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V E C T O R VALUED PARANORMED 
STATISTICALLY C O N V E R G E N T 

DOUBLE SEQUENCE SPACES 

B I N O D CHANDRA T R I P A T H Y * — B I P U L S A R M A * * 

(Communicated by Pavel Kostyrko) 

A B S T R A C T . In this article we in troduce the vector valued paranormed sequence 
spaces 2c(q,p), 2 c 0 ( o , p ) , (2c)B(q,p), (2C0)

B(q,p), (2c)R(q,p) and (2Co)R(q,p) 
defined over a seminormed space (X, q). We s tudy their different properties like 
completeness, solidness, symmetry, convergence freeness etc. We prove some 
inclusion results. 

©2007 
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1. Introduct ion 

In order to extend the notion of convergence of sequences, statistical con
vergence was introduced by F a s t [2] and S c h o e n b e r g [11] independently. 
Later on it was further investigated by F r i d y and O r h a n [3], Salát [10], 
R a t h and T r i p a t h y [9], T r i p a t h y [13], T r i p a t h y and S e n [15] 
and many others. The idea depends on the notion of density of subsets of N. 
Throughout the paper, %E denotes the characteristic function of E. A subset E 
of N is said to have density 5(E) if 

i n 

Ő(E)= lim -^XEІk) 
n—юo n -——-» 

*oo П 
k = l 

exists. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40A05. 

K e y w o r d s : complete space, paranormed space, solid space, statistica l convergence, double 

sequence. 

<£) Springer 



BINOD CHANDRA TRIPATHY — BIPUL SARMA 

Throughout the paper, w(q), too(q), c(q)-> co(q), c(a)-> co(°) denote the class s 
of all, bounded, convergent, null, statistically convergent and tatistically ni 11 
X-valued sequence spaces respectively, wheie X is a seminormed space, semi-
normed by q. 

A sequence (xk) G c(q) if for every e > 0, there exists L G X such that 
t5({k G N : q(xk — L) > e}) — 0. We write stat-limx/c = L. 

Two sequences (xk) and (yk) are said to be equal for allmost all k (in shoit 
a.ak.) i f<5({kEN: xk ^ yk}) = 0. 

The studies on paranormed sequences were initiated by N a k a n o 7] and 
S i m m o n s [12] at the initial stage. Later on they were studied by M a d d o x 
|5], N a n d a [7], T r i p a t h y and S e n [15] and many others. 

Let p = (pk) be a sequence of positive real numbers and H supp . < oc. 
k 

Then for (a&) and (bk) two sequences of complex terms, we have the following 
well known inequality 

K + bk\
Pk < C(\ak\

Pk + |6fc|
Pfc) , where C = max(l , 2H~1) . 

On generalizing the sequence space c and en, T r i p a t h y and S e n 15 
introduced the following sequence spaces of complex terms: 

c(p) = {(xk) G w : stat-lim \xk — L\Pk = 0 for some L G C} 

and 

c0(p) = {(xk) G w : stat-lim \xk\Pk — 0} . 

The spaces ^oo(p), c(p)-> co(p)i c(p) D £oo(p) and CQ(P) D £OC(P) are paranorm d 
by g(x) = sup \xk\ M , where M - max(l, H). 

k 

2. Definitons and preliminaries 

Some works on double sequences is done by PI a r d y [4] and M o r i c z [6 , 
T r i p a t h y [14] and others. A double sequence (ank) is said to be convergent 
to L in Pringsheim's sense if lim ank = F, where n and k tend to oc inde-

n,k—+oo 

pendent of each other. The notion of regular convergence for double sequence 
was introduced by H a r d y [4]. A double sequence (ank) is said to be regularl 
convergent if it converges in the Pringsheim's sense and the following limits exist. 

lim ank ~ Lk for each k G N 
n—>oo 

and 
lim ank = Jn for each n G N . 

k—>oo 
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The notion of asymptotic density for subsets of N x N was introduced by 
T r i p a t h y [14]. A subset E of N x N is said to have density p(E) if 

p{E)= lim — VVxE (n , f c ) 
p,q-^oo pq --—-' --—' 

n<pk<q 

exists. 

