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(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. According to a result of Dvurecenskij, each pseudo MV-algebra A 
can be represented as an interval of a unital lattice ordered group G. We denote 
by Conv A and Conv G the system of all sequential convergences on A and on G, 
respectively Both Conv .A and C o n v G are partially ordered in a natural way. 
We prove tha t Conv A is isomorphic to a subsystem Conv6 G of Conv G. The 
system Conv A is isomorphic to Conv G if each orthogonal subset of A is finite. 

1. Introduc t ion 

The notion of pseudo MF-algebra (denoted also as generalized or noncom-
mutative Mf-algebra) has been introduced independently by G e o r g e s c u 
and I o r g u 1 e s c u [7], [8] and by R a c h u n e k [13]. 

D v u r e c e n s k i j [4] proved that each pseudo MF-algebra A can be con
structed by means of a unital lattice ordered group (G, u); analogously as in the 
theory of MF-algebras (cf. C i g n o l i , D ' O t t a v i a n o and M u n d i c i [2]) 
we write A = T(G) u). 

Sequential convergences on MV-algebras were investigated by the author [11]. 
The definition is analogous to that for lattice ordered groups (cf. H a r m i n c 
[9] and the author [10]). A similar definition can be applied for pseudo MV-al
gebras. 
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Let A and (G, u) be as above. We denote by Conv .4 and ConvG the system 
of all sequential convergences on .4 or on G, respectively. (For the definitions, 
cf. Section 2 below.) Both the systems Conv 4 and Conv G are partially ordered 
by the set-theoretical inclusion; they are meet-semilattices. 

We define a subsystem Conv6G of ConvG; the elements of Conv^G are 
called bounded sequential convergences on G. 

We show that there exists an isomorphism of Conv A onto the partially 
ordered system Conv 6G. This generalizes a result from [11] concerning A/F-al
gebras. 

Let T be the class of all lattice ordered groups H such that each orthogonal 
subset of H is finite. Further, let Tx be the class of all pseudo Af V-algebras 
Ax satisfying the analogous condition. The structure of lattice ordered groups 
belonging to T was described by C o n r a d [3]. If A and (G,u) are as above, 
then G belongs to T if and only if A belongs to Tx. 

We prove that if A ~ Tx, then 

(i) Conv .4 is isomorphic to ConvG; 
(ii) Conv A is a finite Boolean algebra. 

We recall that sequential convergences in D-posets were systematically 
applied by F r i c [6]. The notion of D-poset is due to C h o v a n e c and 
K o p k a [1]; it is equivalent to the notion of effect algebra ( F o u l i s and 
B e n n e t [5]). Each AFV-algebra is a D-poset. 

2. Preliminaries 

For the sake of completeness, we recall the definition of a pseudo MV-algebra. 

DEFINITION 2 . 1 . Let A be a nonemtpy set. Let A = (A\ 0 , ~, ~, 0,1) be an 
algebraic structure of type (2,1 ,1 , 0, 0). For x,y £ A we put 

2/0 x = (x~ 0 y~)~ . 

A is a pseudo MV-algebra if the following axioms (A1)-(A8) are satisfied for 
each x,H, z £ A: 

(Al) x 0 (y 0 z) = (x 0 y) 0 z; 
(A2) x®0 = 0®x = x; 
(A3) X 0 1 = 1 0 X = 1; 

(A4) 1~ =0; 1~ =0; 
(A5) (x~®y-)~ = ( x ~ 0 H ~ ) - ; 

(A6) x® (x~ Qy) = H0 (y~ Ox) = (x®y~) ®y = (y Q x~) ®x; 
(A7) x 0 (x~ 0 y) = (x 0 y~) 0 y; 
(A8) (x~)~ =x. 
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For a pseudo AfV-algebra A and x,H G A we set x _ y if x~ 0 y -= 1. 
Then (A; _ ) is a lattice with the least element 0 and the greatest element 1; 
we denote (A; _ ) = 1(A). 

If the operation 0 in A is commutative, then A is an MV-algebra; in such 
a case x~ = x~ for each x G A. 

Let G be a lattice ordered group. The group operation in G is denoted 
additively though it is not assumed to be commutative. Let u G G + such that 
for each g G G there exists a positive integer n with g _ nu. The element u 
is a strong unit of G; we say that (G,u) is a unital lattice ordered group. For 
x,y e G we put 

x 0 y = (x + y) Au, 

X~ = U — X , X~ = —X + W, 1 = 1A . 

