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STRONGLY ALMOST CONVERGENT 
GENERALIZED DIFFERENCE SEQUENCES 

ASSOCIATED W I T H MULTIPLIER SEQUENCES 

AYHAN E S I * — B l N O D CHANDRA T R I P A T H Y * * 

(Communicated by Pavel Kostyrko) 

A B S T R A C T . Let A = (A^) be a sequence of non-zero complex numbers . In this 
paper we introduce the strongly almost convergent generalized difference sequence 
spaces associated with multiplier sequences i.e. wo [A, A m , A,p], wi[A, A m , A,p], 
woo [A, A m , A, p] and study their different proper t ies . We also in troduce A m - s t a t -
istically convergent sequences and give some inclusion relations between 
wi[Am, A,p] convergence and A m -s ta t i s t ica l convergence. 
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1. Introduc t ion 

Throughout the article w, l^, C, CO denote the spaces of all, bounded, conver
gent and null sequences respectively. The studies on difference sequence space 
was initiated by K i z m a z [8]. He studied the spaces 

Z(A) = {x = (xk) e w : Ax = (Axk) e Z\, 

for Z = £00, c and c0, where Axk = xk — z/t+i, for all k G N. 

It was shown by him that these spaces are Banach spaces, normed by 

\\X\\A = \xi\ + sup|Ax fc | . 
k 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40A05, 40C05, 46A45. 
K e y w o r d s : multiplier sequence, paranorm, regular ma trix, difference sequence, statistical 
convergence. 
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The notion was further generalized by E t and C o l a k [1] as follows: 

Let m > 0 be an integer, then 

Z(Am) = {x = (xk) G w : Amx = (Amxk) G Z}, 

for Z = £oo,c and c0, where Amxk = Am~1xk - Am~1xk+i, A°xk = xkl for all 
keN. 

The generalized difference Arnxk has the following binomial representation 

&mxk = YJ(-W{m
iW+u 1) 

2 = 0 ^ ' 

for all k G N. 
Later on the notion was further investigated by T r i p a t h y ([19], [20]), E t 

and E s i [2] and many others. 
Let A = (ank) be an infinite matrix of complex numbers. Then A is said to 

be regular if and only if it satisfies the following well-known Siverman-Toeplitz 
conditions 

(i) SUp Y, \ank\ < CO. 
n k=l 

(ii) lim ank = 0, for each k G N. 
n—>oo 

(iii) lim J2 ank = 1. 
~ ~nk=i -̂ oo , 

The scope for the studies on sequence spaces was extended by using the notion 
of associated multiplier sequences. G o e s and G o e s [7] defined the differen
tiated sequence space dE and the integrated sequence space J E for a given 
sequence space F1, using the multiplier sequences (k _ 1 ) and (k) respectively. 
Some other authors took some particular type of multiplier sequences for their 
study. In this article we shall consider a general multiplier sequence A (Xk) 
of non-zero scalars. 

Let A = (Xk) be a sequence of non-zero scalars. Then for E a sequence space, 
the multiplier sequence space -E'(A), associated with the multiplier sequence A 
is defined as 

E(A) = {(Xk)ew: (Xkxk)eE}. 

The notion of paranormed sequence space was studied at the initial stage by 
N a k a n o [12] and S i m o n s [17]. It was further investigated from sequence 
space point of view and linked with summability theory by M a d d ox [10], 
L a s c a r i d e s [9], N a n d a [13], R a t h and T r i p a t h y [14], T r i p a t h y 
and S e n [21], T r i p a t h y [20] and many others. 
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2. Definitions and preliminaries 

Throughout A = (ank) be an infinite regular matrix of non-negative complex 
numbers and p = (pk) be a sequence of real numbers such that pk > 0, for all 
k e N and H = suppfc < oo. Let m > 0 be an integer and A = (Afc), be a 

k 
multiplier sequence. Then we define 

w0[A,Arn,A,p} = {x = (xk)ew: lim £ anfc|AfcAmxfcr = o), 
l n->oo k=1 ) 

( oo 
uvi[A,A m ,A,p]= \x = (xk)ew: lim £ anfc|AfcAmXfc - L\*»* = 0, 

I n-^ook=1 

for some L > 

wM A m , A,p] = {x = (xA;) e w : sup g anfc|AfcAmXfc|^ < oo) , 
L n fc=l > 

If (xfc) G wi[A, A m ,A ,p ] , then we write xk —• L(wi[A, A m , A,p]). 

