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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR 
OF A NONLINEAR SECOND ORDER 

NEUTRAL DIFFERENTIAL EQUATION 

R. N. RATH* — N. MISRA** — L. N. PADHY*** 

(Communicated by Michal Feckan) 

A B S T R A C T . In this paper, necessary and sufficient conditions for the oscilla
tion and asymptotic behaviour of solutions of the second order neutra l delay 
differential equation (NDDE) 

[r(t)(y(t) - p(t)y(t - r))']' + q(t)G(y(h(t))) = 0 
are obtained, where o, h G C([0, oo), R) such tha t q(t) > 0, r G C(1) ([0, oo), (0, oo)), 
p G C([0,oo),R), G G C(R,R) and r G R + . Since the results of th is paper hold 
when r(t) = 1 and G(u) = u, therefore it extends, generalizes and improves some 
known results. 

©2007 
Mathematical Insti tute 

Slovak Academy of Sciences 

1. Introduction 

In this paper we find sufficient conditions for every solution of 

[r(t)(y(t) - p(t)y(t - r))'}' + q(t)G(y(h(t))) = 0 (E) 

and necessary conditions for every solution of 

[r(t) (y(t) - p(t)y(t - r))'}' + q(t)G(y(h(t))) = f(t) (F) 

to oscillate or tend to zero as t —» oo, where q G C([0, oo),M+), f,h G 
C([0,oo),R), r G C1([0,oo),(0,oo)), p G C([0,oo),R), G G C(R,R), h(t) < t, 
lim h(t) = oo, r G M+. We need the following assumptions for our use in the 

t—>oo 

sequel: 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34C10, 34C15, 34K40. 
K e y w o r d s : neutral differential equation, oscillation, non-oscillation. 
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(Hi) There exists F £ C& ([0, oo),R) such that F'(t) = f(t) and lim F(t) = 0. 
V t—• OO 

(H2) G is non-decreasing, uG(u) > 0 for u ^ 0. 
oo 

(H3) fq(t) At = 00. 
0 
00 

(H4) / W) = °°-
0 
00 

(H5) / ^ y < 00. dt 

0 

(He) For every sequence (ai) C (0,oo), ai —> 00 as i —> 00 and for every /3 > 0 
such that the intervals (O~; — /3,O^ + /?), i -= 1,2,..., are non overlapping, 

o-i+/3 

E / 9(*)dí = 

t 
(HT) / ; f e ( / < z ( s ) d s ) d t - = o o . 

0 v 0 7 

0 0 

(H8) j f / (*)d t < o o . 
0 

(H9) Suppose that G is Lipschitzian in every interval [a,b], 0 < a < b. 

R e m a r k 1. 

(i) Since r(t) > 0, therefore one and only one of (H4) and (H5) holds. 

(ii) (H6) implies (H3). 

(iii) If (H5) holds, then (H7) ==> (H3). 

(iv) (HO <t=* (Us). 

(v) If (H4) holds, then (H3) ==> (H7). 

We assume that p(t) lies in one of the following ranges in this work. 

(Ai) 0 < p ( i ) < p i < l , 
(A2) - 1 < -p2 < p(t) < 0, 
(A3) -PA < p(t) < - p s < - 1 , 
(A4) 0 < p(t) < PA, 

(A5) 1 < p(t) < PA, 

(A6) p 4 > p(t) > p 3 > 1, 
(A7) - p 4 < p ( t ) < 0 , 

where pi (i = 1 , . . . , 4) is a positive real number. 
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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF DIFFERENTIAL EQUATIONS 

In recent years, oscillatory and asymptotic behaviour of solutions of NDDEs 

(y(t) - P(t)y(t - T))' + q(t)G(y(t - a)) = f(t) (1) 

and 

(y(t) - p(t)y(t - r ) ) ( n ) + q(t)G(y(t - a)) = f(t) (2) 

are studied by many authors (see [3], [8]-[14]) for both n odd and even. But most 
of the results are concerned with either (Ai) or (A2) as ranges of the coefficient 
function p(t). Second order NDDEs have applications in problems dealing with 
vibrating masses attached to an elastic and also appear as the Euler equation, in 
some vibrational problems (see D r i v e r [4] and H a l e [7]). The second order 
and in general even order neutral equations are not as often studied in detail as 
the odd order NDDEs (1) and (2). It is well known that behaviour of solutions 
of odd order and even order NDDEs are quite different at times. In [1], [2], [5], 
[8], [9] the authors have studied the behaviour of solutions of NDDEs of second 
order. It seems that [8] is the only result about the oscillatory behaviour of 
solutions of second order neutral equation (E), available in the literature. In [8] 
the authors consider 

(r(t)(y(t)-p(t)y(t-T))'y + q(t)G(y(h(t)))=0 (3) 

and prove the following theorem. 