Let A be the interval [0, u] of G. Then (A; 0 , ~, ~, 0,1) is a pseudo MV-algebra; 
it is denoted by F(G,u). 

THEOREM 2.2. (Cf. [4].) For each pseudo MV-algebra A there exists a unital 
lattice ordered group (G, it) such that A — T(G, u). 

Let N be the set of all positive integers. An element of AN will be denoted 
by (xn)n ( E N or by (x n ) ; it is a sequence in A. If x G A and xn — x for each 
n G N, then we write (xn) = constx. Let K C AN x A. A relation of the form 
((x n ) ,x) G K will be denoted by writing xn -^K x. 

DEFINITION 2.3. A subset K of 4 N x j4 is a sequential convergence in A if 
the following conditions are satisfied: 

(i) If xn -*K x and if (yn) is a subsequence of (x n ) , then yn —>K x. 
(ii) If (xn) G AN, x G A and if for each subsequence (yn) of (xn) there is a 

subsequence (zn) of (yn) such that zn —tK x , then xn —>K x. 
(iii) If (xn) e AN, x € A, (xn) = constx , then x n ->K x. 
(iv) If x n ->K x and x n - > ^ y, then x — y. 
(v) If x n - > K x and yn - > ^ y, then x n 0 yn -*K x 0 y, x n - > K x " and 

(vi) If x n _ yn _ 2n is valid for each n G N and if x n —rK x , zn -^K x , 
then i/n -+K x . 

We denote by Conv A the system of all sequential convergences in A. The 
system Conv A is partially ordered by the set-theoretical inclusion. 

If, in particular, A is an MV-algebra, then in view of [11; 1.1, 1.3], the 
definition of sequential convergence in A as defined in [11] coincides with that 
given in 2.3. 
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Let K(0) be the set of all ((xn),x) e AN x A such that there is m e N with 
xn = x for each n = m. It is easy to verify that K(0) is the least element of 
Conv .4. 

Let I be a nonempty set and for each i e I let K{ e Conv A. Then in view 
of 2.3, f| K{ e Conv .4. This yields: 

iei 

LEMMA 2.4. Conv .4 is a meet-semilattice. If K e Conv A, then the interval 
[K(0),K] of Conv.4 is a complete lattice. 

Now let G be a lattice ordered group and K C GN x G. Similarly as in the 
case of pseudo MF-algebras, we write xn ->K x if ((xn),x) e K. 

DEFINITION 2.5. (Cf. [11].) A subset K of GN x G is a sequential convergence 
in G if the conditions (i)-(iv), (vi) from 2.3 are satisfied and if, moreover, the 
following conditions are valid: 

(v(l)) If xn ->K x and yn ->K y, then xnAyn ->K xAy and xnVyn ->K xVy; 
(v(2)) if xn ->K x and yn ->K y, then xn + yn ->K x + y and -xn -> -x. 

The system of all sequential convergences in G will be denoted by Conv G; 
it is partially ordered by the set-theoretical inclusion. Let K(0) be defined anal
ogously as in the case of Conv A. Similarly as in 2.4, we have: 

LEMMA 2.6. ConvG is a meet-semilattice. If K e ConvG. then the interval 
[K(0),K] of ConvG is a complete lattice. 

3. Auxiliary results 

Assume that A is a pseudo MV-algebra and that, under the notation as 
above, the relation A = T(G,u) is valid. 

LEMMA 3 .1 . Let x,y e A, x ^ y. Then y - x = (x ®y~)~ • 

P r o o f . We have 

x © y~ = (x + (—y + u)) A u = ((x — y) + u) A u . 

Since x ^ H, we get x—y ^ 0 and hence (x—y)+u ^ u; thus x(By~ = (x—y)+u. 
Then 

(x 0 2/~)~ =u — (x® y~) =u-(x-y + u)=y-x. 

D 

Analogously we verify: 

LEMMA 3.2. Let x,y e A, x ^ y. Then -x + y = (y~ 0 x)~ . 
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LEMMA 3.3. Let x,y G A. Then x V y = y 0 (x~ 0 y)~ . 

P r o o f . We have (x~ 0 y)~ = —(x~ ®y) + u and 

x~ 0 y = ((u — x) + y) A U , 

- ( ~ ~ 0 y) = ( - y + x - u) V ( - i t ) . 