We get the following particular cases of the above sequence spaces by restrict

ing some of the parameters m, p, A = (ank) and A = (Afc). 

When A = (ank) = (C, 1), Cesaro matrix, we mention the above mentioned 
spaces by u70[Am, A,p], u>i[Am, A,p] and ivoo[Am, A,p]. For instance 

{
oo 

x = (xk) ew: lim 1 £ anfc|AfcAmXfc - L | ^ = 0, 
™-+°° fc=i 

for some L >. 

When m = 0 and A = e = ( 1 , 1 , 1 , . . . ) , we obtain the sequence spaces [A,p]o, 
[Ap]oo and [-4,p]i, introduced and studied by M a d d o x [10]. If x e [A,p]\, 
we say that x is strongly A-summable to L. 

When A = (C, 1) i.e. the Cesaro matrix, m = 0 and A = e, we obtain the 
sequence spaces wo(p), tvoo(P) and wi(p), introduced and studied by M a d d o x 
[10]. If x e [-4,p]i, we say that x is strongly p-Cesaro summable to L. 

Let p = (pk) be a bounded sequence of strictly positive real numbers. Let 
H = suppfc and D = max(l , 2H~l). Then we have (see for instance M a d d o x 

[ii]), 

|ofc + 6 fc|P-<£>(|o fc|P- + |6 fc| ' '-). (2) 
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3. Main results 

The proof of the following result is obvious. 

T H E O R E M 1. Let A = (ank) be a non-negative matrix andp — (pk) be a bounded 
sequence of positive real numbers. Then 

(i) w0[A, A m , A,p], W\[A, A m , A,p] andw^A, A m , A,p] are linear spaces over 
the field C. 

(ii) ^ [ A A ^ A ^ l c ^ l A A - A ^ ] . 

T H E O R E M 2. Let A = (anfc) be a non-negative matrix and p = (pk) be a 
bounded sequence of positive real numbers. Then the spaces w0[A, A m , A,p] arzd 
wi [̂ 4, A m , A,p] are complete linear topological spaces, paranormed by 

E ґ OÜ 

\XІXЬ\ + sup<^ £ ank\Xkă,шxk 

| l ,SUppfcj . 

м 

where M = max 

P r o o f . Clearly p(0) = 0, g(—x) = g(x) and by Minkowski's inequality g(x -f 2/) 
< g(x)-{-g(y). We now show that the scalar multiplication is continuous. When
ever f —> 0 and x —> 0, imply g(£x) —> 0. Also x —> 0, we have g(£x) —• 0. Now 
we show that £ —> 0 and x fixed imply g(£x) —> 0. Without loss of generality let 
|£| < 1. Then the required proof follows from the following inequality. 

m , oo A JJ 

9(&) = '52\friXi\+zup{ ^an,|eAfcA
mxfc|

Pfc f , 
2 = 1 n ^ = 1 J 

m • oo 

< ICI E lA^*l + max{KI> 1̂ 1̂  } SUP £ ank\XkA
mxkr 

2 = 1 V fc=l 

<max{|e| , |C|^}-g(x)-0, as |£| - 0. 

Let (x5) be a Cauchy sequence in Hj0[A, A m , A,p]. Then g(xs - xf) -> 0, as 
s, £ —• oo. For a given e > 0, let no be such that 

m
 r o o N --j 

E l A . ^ I - x D l + s u p j ^ a n f c | A f c A m ( x f c - x f c ) r | < e, for all s , i > n 0 . 
2 = 1 ^ 2 = 1 

(3 
m 

Hence ^2 lA^xf — A;x*| < e, for all s,£ > n0. 
2 = 1 

= > {A^xf } is a Cauchy sequence for each i = 1, 2 , . . . , ra. 

