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(Communicated by Igor Bock) 

ABSTRACT. In this paper, we establish sufficient conditions to guarantee the 
existence of at least three or 2n — 1 positive solutions of nonlocal boundary value 
problems consisting of the second-order differential equation with p-Laplacian 

[*p(*'(0)]' + / ( t . * ( 0 ) = 0, t 6(0,1), (1) 
and one of following boundary conditions 

l l 

c(0) = fx(s) dh(s), <Ms'(l)) = / Mx'i*)) dd(s), (2) xi 

and 
X 1 

þp(x'(0)) = Jфp(x'(s))dh(s), x(l) = Jx(s)dg(s). (3) 

0 0 
Examples are presented to illustrate the main results. 

©2007 
Mathematical Institute 

Slovak Academy of Sciences 

1. Introduct ion 

In this paper, we are concerned with the multiplicity of positive solutions to 

the nonlocal boundary value problems (BVP for short) consisting of the one-

dimension p-Laplacian differential equation 

[0P(x,(*))], + /(t,x(t)) = o, t e ( o , i ) , (l) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 34B10, 34B15, 35B10. 
K e y w o r d s : one-dimension p-Laplacian, differential equation, nonlocal boundary value prob­
lem, positive solution, fixed point theorem. 
Supported by National Natural Science Foundation of P. R. China (No: 10371006). 
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LIU YUJI 

associated with one of following boundary value conditions 

1 1 

x(0)~ fx(s)dh(s)J Mx'(1)) = f<t>P^'{s))Ag{s\ 

and 
1 l 

4>p(x'(0)) = J 4>P(X'(S)) dh(s), x(l) = J x(s) dg(s), (3 

0 0 

where / : [0,1] x R —> R, h,g: [0,1] —> [0, -foo) are given functions and the 
integrals in (2) or (3) are meant in the Riemann-Stieltjes sense. (f)p(s) — s\p~2s, 
(p > 1) is called p-Laplacian. 

The study of nonlocal boundary value problems of this form was initiated 
in the early 1960s by B i t s a d ze [4] and later studied by B i t s a d z e and 
S a m a r s k i i [5], 11' i n and M o i s e e v [11] and K a r a k o s t a s and T s a m a -
t o s [14]. This class of problems includes, as special cases, multi-point boundary 
value problems, which were considered by many authors (see eg. , [2], [3], [9 , 
[10], [17] [20] and the references therein and the recent book by A g a r w a 1 and 
O ' R e g a n [1] and [7], [8]). 

The boundary value problems consisting of equation (1) and different two-
point boundary value conditions have been studied extensively (see, for example, 
[1], [6], [11], [12], [14], [17], [21] [24]). When p 2 and f(t,x) = a(t)g(x , 
(1) becomes the following 

x"(t) + a(t)g(x(t))-0, t e ( 0 , l ) . (4 

Recently, M a in [20] showed the existence of at least one po itive solution to 
(5) with the following boundary value conditions 

ra-2 ra-2 

*'(0) = J2 6-*'(&)> *(*) = Yl a*x(^) (5 

2 = 1 % 1 

under the conditions that / is continuous, nonnegative and either super-linear or 
sub-linear. We note that BVP (5) and (6) is a special case of BVP (1) and (3). 
G u p t a in [9], using Leray-Schauder fixed point theorem, studied the existence 
of solutions of the following BVP consisting of the equation x"(t) = — /(£, x(t) , 
t G [0,1], and boundary conditions 

ra k 

x(0) = ]T bixfo), x'(l) = ]T a.x'^). (6 
z l 2: i 
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The existence of at least one solution of the following BVP consisting of the 
equation x"(t) = /(£, #(£)), £ E [0,1], and of boundary value conditions 

ra k 

X ( 0 ) = ̂ Z b*X(&)> X(X) = X^ aiX^i) (7) 
i=l i=l 

was studied by L i u and Y u in [18]. BVP (1) and (i) (i=2,3,4) contains BVP (5) 
and (j) (j=6,7,8) as special cases, respectively. In a recent paper, G u p t a in 
[10], using Schauder fixed point theorem, established the existence results of 
solutions of BVP for the p-Laplacian differential equation 

