r 2 + l, r 4 ± r 3 + r 2 ± r + l , r 6 ± r 3 + l, r 8 - r 6 + r 4 - r 2 + l . 

It is clear that if p divides some from these polynomials (in the value r ) , then 
r is not primitive root modulo p. • 

The strongest possible generalization of Theorem 2 which can be proved using 
this method with respect to the inequality Am + 2 < p — 1 is the following: 

THEOREM. Let r = 1 (mod 2) be a primitive root modulo p. Then the follow
ing holds: 

If q — 2kpA^ — 1. then (h+p) = 1 for all p except for a finite number. 

Finally, we mention the system 

n^) = Hi{AnA2T'-iAmiana2iT'-iam-l) = °> for 2 = 1, 2. . . . , 2/7? , 

for m = 3 from Theorem 1 and m = 3 from Theorem 2. 
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