THEOREM 1.1. Assume that —1 < p(t) < 0 and r(t) > 0. Further, suppose that 
(H2) and (H4) hold, and q(t) > 0 for t > to, and 

^ ^ > 7 > 0 for x ^ 0, (4) 

t - r <h(t) <t, ti(t)>0, (5) 
oo 

q(s)(l+p(h(s)))ds = oo. (6) 

Then every solution of (3) oscillates. 

Again, if we put f(t) = 0 in [2, Theorem 1], we get the following result. 

THEOREM 1.2. 7/(H2) . (H5). and (H7) hold, then every solution of 

(r(t)x'(t))' + q(t)G(x(h(t)))=0 (7) 

is either oscillatory or tends to zero as t —> 00. 
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Finally we note another result ([9, Theorem 2.8] for r(t) —t — r and f(t) = 0) 
which is: 

THEOREM 1.3. Suppose that (H3) holds. Further if 

p(t)p(t - T) > 0 and - 1 < -p2 < p(t) <pi<l (8) 

where p\ and P2 are positive constants, 

\u\ > 5 = > \G(u)\ > 7] where S > 0 and r, > 0 . (9) 

Then every solution of 

(y(t) - P(t)y(t - T))" + q(t)G{y(t -a))=0 (10) 

is oscillatory or tends to zero as t —> oo. 

In [8] and [9] only one range of p(t) is considered and the results there hold 
for G satisfying either (4) or (9). In this paper an attempt is made to extend 
p(t) to all possible ranges. Further we do not have any restriction on G. Also 
this paper generalises the results of [2] that is from delay differential equation 
to neutral delay differential equation. In the literature the conditions assumed 
differ from author to author due to the different technique they use and different 
equation they consider. Even the conditions assumed by different authors for 
similar type of equations are often not comparable. Because of the simplicity of 
the hypothesis assumed in this paper we ask for a comparison of our result with 
some of the work of [2] and [9]. While considering p(t) in a particular range we 
tried to give two results one with (H4) and another with (H5). The results with 
(H4) allow us to take r(t) = 1 and thus it has the scope to generalize some of the 
existing results available in the literature. Last but not least, our Theorem 2.11 
answers the problem (10.10.2) of [6, p . 287]. 

Let Ty > 0 and T0 = mm{h(Ty),Ty - r}. Suppose 0 e C([T0,Ty],R). By a 
solution of (E) we mean a real valued continuous function y G C^ ([Ty, 00), M) 
such that y(t) = </>(t) for T0 < t < Ty and for t > Ty, (y(t) - p(t)y(t - r ) ) is 

differentiable, r(t)(y(t) — p(t)y(t — T ) ) is again differentiable and then (E) is 
satisfied. Such a solution is said to be oscillatory if it has arbitrarily large zeros, 
otherwise it is called non-oscillatory. 
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In the sequel, for convenience, when we write a functional equation or inequa
tion with out specifying its domain of validity, we assume that it holds for all 
sufficiently large t. 

2. Sufficient conditions 

In this section we give the sufficient conditions for every solution of (E) to be 
oscillatory or tending to zero. 

We need the following Lemma ([6, Lemma 1.5.2]) for our work: 

LEMMA 2 .1 . Let F*. G*, p: [0,co) —> R be such that 

F*(t) = G*(t) - p(t)G*(t - c), t > c, 

where c > 0. Suppose that p(t) is in one of the ranges given by (Ai) — (AQ). 
If G*(t) >0fort>0, liminf G*(t) = 0 and lim F*(t) = L e R exists, then 

£—>oo £—>-oo 

L = 0. 

N o t e . If G*(t) < 0, then liminf is replaced by lim sup in the above result. 

N o t e . We assume that (H2) holds in all the results to follow in this work though 
explicitly we do not mention it. 