[M*'(t))Y = /(*>*(*),*'(*)) + e(i), * e [0,1], 

x(0) = 0, 0P(x'(l)) = £ OiMx'irh)). 
i=i 

(8) 

In [2], the authors studied the existence of positive solutions of boundary value 
problem (1) and (6). In [2], the operator A is defined by 

Ax(t) = - j cfq I j f(T,x(r))ár\ + í — 

ra-2 / íi > 

E bi4>A J7(r,x(r))dr 
V o 

ra-2 
£ Ò І - 1 
i=l 

+ ra-2 

1 - E ai 
i=l 

Jфq |/(r,x(r))drj d* 

ra-2 H ( % \ 

Ylai / *M / f(r,x(T))dr ds 

i=1 o V o / 
ra-2 / Éi \ 

E M>J J/(r,x(r))dr 
2 = 1 V 0 j 

f ra-2 

\ i=l 
ra-2 

£ h-l 
1 = 1 

for x G C[0,1]. The authors claim that x(t) is a solution of (1) and (6) if and 
only if x is a fixed point of the operator A. One can see that if Ax = x, then 

X'(t) = ~фg jf(r,x(r)) dт + 

m-2 / ÍІ
 N 

E ЬiфЛ / / ( r , x ( r ) ) d r 
Ż = I V o > 

ra-2 
£ bг-i 
i=l 

We find that [0p(x'(£))]' ^ - / (£ ,x(£)) . The claim is false. 
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In recent papers, L i u and G e [17], H e and G e [25] s udied following 
boundary value problems 

Џp(u'(t))]' + a(t)f(u(t)) 0, 0<t<l, 
u(0) - BoWШ - 0 = u'(l), 

and 

u"(t)+a(t)f(u(t))-0, 0 < ŕ < 1, 
u(0) 0 u(l)-au(r/). 

They proved the existence results for positive solutions by using fixed point the­
orems. In recent papers [26] and [27], the authors studied some similar two-point 
or three-point boundary value pioblems by using Leggett-Williams fixed point 
theorem or its generalized form. So it is interesting and valuable to establi h 
the existence criteria for multiple positive solutions of equation 1) subj ct to 
different nonlocal boundary value conditions 

In very recent papers [28], [29], K a r a k o s t a s studied the existence of pos­
itive solutions for the <£-Laplacian when $ is a sup-multiplicathe-like function 

(*(x'))' + p(t)f(t, x(9l(t)),..., x(gn(t))) 0 

subject to one of the boundary value conditions 

x(0)-B0(x'(0))-x(l) + B1(x'(l)) 0, 

x(0)-Bo(x'(0)) a ; ' ( l ) - 0 , 

and 

x'(0)- x(l) + Bi(x'(l))=0 

by using Krasnoselskii's and Leggett-Williams fixed point theorems. 
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Inspired and motivated by the works mentioned above, especially, by [9], [20], 
our purpose here is to give some existence results for at least three positive 
solutions to BVP (1) and (2) and BVP (1) and (3) by using Leggett-Williams 
fixed-point theorem, which has been reported to be a successful technique for 
dealing with the existence of multiple positive solutions of BVPs for second order 
differential equations, however, there is no paper reported discussing the posi­
tive solutions of nonlocal boundary value problems for p-Laplacian equations by 
using it since the presence of p-Laplacian causes some difficulty. The results in 
this paper are new. 

By a positive solution of BVP (1) and (i) (i=2,3) we mean a function x(t) 
which is positive on (0,1) and satisfies (1) and the boundary conditions (i) 
(i=2,3) respectively. In the sequel, we suppose the following: 

(Hi) / is a real valued continuous function defined on [0,1] x R, and satisfies 
the inequality /(£, x) > 0 when t e [0,1] and x > 0, and /(£, 0) =̂ 0 on any 
sub-interval of [0,1]. 