Thus we get 

-(x~ ®y) + u = (-y + x)V0, 

y 0 (x~ 0 j / )~ = (y + ( - y + x)VO)Au = (xWy)Au = x\/y. 

D 

From 2.3 and 3.3 we conclude: 

LEMMA 3.4. Let K G Conv.4. xn ->K x, yn ->K y. Then xnVyn ->K xWy. 

LEMMA 3.5. Let x,y G A. Then x Ay = (x~ Vy~")~. 

P r o o f . We have 

(x~ V y~)~ = — (x~ V y~) + u = —((u — x) V (u — y)) + u 

= ((x — u) A (y — u)) +u = x Ay. 

• 
Now, 2.3, 3.4 and 3.5 yield: 

LEMMA 3.6. Let K e Conv.4 . xn -¥K x, yn -*K y. Then xnAyn ->K xAy. 

LEMMA 3.7. Let K e Conv.4. xn -+K x, yn ->K y, xn = yn for each n G N. 
Then x _ y. 

P r o o f . For each n G N we have xn = xn A yn. Hence in view of 3.6, 
xn A yn ->K xAy. Thus according to 2.3 (iv), x = xAy. • 

From 3.7, 3.1 and 3.2 we obtain: 

COROLLARY 3.7.1. Let K,x,y,(xn) and (yn) be as in 3.7. Then 

yn-
xn->Ky~x> -xn + yn-+K-x + y-

A sequence (xn) in G is bounded if there is m G N such that —mu _ xn _ mu 
for each n G N. 

Let K G Conv G. We denote by Kb the system of all bounded sequences 
belonging to K. In view of the Definition 2.5 we obtain: 

LEMMA 3.8. For each K G ConvG, Kb is an element of ConvG. 

We put 
Conv6G = {Kb : Ke ConvG}. 

505 



JAN JAKUBIK 

4. T h e sys tems Conv0 G and Conv0 A 

For a lattice ordered group G and K G Conv G we put 

K° = { ( x j G G N : x n ^ 0 and x n = 0 for each n G N} . 

Further, we set 
Conv0 G = {if0 : K e Conv G} . 

The system Conv0 G is partially ordered by the set-theoretical inclusion. 
We denote 

Conv* G = {K° : K G Conv6 G} . 

For the assertion (i) of the following lemma, cf. [9]; the assertion (ii) is easy 
to verify. (Cf. also [11], where the commutativity of G was assumed.) 

L E M M A 4 . 1 . 

(i) Put PQ(K) = K° for each K G ConvG. Then (p0 is an isomorphism of 
Conv G onto Conv0 G. 

(ii) Let K G Conv G. Then K G Conv6 G if and only if K° G Conv* G. 

Let A be a pseudo MV-algebra and K G Conv A. Analogously as in the 
case of lattice ordered groups we put 

K° = {(xn) e AN : xn-+K0), 

Conv0 A = {K° : K € Conv .4} . 

Conv0 A is partially ordered under the set-theoretical inclusion. Let ((xn), x) 6 
A H x i . For each n G N we denote pn = xn V x, qn = xn A x, tn = pn - qn, 
t'n = -1n+Pn-

LEMMA 4.2. Let K € Conv^l. Then, under the notation as above, the follow
ing conditions are equivalent: 

(i) xn~*Kx; 
(ii) (tn)EK° and(t'n)GK°. 

P r o o f . 
a) Let (i) be valid. Since const x G K we obtain 

Pn^KXi ^n-^KX' 

Since pn ^ qn for each n G N, in view of 3.7.1 we get tn -^K 0 and t'n -> K 0 
Thus (ii) holds. 

b) Assume that (ii) is satisfied. Let n G N. We have 

Xn = (Xn-<ln) + ((ln-X)+X-
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From the definition of pn and qn we obtain 

Xn~<ln=Pn-X' 

Hence 

Xn = (Pn ~X)+ (~(X - Qn) + X) ' 

Since 0 = x - qn ^ x, we infer 

x-qne A, -(x-qn)+xeA. 

Therefore 
Xn = (Pn ~X)® H X " O + X) ' W 

Further, 0 ^ pn - x ^ pn - qn = tn, thus (pn - x) ->K 0 . Also, 0 ^ x - qn ^ 
pn- qn = tn, whence (a; - gn) - r ^ 0 . From this and from 3.7.1 we couclude 

{-(x~(ln)+x) ~>KX-

Hence (1) yields xn -*K x. • 

Let K and K' belong to Conv A. Then clearly 

KCK' ^ K ° C (K'f . (2) 

Further, from 4.2 we obtain that the implication in (2) can be reversed. Hence 
we have: 

COROLLARY 4 .3 . For each K e Conv A put (f^K) = K°. Then cp1 is an 
isomorphism of Conv A onto Conv0 A. 