T r i p a t h y [14] introduced the notion of statistically convergent double se
quences. A double sequence {ank) is said to be statistically convergent to L in 
Pringsheim's sense if for every e > 0, p({(n, fc) : \ank — L\> e}) — 0. 

A double sequence (ank) is said to be regularly statistically convergent if it 
is statistically convergent in the Pringsheim's sense and the following statistical 
limits exist 

and 

stat- lim ank = Lk for each fc E N 
n—>oo 

stat- lim ank = Jn for each n E N . 
fc—^oo 

Throughout the article 2w(q), 2(-oo(q), 2c(q), 2c0((?), 2c
R(q), 2CR(q), 2CB(q), 

2CD(q), 2c(q), 2Co(q), (2c)R(g), (2c0)
R(q), (2c)BR(q), (2C0)

BR(q), (2c)B(q), 
{2^o)B(o) denote the spaces of a/!/, bounded, convergent in Pringsheim's sense, 
null in Pringsheim's sense, regularly convergent, regularly null, bounded and con
vergent in Pringsheim's sense, bounded and null in Pringsheim's sense, statitsti-
cally convergent in Pringsheim's sense, statitstically null in Pringsheim's sense, 
regularly statitstically convergent, regularly statitstically null, bounded regularly 
convergent, bounded regularly null, bounded statitstically convergent in Prings
heim's sense, bounded null in Pringsheim's sense AT-valued double sequences 
respectively, where X is a seminormed space, seminormed by q. 

Let (ank) and (bnk) be two double sequences, then we say that ank - bnk for 
almost all n and fc (in short a.a.n & k) if p({(n, fc) : ank 7-= bnk}) = 0. 

Let p = (pnk) be a double sequence of positive real numbers. The notion of 
paranormed double sequences was introduced by C o 1 a k and T u r k m e n o g l u 
[1] and further investigated by T u r k m e n o g l u [16]. 

A double sequence space E is said to be solid if (oLnk
ank) £ E, whenever 

(ank) E E and for all sequences (ank) of scalars with \ank\ < 1 for all n, fc E N. 

A double sequence space E is said to be symmetric if {o>n(n)ir(k)) £ E, when
ever (ank) E E, where 7r(n), 7r(fc) are permutations of N. 

A double sequence space E is said to be monotone if it contains the canonical 
preimages of all its step spaces. 
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A double sequence space E is said to be convergence free if (bnk) G E, when
ever (ank) G E and bnk = #, whenever ank = #, where 9 is the zero element 
ofX. 

The zero double sequence is denoted by 29 = (6) and the zero single sequence 

by§ =(9,0,0,0...). 

We introduce the following paranormed double sequence spaces. 

2(c)(q,p) = {(ank) G 2w : stat-lim(g(an f c - L))Pnk = 0 for some L G X } , 

2(c~o)(q,p) = {(ank) G 2w : stat-lim(g(an f c))P r i f c = 0}, 

(a>nk) G (2c)R(q,p) if (ank) G (2c)(q,p) and the following statistical limits hold: 

stat- lim (q(ank - Lk))Pnk = 0 for each k G N, (1) 
n — • o o 

stat- lim (q(ank - Jn))Pnk = 0 for each n G N . (2) 
k—>-oo 

We have (ank) G (2co)R(q,p) if (an f c) G 2C0 (<Z,.P) and equation (1) and (2) 
hold with Lk = Jn = 9 for each n, k G N. 

2too(q,p) = \(ank) : sup(r/(an f c))P n f c < c o l . 