(H2) g: [0,1] —> E is non-decreasing function with 0 = g(0) < g(l) < 1 and 
h: [0,1] —> K. is a non-decreasing function with 0 = h(0) < h(l) < 1 for all 
t e l . 

2. Preliminary lemmas 

To obtain positive solutions of BVP (1) and (i) (i=2,3,4), we first present the 
following definitions, a fixed-point theorem in cones and preliminary lemmas. 
The main results will be given in Section 3 . 

DEF IN ITION 2.1. Let X be a real Banach space, a non-empty closed convex set 
P (^ {0}) C X is called a cone of X if it satisfies the following conditions: 

(i) x e P and A > 0 implies Ax e P. 

(ii) x e P and — x e P implies x — 0. 

Every cone P C X induces an ordering in X which is given by x < y if and 
only if y — x e P. 

DEF IN ITION 2.2. A map ip: P —> [0,+oo) is called a concave functional map 
provided ip satisfies 

il>(tx + (1 - t)y) > t^(x) + (1 - t)^(y) 

for all x,y e P and t G [0,1]. 

229 



LIU YUJI 

DEFINITION 2.3. An operator is called completely continuous if it is continuous 
and maps bounded sets into pre-compact sets. 

DEFINITION 2.4. Let 0 < a < b and r be given and let ip be a nonnegative 
continuous concave functional on the cone P. Define the convex set Pr and 
P(fra,b)by 

Pr = {yeP: | | y | | < r } , P(^a,b) = {y e P : a<^(y), \\y\\<b}. 

Next, we state the Leggett-Williams fixed-point theorem. The proof of this 
theorem can be found in Guo and L a k s h m i k a n t h a m ' s book [8], D e i m -
l i ng ' s text [7]. 

THEOREM 2.1 (Leggett-Williams Fixed-Point Theorem). Let T: Pc —> Pc be a 
completely continuous operator and let ^ be a nonnegative continuous concave 
functional on P such that ip(y) < \\y\\ for all y e Pc. Suppose that there exist 
0<a<b<d<c such that 

(Ci) {y G P(V>; 6, d) : ^(y) > b} ^ 0 and i/>(Ty) > b for y E P(^; 6, d); 

(C2) \\Ty\\ < a for \\y\\ < a; 

(C3) 1>(Ty) >bfory£ P(fr 6, c) with \\Ty\\ > d. 

Then T has at least three fixed points ylf y2 and y3 such that \\yi\\ < a,b < ip(y2) 
and H2/3H > a with ^(j/3) < °-

Now, we give some preliminary lemmas. Suppose x(t) is a solution of equa­
tion (1) associated with condition (2), integrating (1) from t to 1, we get, 
using (H2), 

then 

<t>p{x'{\)) - 4>P{x'{t)) = -J f{s, x{s)) ds, 
t 

1 1 

4>p(x'(l)) j dg(s) - j MAt)) dg(s) 
o o 

1 1 

= - J J f{T,x{T))dTdg{s) 

0 s 
1 1 / 1 

= -g(s) J f(r,x(r))dr\\ J g(s)di f f(r,x(r))dr 

S 0 \ 8 

1 

= - / g(s)f(s,x(s))ds. 

(9) 
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Using (2), we find 

1 

^(x'(1)) = r^(i) /9{s)f{s'x(s)) ds-

o 

From (10), one gets 

l l 

(f)p(x'(t)) = i _ / g(s)f(s,x(s))ds+ / f(s,x(s))ds, 

ì.e. 

( - l > 

Z^Щ J ^s)f(^ Ф)) ds + / /(*, Ф)) d̂  o 

where q satisfies 1/p + 1/q = 1. So we have 

x(t) - x(0) = y 0g I ^ — ^ y | <?(T)/(T, x(r)) dr + | /(r, x(r)) dr J ds. 