LEMMA 2.2. Suppose thatp(t) satisfies (Ai) or (A2). I/(H3) and (H4) hold and 
y(t) is a non-osdilatory solution of (E) for t >Ty, then setting 

z(t) = y(t) - p(t)y(t - T) (11) 

for large t > to, we conclude that lim z(t) = 0. 
t — • O O 

P r o o f . Let y(t) be a positive solution of (E) for t >Ty. Then setting 

r(t)z'(t) = w(t) (12) 

for t > t\ > to + r we obtain 

w'(t) = -q(t)G(y(h(t))) < 0. (13) 
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Then lim w(t) = I where — oo < / < oo. Consider the first case when I is 
t—>-oo 

finite. We claim that liminf y(t) = 0. Otherwise y(t) > m > 0 for t > £3 > t2, 
t—>oo 

00 

which implies J q(s)G(y(h(s))) ds = 00, by (H3). But integrating (13) from t3 
t3 

00 

to t and then taking limit as t —> 00 we obtain J q(s)G(y(h(s))) ds < 00, a 
t3 

contradiction. Thus our claim holds. From (13) we have w(t) > 0 or w(t) < 0. 
Again from (12) and the fact that r(t) > 0 it follows that z'(t) > 0 or z'(t) < 0. 
Consequently z(t) > 0 or z(t) < 0. Hence —00 < lim z(t) < 00. If —00 < 

t—>-oo 

lim z(t) < 0, then y(t) is bounded, which implies lim z(t) ^ —00. Hence 
t—»oo t—»oo 

lim z(t) = 0 by Lemma 2.1. Again if lim z(t) = 00, then in this case z'(t) > 0 
£—•00 t—• oo 

and liminf (y(*)/z(t)) = 0. Now lim ( f g - ^ g f f " ^ ) = 1 where p*(i) = 
p(t)z(t — r)/z(t) and p*(t) lies in the same range as p(7;). Hence we get a 
contradiction due to Lemma 2.1. Thus lim z(t) is finite and equal to 0 by 

t—»oo 

Lemma 2.L Next consider the second case / = — oo. This implies w < 0 and 
z' < 0 and consequently — oo < lim z(t) < oo. If lim z(t) = —oo, then p(t) can 

£—•00 £—>oo 

only be in (Ai), but not in (A2). In that case z(t) < 0 and consequently y(t) 
is bounded, a contradiction. Hence lim z(t) is finite. But next we prove that 

t—>-oo 

this also is not possible. We observe that w(t) < 0 and is decreasing. Hence for 
t > t2 it follows that w(t) < w(t2). From this, we find £3 such that t > £3 > t2 

implies z'(t) < w(t2)/r(t). Integrating from £3 to t then taking limit t —> 00, we 
obtain z(t) —•> —00 by (H4), a contradiction. The case for y(t) < 0 is similar. 
Thus the lemma is proved. • 

Remark 2. We don't need (H4) in the proof of the above lemma for the first 
case that is when / is finite. 

LEMMA 2 .3 . Suppose thatp(t) satisfies (Ai) or (A2). J/(H5) and (H7) hold and 
y(t) be a non-oscillatory solution of (E) for t>Ty, then setting z(t) as in (11) 
we conclude that lim z(t) = 0. 

£—•00 

P r o o f . Using Remarks l(iii) we observe that (H3) holds. Next we proceed as 
in Lemma 2.2 and see that the proof for the first case when / is finite is similar. 
In the second case also that is when / = — 00, we proceed on similar lines and 
prove that lim z(t) = a is finite. Next we claim liminf y(t) = 0. Otherwise, 

£—•00 £—>-oo 
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y(t) > m > 0 for t > £4 > £3. Hence from (12) we obtain 

t t 

w(t)-w(U) = - Jq(s)G(y(h(s)))ds<-G(m) Iq(s)ds. 

£4 £4 

This further implies 

t 

r(t)z'(t) - w(tA) < -G(m) J q(s) ds . 

U 

t 
Then we get z'(t) < -^$- J q(s) ds for t > t5 > t4. 

t± 
Integrating this inequality between t4 and t we obtain 

t , U V 

z(t) < z(U) - G(m) f-4^1 f «(*) ds\du. 