= > {A^xf } converges in C for each i = 1, 2 , . . . , m -
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Let l im A^xf == yi, for each i = 1 ,2 , . . . , m. Let 
s—•oo 

lim xs = Xi, say, where Xi = y%X~l, for each i = 1,2, . . . , m. (4) 
s—•oo 

C oo N i 
Prom (3), we have sup^ £ anfc|AfcA

m(x£ - xl
k)\** f < c, for all s, t > n 0 . 

===> \XkA
mxs

k-XkA
mxt

k\ < e, for all s,t > no, since ank are strictly positive. 

===> {XkA
mxk} is a Cauchy sequence in C for each fc G N. 

Hence {XkA
mxs

k} converges for each k G N. Let lim AfcA771^ = 2fc, for each 

k G N. 

Let 

lim A m x | = yk = zkXk
1 for each fceR (5) 

5—^OO 

Hence from (1), (4) and (5) it follows that lim x m + 1 = x m + i - Proceeding in 
s—^oo 

this way inductively, we have 

lim xi = xk, for each k G N. 

By (3) we have 

< e , 

for all s > no. 

<e, 

for all 5 > n 0 . 

r m c oo 1 ^ 1 

lim VlA^xf-^l+sup ^ a ^ l A f e A - ^ - ^ r ř 
L i=i n L fe=i J J 

for all 

f m , oo 1 ^ " l 

{ E M * ' - * * ) i + s u P { E a ^ i A * A m ( ^ - ^ ) i P f c j ) 

==> g(xs — x) < e, for each 5 > no. 

=>(xs-x)ew0[A,Am,A,p]. 

Since wo[A, Am, A,p] is a linear space, so we have 

x = xs - (xs - x) G w0[A, Am, A,p]-

This complete the proof. ----

THEOREM 3. Let A = (ank) be a non-negative regular matrix, 0 <pk < qk and 
(^-) be bounded. Then Wl[A, Am, A,q] C wx[A, Am, A,p]-

P r o o f . Let x ewi[A,Am,A,q\. Define 

{2/k> for yk > 1, 
0, for yk < 1 
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and 

(o, ioiyk>l 

[Lyfc, for yk < 1, 

where yk = \\kA
mxk - L\Pk. 

Therefore yk = uk + vk and yl
k = uf

k
k + vl£, where tk = ^-. 

Now it follows that u]^ < uk < yk and v[k < v^ for 0 < ( < tk < 1. 

Following M a d d o x [10], we have the following inequality 

OO OO • OO \ £ 

^2ankylk < ^2ankUk+ f ^2ankVk) ||-4||1_C. 
fc=l fc=l ^ fc=l ' 

Hence we have x € wi[A, A m , A, q\. • 

THEOREM 4. Let A be a non-negative regular matrix and p = (pk) be such that 
0 < h = inf pk <pk<H = suppfc. Then 

X(Am,A)cLDoo[-4,Am,A,p], for X = £OOic,c0, 

where X ( A m , A) = {x = (xk) : (\kA
mxk) E X). 

P r o o f . Let x G 4 o ( A m , A ) . Then there exists K > 0, such that {^A^x^ 
< if, for all fcGN.We have 

OO OO 

Y,ank\\kA
mxk\

Pk < m^{Kh,KH)YJ
ank < oo. 

fc=i fc=i 

Hence 4 o ( A m , A ) C WQO[A, A m , A,p]. The other cases can be established 
similarly. ----

THEOREM 5. 

(i) LetO<infpk<pk<l. Then wx[A, A m , A,p] C wi[A, A m , A]. 

(ii) Letl<pk<suppk<oo. Then wx[A, A m , A] C wi[A, A m A,p]. 

(iii) Letm1<m2. Then wx[A, A m 2 , A,p] c wx[A, A m i , A,p]. 