0 \ 0 5 / 

Similarly, we have 

l l 

f x(s)dh(s)-x(0) f dh(s) 
0 0 

1 t / 1 1 \ 

= / J^(iZ^(i) / ^ ) / ( ^ ( r ) ) d r + |/(r,x(r))dr) dsd^) 
0 0 \ 0 s / 

0 \ 0 s / 

- j ^ ^ [ Y — 7 ^ J 9(r)f(T,x(T))dT + J f(T,x(T))dT) dt. 
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It follows from (2) that 

x{0) = Г=мï) /фq ( ь - Ж / 5 ( т ) / ( т ' x { т ) ) d т + J / ( т ' x { т ) ) d т ) d s 

0 \ 0 s / 

" г-i(ï) /h{s)фq ( г-ж /5(т)/(т'x(т)) dт+//(т'x(т)) d т ) d s ' 
Then 

t 

(*)=/tf, Ij--^ J 9(r)f(r,x(T))dT + J f(T,x(T))dT\ ds 
0 \ 0 s / 

+ r ^ 7 J ) / ^ ( YZ^j J 9(r)f(r,x(T))dT + J f(T,X(T))dT\ ds 
0 \ 0 s / 

" T^(i) //l(s)^9 ( r ^ ( i ) / 5 ( T ) / ( T '
 x{T))dT+J f{T> X{T)) d r I d s -

0 \ 0 s / 

Let X be the set of all continuous functions on [0,1] and be endowed with the 
norm IIa;II = max |x(t)|, then X is a Banach space. We note that x(t) > 4IIxII 

te[o,i] 
for t G [1/2,1] if #(£) is positive, concave and increasing on [0,1]. To apply 
Theorem 2.1, we define P\ by 

Pi = {xeX : x(t) > ±\\x\\ for te [ | , l ] , 

x(£) is positive, increasing and concave on (0,1)}. 

We find that Pi is a cone in X. Define an operator A\ on cone Pi by 

AlX(t) = / <M YZ^j J 9(r)f(r, X(T)) dr + / /(r, x(r)) dr j ds 
0 \ 0 s ) 

+ 1^M1)/^ [ Y ^ J 9(r)f(r,x(T))dT+ J f(T,x(T))dT\ ds 
0 \ 0 s / 

~ T^h(l) J k{s)4>q ( YZ^T) J 9(r)f(r,x(T))dT + J f(T,x(T))dT\ ds 
0 \ 0 s ) 

for every x G Pi. Define a functional V!i by ipi(x) = min x(t) = x(^) for 

x G Pi. Now we give some preliminary results. 
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Denote 

*i = izfe;(i-Ms))^ATzJri7/-'(r)dT+-J ds-

m i = I = f e / ( - - M * ) ) ^ ( T = k i ) f 9(r) dT + 1 - s) ds 

P\, Ai, ipi, 81 and mi will be used in Theorems 3.3 and 3.4. 

LEMMA 2.2. Assume (Hi) and (H2). Then the following results hold: 

(i) A1P1CP1 . 

(ii) A\ is completely continuous. 

(iii) ip1 is nonnegative and concave, tp1(x) < \\x\\ for every x G Pi . 

(iv) (Ai*)(0) = }(AlX)(s)dh(s) and$p((AixY(l)) = j>p((Aix)'(s)) dg(s). 
0 0 

(v) x G Pi is a fixed point of the operator A1 on P1 if and only if x(t) satisfies 
equation (1) and conditions (2). 