£4 ^ t4 ' 

Then taking limit as t —> 00, and using (H7) we see that z(t) tends to — 00, a 
contradiction. Hence our claim holds. Then Lemma 2.1 yields lim z(t) = a = 0. 

t—+00 

Thus the lemma is proved. D 

LEMMA 2.4. Suppose that p(t) satisfies (A5). / / (H3) and (H4) hold and y(t) 
be a non-oscillatory solution of (E) for t >Ty, then setting z(t) as in (11), we 
conclude that lim z(t) = 0 or lim z(t) = —co. 

t—>oo £—•oo 

P r o o f . We proceed as in Lemma 2.2 for the first case, that is when lim w(t) is 
t— >oo 

finite, to prove liminf y(t) = 0 and lim z(t) = a where —00 < a < 00. If a > 0, 
t—•oo £—>-oo 

then by (A5) it follows that liminf y(t) > 0, a contradiction. Again if a < 0 but 
t—>oo 

finite, then by Lemma 2.1 we get a = 0, a contradiction. Hence lim z(t) = —00 
£—•oo 

or 0. 
Next consider the second case, i.e lim w(t) = —00. In this case z'(t) < 0 and 

£ — • 0 0 

lim z(t) = a where a is finite or —00. Suppose that a is not —00. Then we see 
£—>oo 

that (H7) holds by Remark l(v). Using (H7) we proceed as in Lemma 2.3 to prove 
z(t) —> —00 if liminf y(t) ^ 0, which is a contradiction. Hence liminf y(t) = 0. 

£—»oo £—»oo 

Then by Lemma 2.1 we get lim z(t) = 0. Since z(t) is monotonic decreasing 
£ — • 0 0 

therefore z(t) > 0. This implies liminf y(t) > 0, a contradiction. Hence the only 
£ — • 0 0 

possibility left out is lim z(t) = —00. Thus the lemma is proved. D 
£—>-oo 
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LEMMA 2.5. Suppose that p(t) satisfies (A5). If (H5) and (H7) hold and y(t) 
be a non-osdilatory solution of (E) for t > Ty, then setting z(t) as in (11). we 
conclude that lim z(t) = 0 or lim z(t) = —oo. 

t^oo v ' £->oo v y 

P r o o f . The proof is similar to that of Lemma 2.4 if we use Remarks l(iii) 
and 2. • 

THEOREM 2.6. Suppse that (H3) and (H4) hold. If p(t) is in the range (Ai) or 
(A2), t/ien every solution of (E) oscillates or tends to zero as t —> 00. 

P r o o f . If y(t) is eventually a positive solution for large £, then setting z(t) and 
u;(t) as in (11) and (12), respectively, we obtain lim z(t) = 0 by Lemma 2.2. 

t—•oo 

Hence, if p(t) is in (Ai), then we have 

0 = lim z(t) = limsup\y(t) — p(t)y(t - r)] 
t^oo t^oo 

> l imsupy(t) + liminf (— p\y(t — r)) 
t—>CX) t^°° 

> (1 - p i ) l i m s u p y ( t ) . 
t - ^ 0 0 

Thus limsupy(t) = 0. Hence lim y(t) = 0. Again, if p(t) is in (A2), then 
t—ЮO ť—^oo 

lim y(t) = 0 follows from the fact that y(t) < z(t). If y(t) < 0 for t > to, 
t—ЮO 

then one may proceed as above and prove lim y(t) = 0. Hence the theorem is 
t—ЮO 

proved. • 

Remark 3. If in the above theorem we take r(t) = 1, then we get a result which 
improves Theorem 1.3. 

Example 1. The NDDE 

fe"2t (y(t) - \y(t - In3))'J + ̂ y\t - In2) = 0 (14) 

satisfies all the conditions of Theorem 2.6. Hence all non-oscillatory solutions 
of (14) tend to zero as t —> 00. In particular y(t) = e _ t is such a solution. 
Here G(u) = u3 is superlinear which satisfies the general superlinear condition 
00 

/ du/G(u) < 00. 
'k 
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Remark 4. Theorem 2.6 is an extension and generalisation of Theorem 1.1 
under (A2) in view of the fact that (H3) 4=> (6). We do not require (4) or 
(5) for Theorem 2.6 though Theorem 1.1 requires all these conditions. Further 
Theorem 1.1 does not hold when G is sublinear whereas Theorem 2.6 holds for 
all types of G. 

COROLLARY 2.7. Suppse that (H5) and (H7) hold. If p(t) is in the range (Ai) 
or (A2), then every solution of (E) oscillates or tends to zero as t —> 00. 

P r o o f . The proof is similar to that of Theorem 2.6, and the difference here is 
that Lemma 2.3 is to be applied in place of Lemma 2.2. • 

Remark 5. If we put p(t) = 0 in the above result, then Theorem 1.2 follows 
from Corollary 2.7. 

T H E O R E M 2.8. Suppose that p(t) satisfies (A6). If (H3) and (H4) hold, then 
every bounded solution of (E) oscillates or tends to zero as t —> oo. 