We define 2m(q,p) = 2c(q,p) n 24o(q,H-), 2m0(q,p) = 2c0(q,p) n 24o(<I>P)> 

2m
R(q,p) = (2c)R(q,p)n2loo(q,p) and 2m§(q,p) = (2c)R(q,p) n 2 4 o ( ? , p ) - Let 

P = (Pnfc) be a sequence of positive real numbers. Then the double sequence 
(anfc) is said to be strongly (p)-Cesaro summable to i , i.e. (an/~) G 2w^(q) if 

.. гt v 

lim — V V ; ( g ( a n f c - X ) ) p " * = 0 . 
,v—>oo гxг;-^—' Z — / u.v—»oo 7ІU 

n = l k = l 
The following results will be used for establishing some results of this article. 

LEMMA 1. If a sequence space is solid, then it is monotone. 

We procure the following result o f T r i p a t h y [14]. He proved it for X = C. 

L E M M A 2. ( T r i p a t h y [14, Theorem 1]) The following are equivalent: 

(i) The double sequence (ank) is statistically convergent to L. 

(ii) The double sequence (ank — L) is statistically convergent to 0. 

(iii) There exists a sequence (bnk) G 2c such that ank = bnk for a.a.n & k. 

(iv) There exists a subset M = {(rii,kj) G N x N : i,j G N} of N x N such 
that p(M) = 1 and (an i/C i) G 2c. 

(v) There exists two sequences (xnk) and (ynk) such that ank = xnk + ynk for 
all n, k G N. where (xnk) converges to L and (ynk) G 2c0. 
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3. Main results 

In this section we prove the results of this article. The proof of the following 
result is a routine verification. 

THEOREM 1. Let (pnk) G 2^00, then the class of sequences 2^(4,p), 2^0(9,p), 
(2c)R(q,p), (2Co)R(q,p), 2m(q,p), 2mo(q,p), 2mR(q,p) and (2m0)

R(q,p) are 
linear spaces. 

We prove the following decomposition theorem. 

THEOREM 2. The following are equivalent: 

(i) The double sequence (ank) G 2^(3,p), i.e. there exists L G X such that 

stat-lim(g(anfc — L))Pnk = 0. 

(ii) The double sequence (ank — L) G 2^0(9, p)-

(hi) There exists a sequence (bnk) £ 2c(q,p) such that ank = bnk for a.a.n & k. 

(iv) There exists a subset M = {(n^fcj) G N x N : i , j G N} o /N x N such 

that p(M) = 1 and (an.ki) G 2^(2, t) , where t = (pnikj). 

(v) There exists two sequences (xnk) and (ynk) such that ank = xnk + ynk for 

all n, k G N, where stat-lim(q(anfc - L)) nk = 0 and (ynk) G 2C~o(q,p)-

P r o o f . Let znk = (q(ank - L))Pnk for all n, k G N. Then stat- lim znk = 0 and 
the result follows from Lemma 2. • 

THEOREM 3 . Let 0 < infpnfc < suppnfc < 00, then the spaces Z(q,p) for 
Z = (2c)BR, (2Co)Bfi, (2c)3, 2^00(q>P) and (2C~o)B are paranormed spaces (not 
necessarily totally), paranormed by 

g{{ank)) = sup(q(anfe)) » , 
n,k 

where H = maxf 1,suppn k) . 

P r o o f . Clearly g(20) = 0, g(-A) = g(A), where A = (ank) and g(A + B) < 
g(A) + (B). Now we verify the continuity of scalar multiplication. 

Let A —> 2#, t h e n g(A) —> 0. We have for a given scalar A, 

Pnk 

g(\A) = sup(g(Лan f e)) н < шax( l , |Л|) . g{A) -> 0 as A-* 2 . 
n,fc 
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Next let A —» 0. Without loss of generality, let |A| < 1. Then for a ghen 
A (an/e), we have 

g(\A) = sup(q(\ank))
P"k <\\\£ -g(A)-*0 as A -> 0 , 

n,/c 

where h = inf pnk > 0 . 
n,k 

The case when A —> 0 and A —> 29 implies g(\A) —> 0 follows similarly. 