Proof. The proof is standard and the similar proof can be find in [8], [16], [24] 
and [26] especially and is omitted. • 

Similar to above discussion, we get, if x(t) is a solution of BVP (1) and (3), 
that 

1 / 8 

x(t) = r - ^ y > g ( 5 ) 0 g | / ( r , x ( r ) ) d r 
o V o 

+ T Z ^ / ( / l ( l ) - h ( r ) ) / ( r > x ( r ) ) d r ) ds 
o / 

t \ 0 0 / 

To apply Theorem 2.1 we define a cone 

P2 = [x eX : X(t) > ±\\x\\ for t G [0 , | ] , 

x(i) is positive, decreasing, continuous and concave on (0,1)}. 
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Define the operator _42 by 

A^) = T_^(i) J9(s)<ßq í Jf(r,x(r))dT 
0 \ o 

+ r=^(í) / Í ^ 1 ) - ^(^»/(^ ^w) ^ ) d s 

o / 
1 / s 1 

+ / < M J f(T,x(T))dT+T-^ J(h(l)-h(T))f(T,x(T))dT\ ds. 

Define the functional IJJ2(X) = m m x(t) f° r x ^ P2. Let 
^ V ' t€[0,l/2] 

1/2 \ 0 / 

+ jd>qls+ r r ^ y /(Ml) " fc(r)) dr j ds, 
1/2 V o / 

o / 

réiT)I(m-HT))dT)da-
o / 

1/ 
1 

7712 = 1 - (!) / #( s)^ 15 + 

o 
1 

+ / 0a I 5 + 
0 

P2 , .42, 02 > ^2 and 77L2 will be used in Theorems 3.5 and 3.6. 

LEMMA 2 .3 . Assume (Hi) and (H2). Then the following results hold: 

(i) A2P2cP2. 
(ii) A2 25 completely continuous. 

(iii) 02 25 nonnegative and concave, ij)2(x) < \x\\ for every x G P_. 

(iv) 0p((_42x)'(O)) = /0 p ( (A 2 x) ' ( s ) )d / i ( s ) and (A2*)(l) = / (A 2 x)(s ) da(s). 
0 0 

(v) x G P2 is a fixed point of the operator A2 on P2 if and only if x(i) satisfies 
equation (1) and conditions (3). 

P r o o f . The proof is standard and the similar proof can be find in [8], [16 , [24] 
and [26] especially and is omitted. • 
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3. Main results 

In this section, we present the main results and their proofs. 

THEOREM 3.1. Assume (Hi) and (H2). In addition, there exist constants 0 < 
a < b < 2b < c, b < midic such that 

(Di) /(£, x) < 4>p(m\a) for t e [0,1] and x e [0, a]; 

(D2) f(t,x) > <f>p(b/5i) f°rte [ M andxe [6,26]; 
(D3) f(t,x) < (f)p(mic) fort e [0,1] and x e [0, c]. 

Then BVP (1) and (2) has at least three positive solutions x\, X2 and X3 such 
that 

\\xi\\ < a, 6 < ^1(^2) crnd \\x^\\ > a with ipi(xs) < 6. 

Proof. By Lemma 2.2(v), it suffices to show that conditions of Theorem 2.1 
are satisfied. Prom the definition of ^ 1 , ip±(x) < \\x\\ for all x e Pi. Now, if 
x e Pic, then \\x\\ < c and (D3) implies f(t,x(t)) < (f)p(mic) for all t G [0,1]. 
Consequently, 

\\AlX\\ = 

= j<t>q i j - ^ f 9(r)f(T,X(T))dT + f f(T,x(T))dTJ ds 
0 \ 0 s / 

+ T^kjf<Pq ( Y ^ f 9(r)f(r,x(T))dT + f f(T,x(T))dT\ ds 
0 \ 0 3 ) 

~ T~1~T) Jk{s)<Pq
 (T~1~T~) J9(r)f(r,x(T))dT + f /(r,x(r))dr) ds 

0 \ 0 3 / 

= ~~l~T)f{1~h{s))<Pq (l~\~~ J' 9(r)f(r,x(T))dT+ff(T,x(T))dTJ ds 
0 \ 0 s / 

< Y~~~~T) J {1 ~ h^3))^ I l - o ( l ) / 9(r)(f>P(mic)dT + J Mmic)dT J ds 

235 



LIU YUJI 

= Trm /<!-»<•»*. (rr^ij / «w * +1 - ) <-
o \ o / 

c. 