P r o o f . 
(i) Let 0 < infp/- < pfc < 1 and (xfc) G w\[A, A m , A,P]. Then there exists L 

such that 
oo oo 

s u p ^ a n f c | A f c A m x f c - L\< s u p ^ a ^ A ^ 7 7 1 ^ - L\Pk. 
71 k=i n

 k=i 

Hence (xk) G ^i[-4, A m i , A]. 
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(ii) Let 1 < pk < suppk < oo, for all k G N and (xk) G wi[A, A m , A]. Then for 
oo 

each 0 < e < 1, there exists a positive integer J such that J2 anfc|A/cAm£fc — L\ < 
k=i 

e < 1, for all n > J. This implies that 

OO OO 

J^an f c |A f cAmx f c - K|Pfc < 5^anfc |AfcAmxfc - L\ < c, for all n > J 
k=i k=i 

Hence (xfc) G wi[-4, A m i , A,p]. 

(iii) The Proof is a routine verification. • 

4. Statistical convergence 

A complex number sequence x = (xk) is said to be statistically convergent to 
the number L if for every e > 0, 

lim -\{k<n: \xk - L\ > e}\ = 0, 
n—>oo n 

where the vertical bars indicate the number of elements in the enclosed set. In 
this case we write stat-lim Xk = L. 

The idea of statistical convergence for sequence of real numbers was studied by 
F a s t [4] and S c h o e n b e r g [16] at the initial stage. Later on it was studied 
from sequence space point of view and linked with summability methods by 
S a l a t [15], F r i d y [5], F r i d y and O r h a n [6], T r i p a t h y [18] and many 
others. 

A complex number sequence x = (xk) is said to be A™-statistically convergent 
to the number L if for every e > 0, and fixed m G N, 

lim - | { k < n : |AfcA
mxfc - LI > e)I = 0, 

n—>-oo n 

in this case we write Am-stat-lim Xk = L and by S(Am) we denote the class of 
all Am-statistically convergent sequences. 

When m = 0 and A = e, the space S(A™) represents the ordinary statistical 
convergence. 

When A = e, the space S(A™), becomes the generalized difference statisti
cally convergent sequence space defined and studied by E t and N u r a y [3]. 

Now, we shall give some inclusion relations between tv i[Am , A,p]-convergence 
and Am-statistical convergence. 
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THEOREM 6 . 

(i) xk -> L(wi[Am ,A,p]) , 0 < p < oo implies xk ->• L[S(Am)j. 

(ii) (xfc) e 4 o ( A m , A ) and xk -> L[5(Am)] imp/j/ xk -> L(wi[Am , A,p]), 
0 < p < oo. 

(iii) 5 ( A m ) n £ 0 0 ( A m , A ) = U ; 1 [A m ,A ,p ]n^ 0 0 (A m ,A) . 

P r o o f . 
(i) Let xfc —> L(tOi[Am, A,p]), 0 < p < co and e > 0 be given, we can write 

1 n 1 1 
-^ |A f cAm* f c-Fr = - £ |AfcA

mxfc-L|^ + - V |AfcA
mxfc-Fr 

n -"—-/ n i-—' n --—̂  
fc=l fc<n, fc<n, 

|A f cA™* f c-L|> e l*fc^m*fc i l « 

> i | { k < n : | A f c A m x f c - L | > e } | e p . 

Hence xfc -> L[S(Am)] . 

(ii) Suppose that (xk) e 4 o ( A m , A) and (xk) 6 [S(Am)]. Let B = |AfcA
mxfc 

+ |L| and e > 0 be given, let nn(e) be such that 

- |{fc<n: |AfcA
ma;fc-i| > (f)H| < 

ni l z J I 2 B P ' 

for all n > n0(e), let Ln = j k < n : |AfcA
mxfc - F| > ( f ) p | - Now for all 

n > nn(e), we have 

i £ |A,Amxfc - i f = I J ] |AfcA
mxfc - L|»> + I £ |AfcA

mxfc - L " 
/ c = l keLn k^Ln 

1 / ne \ __ 1 e 
< n ( 2 ^ j B P + n n 2 = e -

Hence xfc —> L(Hji[Am, A,p]). 

(iii) Follows from (i) and (ii). • 

Acknowledgement . The authors thank the referee for the comments and sug
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