We remark that the arguments in the proofs of [11; 3.1-3.14] dealing with 
MV-algebras remain valid for pseudo MTV-algebras. Hence we have: 

LEMMA 4 .4 . The partially ordered systems Conv0 A and Conv0 G are isomor
phic. 

THEOREM 4 .5. Let A be a pseudo MV-algebra with A = T(G,u), where 
(G, u) is a unital lattice ordered group. Then the partially ordered systems 
Conv A and Conv6 G are isomorphic. 

P r o o f . This is a consequence of 4.1, 4.3 and 4.4. • 

Theorem 4.5 generalizes [11; Theorem 3.14] concerning MV-algebras. 
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5. On pseudo MV-algebras belonging to the class Tx 

In the present section we apply some results of [12]. We remark that the 
notation in [12] is different from that used above. Namely, let G be a lattice 
ordered group, K E Conv G and let K° be as in Section 4. The symbol Conv G 
in [12] means, in fact, the system Conv0 G. 

Again, we assume that A is a pseudo MV-algebra with A = r ( G , u), where 
(G,u) is a unital lattice ordered group. Let T and Tx be as in Section 1. 

LEMMA 5.1. A belongs to Tx if and only if G belongs to T. 

P r o o f . If G belongs to T', then we obviously have A E Tx. Conversely, 
suppose that A belongs to Tx and let {#J ; G / be an orthogonal subset of G 
such that gi > 0 for each i E I. Put a{ — u A gi for i E I. Then { a J i G / is an 
orthogonal subset of A and ai > 0 for each i e I. Hence I is finite and thus 
GeT. • 

Let X be a convex linearly ordered subgroup of G and let K(X) be a 
sequential convergence on X. If xn ->K(X) >̂ ^ e n ^ r o m - ^ ' Lemma 2.3] it 
follows that there exists x0 E X+ having the property that — x0 — xn — x0 for 
each n E N. This yields that the sequence (xn) is bounded in G. 

Now assume that the pseudo MF-algebra A belongs to Tx. Hence in view-
of 5.1, G belongs to T. Let K E ConvG. 

Take any (gn) E K°. In view of [12] there are convex linearly ordered sub
groups AT 1 , . . . ,X m of G, sequential convergences Ki on Xi, sequences (xn) 
with xn ->K. 0 (i = 1, 2 , . . . , m) , and k E N, such that for each n E N, n ^ k, 
the relation 

*» = *!. + ••• + *» a) 
is valid. 

Since for each i E {1, 2 , . . . , m} the sequence (xn) is bounded in (7, (1) yields 
that the sequence (gn) is bounded in G. Thus each sequence belonging to K° 
is bounded in G. From this we conclude that each sequence belonging to K is 
bounded in G. We obtain 

C o n v G = C o n v 6 G . (2) 

Hence from 4.5 we get: 

THEOREM 5.2. Let A be a pseudo MV-algebra belonging to Tx. Then the 
partially ordered systems Conv A and Conv G are isomorphic. 

THEOREM 5.3. Let A be a pseudo MV-algebra belonging to Tx. Then Conv .4 
is a finite Boolean algebra. 

P r o o f . In view of 5.1, GeT (where G is as above). According to [12; The
orem 2.18], Conv0G is a finite Boolean algebra. In view of 4.1, Conv0 G ~ conv G. 
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Then (2) yields Conv0 G ~ conv6G. Hence according to 4.5, COUN A is a fi
nite Boolean algebra. Then it follows from 4.1 and 4.5 that Conv .4 is a finite 
Boolean algebra as well. • 

For the case of MV-algebras we have the following stronger result. 

THEOREM 5.4. Let A be an MV-algebra. Then the following conditions are 
equivalent: 

(i) Conv^l is a generalized Boolean algebra. 
(ii) Conv^4 is a Boolean algebra. 

(iii) Conv^l is a finite Boolean algebra. 
(iv) AeTx. 

P r o o f . According to 5.1, A ^ Tx <=>> G G T. Now it suffices to apply 
[12; Theorem (A)], Lemma 4.1 and Theorem 4.5. • 
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