P r o o f . From Lemma 2.4, it follows that if y(t) is an eventually positive bounded 
solution of (E), then z(t) is bounded. Hence by Lemma 2.4 we observe that 
lim z(t) = —oo is not possible. Hence 

t—»oo 

0 = lim z(t) = \iminf \y(t) - p(t)y(t - r)} < (1 - p3) \imsupy(t). 

Hence lim y(t) = 0 and the proof for the case y(t) < 0 is similar. • 
t—-KX) 

COROLLARY 2.9. Suppose that p(t) satisfies (A6). If (H5) and (H7) hold, then 
every bounded solution of (E) oscillates or tends to zero as t —> oo. 

P r o o f . The proof is similar to that of Theorem 2.8 and Lemma 2.5 is to be 
applied here in place of Lemma 2.4. • 

THEOREM 2.10. Suppose that (H4), (H6) hold and p(t) satisfies (A5). Then 
every unbounded solution of (E) oscillates or tends to ±oo as t —> oo and every 
bounded solution of (E) oscillates or tends to zero as t —> oo. 

P r o o f . Let y(t) be a positive bounded solution of (E) for t > to. Then setting 
z(t) and w(t) as in (11) and (12) respectively and applying Lemma 2.4 we get 
lim z(t) = 0. If lim sup i/(t) = a, with a > 0, then there exists a sequence 

(tn) such that y(tn) > M > 0 for n > jVi > 0. From the continuity of y it 
follows that there exists 5n > 0 with liminf 5n > 0 such that y(t) > M for 
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t £ (tn — 5n,tn + Sn). Then choosing n large enough such that Sn > S > 0 for 
n > N > TNi, we obtain 

QQ Í П + 5 7 1 + 0 " 

-̂, n=N, c _. 
j2 tn~ àn+CГ 

íq(t)G{y{h(t)))dt> JГ í (t)G{y{h(t)))dt 
n=Ntn_i+(T 

oo t^+K + v 

G(M)^2 / Q(t)dt 
П-N. { . 

tn—òn-T& 
oo tn+S+a 

G(M)Y_ / ç(ŕ)dí. > 
n=N, _-_. 

tn~5+CT 

From the given hypothesis (He), it follows that 

CO 

Jq(t)G(y(h(t)))dt = oc. 
T_ 

Since lim z(t) = 0 therefore from the proof of Lemma 2.4 it is clear that 
t—->oo 

lim w(t) exists. Hence integrating (13) we get 
t—>oo 

q(t)G(y{h(t)))dt<ж, 

a contradiction. Hence lim sup ;_/(£) = 0, which implies lim y(t) — 0. If y(t) < 0 
t—+oo t—>oo 

for large t and bounded, then we proceed as above to show that lim y(t) = 0. 
t—>oo 

Next let y(t) be an unbounded positive solution of (E) for large t. Then we 
apply Lemma 2.4 and obtain lim z(t) = 0 or lim z(t) = - c o . If lim z(t) 0, 

t—KX> t—>CO t—>-00 

then as in the above we prove lim y(t) = 0. If lim z(t) = - c o , then from (A5) 
t—>oo t—>oo 

we get y(t - T) > -z(t)/p4 and this implies lim y(t) = oo. The proof for the 
t—>oo 

case when y(t) < 0 for t > t0 is similar. D 
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THEOREM 2.11. Suppose that (H4) holds and p(t) satisfies (A7). Again as
sume that h(t) = t — a, a is a nonnegative constant. If p = max{r, a} and 

0 0 

(H10) f q*(t)dt = 00, where q*(t) = min{q(t),q(t - r ) } . 
p 

(Hn) for u > 0. v > 0. there exists S > 0 such that 
G(u) + G(v) >8G(u + v), 

(H12) G(-u) = -G(u) 

(H i 3) for u > 0, v > 0, G(u)G(v) > G(uv), 

then every solution of (E) oscillates or tends to zero as t —• 00. 

Remark 6. (H10) implies (H3). 

Remark 7. The prototype of G satisfying (H2), (Hn)-(Hi3) is G(u) = 
((3 + \u\^)\u\xsgnu, where A > 0, /x > 0, /? > 1. 