Hence the spaces are paranormed by g. • 

THEOREM 4. Let p = (pnk) G 2^oo- L/ien £/ie spaces Z(q,p) for Z — 2c, 2c0, 
(2C0)

R, {2c)R, (2c)BR, (2C0)
BR, (2c)B and (2c0)

B are sequence algebras. 

P r o o f . Consider the space 2c(q,p). Let (ank),(bnk) G 2c(a,p). Then theie 
exists i \ i , K2 C N x N with p(K\) = p(K2) — 1 such that 

lim (q(ank - L))Pnk = 0 and lim (q(ank - £))Pnk ~ 0 
n,k—>oo v ' n,k—>oo 

(n.fcJeK"! (n,fc)GK2 

for some L,£ £ X . 

Let K - KxnK2, then p(iv) = 1. Now it follows that 
Pnk lim (q(ankbnk - L£)) nk = 0 . 

?г, fc—>oo 
( n , f c ) K 

Thus (ankbnk) G 2c(q,p). 

Similarly it can be shown that the other spaces are also sequence algebras. 

THEOREM 5. The spaces 2c0(q,p), (2Co)B(q,p), ( 2c 0) / ?(g,p) and (2c0)
BR(q,p 

are solid. Hence are monotone. 

P r o o f . Let (ank) G 2c0(q,p) or {2c0)
B(q,p) or (2c0)

R(q,p) or {2c0)
BR(q,p). 

Let (ank) be a double sequence of scalars with \ank\ < 1 for all n, fc G N. 
Then the solidness of the above spaces follows from the following inequality 
(q(ankCLnk))Pnk < (q(ank))Pnk for all n, fc G N. 

The rest follows from Lemma 1. 

COROLLARY 6. The spaces 2c(q.p), ( 2 c ) s ( g , p ) . (2c)R(q,p) and (2c)BR(q,p) an 
not monotone, as such are not solid. 

P r o o f . The proof follows from the following example and Lemma 1. • 

Example 1. Let X = ^ and pnk — 1 for all n, fc G N. Let (ank G 2c(q,p 
be defined by ank = e = (1,1,1,1, ) for all n, fc G N. Let ank 

(al

nk) and q((ank)) = sup\ank\ for all n, fc G N. Consider the J t h step space 
i>2 
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((2c) (q,P))j defined by (bnk) G ((2c)3R(q,p)) 3 implies bnk = ank for n even 
and all fc G N and bnk = 0, otherwise. Then (bnk) ^ (2c)BR(q,p)> Hence 
(2c)BR(q,p) is not monotone. 

From this example, it follows that the other spaces are not monotone, too . 

THEOREM 7. The spaces Z(q,p) for Z = 2c, 2c~o, (2c~o)R, (2c)11, (2c)BR, 
(2Co)BR, (2c)3 and (2c~o)B are n°t convergence free. 

P r o o f . The proof follows from the following example. • 

Example 2. Let X = l^, q((x1)) = sup|x z | , pnk = 1 for fc odd and for all 
i>2 

n G N and pnk — 2 otherwise. Consider the sequence (ank) G 2c(q,p) defined by 
a\k = 0 = ani for all n, fc G N. ank = (2, 2, 2, 2, 2, ), otherwise. 

Consider (bnk) defined as 

blk = 9 = bni for all n, fc G N, 

bnk = e for all fc even and all n > 1, 

= 2e otherwise. 

Then (ank) G 2C~(q,p), but (bnk) £ 2c(g,p). Hence 2c(g,p) is not convergence 
free. This example shows that the spaces Z(q,p) for Z = ( 2 c) H , (2c)BR, (2c)3 

are not convergence free, too. 

Example 3. Let pnk = 1 for all n, fc G N, X = C and q(x) = \x\. 
Consider the double sequence (ank) defined as 

{0 for n even and for all fc G N, 

^ otherwise. 

Consider the sequence (bnk) defined as 

{0 for n even and for all fc G N, 

1 otherwise. 