Hence, A\: P\c —> Fic. In the same way, if x E P\a, then assumption (Di) yields 
f(t,x(t)) < m\a for t G [0,1]. As in the same argument above, we can obtain 
1hat A\: Pla —> Pla. Therefore, condition (C2) of Theorem 2.1 is satisfied. 

Check condition (Ci) of Theorem 2.1. It is easy to see that {H G Pi(vi; &> 2b), 
^ (y ) > b } ^ 0 . If xGPi(^i;6,26), then ^i(x) = x ( | ) > b and ||x|| < 2b. So 

b<x(£) <2b for te [±,l]. 

So, (D2) implies /( t ,x) > <pp(b/5\) for £ <G [T>, l] and x G [6,2b]. Then 

^(.Aix) = A\x(\) 

0 \ 0 s / 

+ TTh(T)j(t>q [ Y - ^ f 9(T)f(T,x(T))dT + f f(T,x(T))dTJ ds 
0 \ 0 s / 

" T=WJ fh{s)^\ Y^TTjf9(T)f(T,x(T))dT +ff(T,x(T)) dr Ids 
0 \ 0 S / 

i / i i \ 

- / ^ YT^(T)J9{T)f{T,x{T))dT +Jf{T,x{T))dT )ds 

i / i i \ 

' Ml) / ^ T^li) / 5 ( T ) / ( T ' X{T)) dT +1/(r' X(T)) dT ds 
l - Л ( l ) 

V 
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\ / 1 

~r^T)Jh^ r^i)/^)/(^w)^ 
° V i 

\ 

/ / ( r , + f(т,x(т))dт ds 

/ 

тЛт / ( 1 " "<s)^ т^да / «w/fr. *» *• 

+ 

1 

Jf(r,x(т)) dт ds 

/ 

> 

ł / i i 
^-L^ J (1 - h(s))фя Г ľ ^ î y / 5 ( т ) ^ Ш d т + / ^ ( A ) d т ) ds 

0 V ł l 

/ . i л 

= ěw)í{l-h{s))^ M(i)A ( T ) d r +-i 
0 V i 

ds 

i.e., ^i(-4-c) > 6 for x G Pi(^i;&,26). This shows that (Ci) of Theorem 2.1 
is satisfied. Finally, we show that (C3) of Theorem 2.1 also holds. Suppose 
x G Pi(^i;6,c) with \\Ax\\ > 2b. Since (Aix);,(t) < 0 and (Aix)'(t) > 0 for 
£ G [0,1], we have Aix(t) > t||Aix||, then 

Vi(Лix) = Л i a : ( ì ) > - | | A i x | | > 6 . 

So condition (C3) of Theorem 2.1 is satisfied. Therefore an application of The­
orem 2.1 completes the proof. • 

From Theorem 3.1, we see that when assumptions like (Di)-(Ds) are appro­
priately imposed on / , we can obtain any number of positive solutions of (1) 
and (2). To be more precise, we have the following conclusion. 
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THEOREM 3.2. Suppose (Hi) and (H2) hold and there exist constants 0 < a\ < 
b\ < 2b\ < a2 < b2 < 2b2 < • • • < an for n G N, such that the following 
conditions are satisfied: 

(Ei) f(t, x) < (j)p(m\ai) for t G [0,1] and x G [0, a;] with i = 1 , . . . , n. 

(E2) f(t,x) > (f)p(bi/5\) fort G [^,1] andx G [6;, 26;] with i = l , . . . , n . 
Then BVP (1) and (2) has at least 2n — 1 positive periodic solutions. 