P r o o f of T h e o r e m 2.11. Let y(t) be a positive solution of (E) for t > to. 
Then setting z(t) and iu(£) as in (11) and (12) respectively, we arrive at (13). 
Then lim w(t) = I where — 00 < I < 00. If we consider the first case I 7-- — 00, 

t—>oo 

then consequently since r(t) > 0, we obtain z'(t) > 0 or z'(t) < 0. This implies 
lim z(t) = a where —00 < a < 00. We see that z(t) > 0 because of (A7). 

t—• CO 

Hence a < 0 is not possible. If a = 0, then we are happy to have our necessary 
conclusion that lim y(t) = 0 because y(t) < z(t). If a > 0, then z(t) > a > 0 

t—•CO 

for t >t2 > t\. Then using (Hn) and (H13), we obtain for t > t% > t<i 

0 = w'(t)+q(t)G(y(t - a)) +G(-p(t - a))[w'(t - r ) + q(t - r)G(y(t - r - a))] 

> w'(t) + G(p4)w'(t - r ) + 8q*(t) [G(z(t - a))] 

> w'(t) + G(pA)w'(t -T) + G(a)5q * (t). 

Integrating from £3 to t and then taking limit as t —> 00 we arrive at a contra
diction due to (H10). Next consider the second case / = —00. Then w(t) < 0 
and consequently z' < 0. Because of (A7) we have lim z(t) = a where a > 0 

t—»oo 

and is finite. Then as in Lemma 2.2 we use (H4) and obtain z(t) —> - c o , a 
contradiction. The proof for the case when y(t) < 0 for t > to is similar. It 
may be noted that (H12) is needed for the case y(t) < 0. Thus the theorem is 
proved. • 

Remark 8. In [6, p. 287], the authors have proposed the following open problem. 

(10.10.2): Extend the results of Section 10.4 to equations where the 
coefficient function p(t) lies in different ranges. 
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The results of that section deal with (E) where G(u) = u and r(t) = 1. The 
ranges of p(t) they have considered in that section is (Ai), (A2), (A5). Hence 
our Theorem 2.H answers that problem. 

3. Necessary conditions 

In this section we prove that either (H3) or (H4) aie necessary for eveiy 
solution of (F) to be oscillatory or tending to zero. 

THEOREM 3 .1. Let (Hi). (H2). and (H9) hold. Suppose that p(t) is in (A2) and 
h(t) = t — a where a is a positive constant. Then every solution of (F) oscillates 
or tends to zero as t —> 00 implies (H3) or (H4) holds. 

P r o o f . Suppose it is not true that (H3) or (H4) holds. Then by Remark 1 we 
have (H5) holds and 

/ q(t) át < 00 (16 

0 

holds. From (Hi) and (H5) and (16) we find T > 0 such that for t > T 
00 00 

1 ~ P2 | P / , v | 1 ~ P2 , f ds 1 
t y , W d . < ^ , I F W K - ^ md y — <-. 

t t 

where k = max{G(l) , ki}, k\ is the Lipschitz constant. We take 

X = {u eBC([T, 00), R) : —^ < u(t) < l\. 

Define S on X as 

Sy(t) 

0 0 / 0 0 \ 

p(%(í - r) - / +} ( J q(u)G(y(h(u))) duj ds 
OO 

í 
[^(T + p), T<t<T + p, 

where p = max{r, a}. Then we apply Banach contraction principle ([6, p. 30] 
and show S(X) C X and \\Syi — Sy2 | | < p\\yi — 2/211 where /i (19p2 + 1) 20 
< 1. Thus S is a contraction, admitting a fixed point Ho which is the required 
positive solution with liminiyo(t) > (1 — p2)/10 ---

£ — • 0 0 

R e m a r k 9. One may easily develop a similar theorem when p(t) is in (Ai). 
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Remark 10. For the ranges 1 < pz < p(t) < p<± and — p^ < p(t) < —p^ < — 1 
also we can find a positive solution of (F) which does not tend to zero, as we 
have done in Theorem 3.1. Here we have to define the contraction mapping S 
as 

Sy(t) 

y(t+ 
т1) + W^) I rb) ( / Жu)G(y(h(u))) du) ds v(t+ч ^ 

t+т 

+ p(t+т) J r(s) ÚS + p(t+т) > t > l + T : 

t+т 

^Sy(T + T), T<t<T + T, 

where K(pz,p^) is a constant depending on p% and p^. 

Remark 11. In Theorem 3.1, if we take f(t) = 0 (which is admissible), then 
we conclude that the conditions (H3) or (H4) is necessary for all solutions of (E) 
to oscillate or tend to zero under the assumptions (H2) and (H9). 
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