Then clearly (ank) G Z(g,p), but (bnk) £ Z(q,p) for Z = 2c 0 , (2c0)
n. (2c0)

3R, 
(2Co)B. 

Hence the spaces are not convergence free. 

PROPOSITION 8. The spaces Z(q,p) for Z = 2c, 2 c 0 , (2C0)^; (2c)R, (2c)3R 

(2co)BR, (2c)B and (2c~o)B ctre not symmetric. 

P r o o f . The proof follows from the following example. rj 
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Example 4. Let pnk = 1 for n even and all k G N and pnk — 2 otherwise. Let 
X = C, and q(x) = \x\. Consider the sequence (ank) defined by a n i = 1 = a\k, 
for all n = i2 = fc, i G N, and ank = 0, otherwise. 

Then (ank) G Z(q,p) for Z = 2 c, 2 c 0 , ( 2 c 0 ) * , (2c)R, (2c)BR, (2c0)
BR, ( 2 c ) B 

and (2co)B'. Consider its rearranged sequence (bnk) defined by 

J 1 for all n even and all k G N, 

I 0 otherwise. 

Then (bnk) i Z(q,p) for Z = 2 c, 2 c 0 , ( 2 c 0 ) * , ( 2 c ) H , ( 2 c) S i * , (2c0)
BR, (2c)B and 

( 2 c 0 ) B . Hence the spaces Z(q,p) for Z = 2 c, 2 c 0 , (2Co) f l, ( 2 c ) H , (2c)BR, (2c0)
BR, 

(2c)B and ( 2 c 0 ) B are not symmetric . 

THEOREM 9. For two sequences p = (pnk) andt = (tnk) we have (2c~o)B(q,p) 2 
(2Co)B(q,t) if and only ifTiminf(^) > 0 where K C N x N such that p(K) = 1. 

n,к —»-oo 
(n,к)ЄҜ 

P r o o f . Suppose that 

liminf (^] >0. (3) 
£,u~ v w 

Then there exists a > 0 such that pnk > &tnk for sufficiently large pair 
(n,k) G K. Let (ank) G (2c0) jB(g,t), then for e > 0 we have (q(ank))9nh < e for 
all (n,k) G L C N x N, where L = {(n,k) G N x N : (g(anfc))9nfc < e} , such 
that p(L) = 1. 

Let J = K n L. Then p( J ) = 1. 

Now (g(anfc))Pnfc < ((g(anfc)) t n f c)a . This implies (ank) G (2c0)B(g, t ) . 

Next let (2c0)
B(q,p) 2 (2C0)

B(g,1-), but there i s n o K c N x N with p(K) = 1 
such that (3) holds. Then there exists {(n^kj) : i, j G N} C N x N with 

pi {(n^, kj) : i, j G N} J ^ 0 such that i p u ^ < OVi*̂ -- Define the sequence (ank) 

by 

[O otherwise. 

Then (ank) G ( 2 c 0 ) s (q , t ) . But (an.fc.)
Pnifc-i > e x p ( ^ ^ ) Hence we arrive at a 

contradiction. • 

THEOREM 10. Let 0 < inf pnk < suppn^ < 00. Then 
n '^ n,k 

2w{p)(q) H 2loo(q,p) = 2c(g,p) n 2too(q,p) • 
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P r o o f . Let A = (ank) G 2^(P)(g)n24c(<1,;p) and H = suppnk, r = m a x { l , H } . 
n,k 

Then taking bnk = (q(ank — L))Pnk for all n, k G N, we have the result, which 
follows from [14, Theorem 4 ] o f T r i p a t h y . • 

The following result is a consequence of Theorem 10. 

COROLLARY 11. For any two sequences of real numbers p = (pnk) andt = (tnk) 
satisfying the condition in the hypothesis of Theorem 10. we have 

2Hj(p) (q) n 2^oo (q,p) = 2 w(t) (q) n 2 4 o (<T t). 
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