P r o o f . When n = 1, it follows from condition (Ei) that A\: Plai —> Pi , a i 

which means that A\ has at least one fixed point x\ £ P\ai by the Schauder 
fixed point theorem. When n = 2, it is clear that Theorem 3.1 holds with 
c = a2. Then we can obtain at least three positive solutions # i , x2 and £3 
satisfying ||#i|| < a i , ip\(x2) > bi, ||x3|| > ai and ip\(xs) < °i- Following this 
way, we finish the proof by the induction method. 

Similarly, we have the following theorems for existence of at least three posi­
tive solutions or 2n — 1 positive solutions of BVP (1) and (3), whose proofs are 
similar to those of Theorem 3.3 and Theorem 3,4 and hence are omitted. • 

THEOREM 3.3. Assume (Hi) and (H2). In addition, there exist constants 0 < 
a < b < 2b < c, b < m252c such that 

(G\) f(t,x) < 4>p(m2a) for t G [0,1] and x G [0,a]. 

(G2) f(t,x)xt)p(b/52) fortt [\,l] andxe [6,26]. 

(G3) f(t, x) < (j)v(m2c) for t G [0,1] and x G [0, c]. 

Then BVP (1) and (3) has at least three positive solutions x\, x2 and £3 such 
that 

\\x\\\ < a, 6 < ip2(x2) and ||x3|| > a with ^2(^3) < 6. 

THEOREM 3.4. Suppose (Hi) and (H2) hold and there exist constants 0 < a\ < 
b\ < 2b\ < a2 < b2 < 2b2 < • • • < an for n G N. such that the following 
conditions are satisfied: 

(Fi) f(t, x) < 4>p(m2ai) for t G [0,1] and x G [0, a*] with i = 1 , . . . , n. 

(F2) f(t,x) > 4>p(bi/52) fort G [|, 1] and x G [6^,26;] with i = 1 , . . . ,n . 

Then BVP (1) and (3) has at least 2n — 1 positive periodic solutions. 

Now, we present some examples to illustrate the main results. 
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Example 3.1. Consider the following BVP 

x"(i) + /(x(t)) = o, te(o,i), 
x(0) = 0, x '( l) = ± x ' ( ± ) , 

(10) 

where 

x, 0 < x < 1, 
f(x) = { S+Џx-A), l < x < 4 , 

3 + Ş ( x - 4 ) , x > 4 . 

We find that for h(t) = 0 and 

m J O , if 0 < x < i 

^) = l i i f | < x < ! 

the boundary value conditions in (10) reduce to (2). It is easy to check m i = 1 
and Si = 1/2. Choose a = 1, b = 4 and c = 24. Then a < b < 2b < c and 
b < mi^ic, furthermore, 

< m i c = 24, 0 < x < 2 4 , 
/(x) { > b/5i = 8, 4 < x < 8, 

< m i a = 1, 0 < x < 1. 

An application of Theorem 3.1 implies (10) has at least three positive solutions 
xi, £2 and X3 such that | |xi | | < 1, x ( | ) > 4, | |x3| | > 1 and x^(^) < 4. 

Example 3.2. Consider the BVP problem 

(My'))' + f(y) = o, te(o,i), 

t(0) = / s 2 u ( s ) d s , u ' ( l ) = / s V ( s ) d s . ( 1 1 ^ 

We observe that p = 3, q = 3/2, g(s) = ^ s 4 and h(s) = ^s 3 . It is easy to check 
that 

1/2 / 1 
3 (M ! ^ , 4 f l 4 j 1 \ 9 5 / 2 7 1 

íi = 2 / d - 3 ^ 3 1 4 r d r + 2 ] d S = ^8V^0-
0 \ 1/2 
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m i /H-Wš/i 3/2 1 g / ĄT dт -f 1 - 5 I d s 

> І/ИWi/^+1Ьľ 
2VT5 

11 
Choose a = 1, b = 2, c = 60, we find a < b < 2b < c and 6 < miSic. Hence if 

' ^ ^ ( 2 # ) , 0 < a : < l , 

k < </>3 ( ^ ) , 0 < x < 60, 

then by application of Theorem 3.1, (11) has at least three positive solutions. 
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