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ON EXISTENCE OF TAME HARRISON MAP

PRzZEMYSE.AW KOPROWSKI

(Communicated by Stanislav Jakubec)

ABSTRACT. We present here two new criteria for existence of a tame Harrison

map of two formally real algebraic function fields over a fixed real closed field

of constants. The first criterion (c.f. Theorem 2.5) shows that a square class

group isomorphism is a tame Harrison map if it induces an isomorphism of the

coproduct rings of residue Witt rings. The other result (c.f. Proposition 3.5)

associates a tame Harrison map to an integral quaternion-symbol equivalence.
©2007
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1. Introduction

The notion of Witt ring plays a central role in the algebraic theory of quadratic
forms. It is natural to ask for criteria for the existence of an isomorphism of
Witt rings. This subject has been studied by several authors for over 30 years
(see e.g. [11], [2], [13], [14], [6], [5], [7]). One of the tools used here, called a
Harrison isomorphism, is an isomorphism ¢ of square class groups of the ficlds
in question such that t(—1) = —1 and the element 1 is represented by a binary
form (f, g) iff it is represented by (tf,tg). Any such Harrison map induces an
isomorphism of the Witt rings of the fields involved (see [9, Theorem XII.1.8]).

Take now a fixed real closed field k and let K, L be two formally real algebraic
function fields over k. Denote Q(K), (L) the sets of points of K, L trivial on k.
Among all the points of K (resp. L) we select those having the residue field
isomorphic to k. Following [4], we call such points real and denote the set of all
real points vX (resp. yL). It is a real curve over k. Fix an orientation (see [4, §5])
of 5 ~L. With a point p € v& we associate two orderings of K, consisting of all
elements of K (treated as functions on y*), positive in right /left neighbourhood
of p. We denote those ordering P, (p) and P_(p) respectively (see [6, §2]).
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PRZEMYStLAW KOPROWSKI

Recall that a Harrison isomorphism t: K/K? — L/L? is called tame (sce 6.
Definition 2.18]) if it maps 1-pt fans onto 1-pt fans. The tame Harrison map
canonically induces a bijection T': v — 4% of the sets of real points of i and L.
Namely, let p € v be a real point of K and Py (p), P—(p) be the two orderings
of K compatible with p (for the notion of orderings compatible with valuation
consult [8]), if ¢ is tame, then it inaps the fan Py (p) N P_(p) onto a 1-pt fan of L.
Denote q € v* the point of L compatible with t(P4(p) NV P-(p)). The bijection is
then given by T'(p) := q. It was shown in [6, Proposition 3.1, Lemma 3.6] that 7'
is a homeomorphism with respect to Euclidean topologies of 4. ~L. It is. thus.
natural to ask for criteria for the existence of a tame Harrison isomorphism.
One such a criterion was given already in [6. Theorem 3.8]. It was shown there
that any homeomorphism y* — ¥ gives rise to an appropriate tame Harrison
map. In particular, if ¥ and 7% have the same number of semi-algebraically
connected components then such a map does exist.

In this paper we present two more conditions for an existence of a tame Har-
rison map: Theorem 2.5 and Proposition 3.5. To this end we nced to utilise the
notion of a quaternion-symbol equivalence. Recall (sec [6], [5]) that a quaternion-
symbol equivalence of fields K, L with respect to (7%,~v%) is the pair of maps
(t.T) such that t: K/K? — L/L? is an isomorphism and T: v* — 4L a b

fr9

jection and such that a local quaternion algebra (7\?) splits if and only if the

local quaternion algebra (%—:5) splits for all square classes f,g € K K2 and

every point p € ¥, In general a quaternion-symbol equivalence does not pic-
serve —1 but it is easy to show (sce [6, Proposition 2.6]) that there exists a
quaternion-symbol equivalence iff there exists one that maps —1 € K K? to
-1 € L/ L?. In this paper we consider only those quaternion symbol equiva-
lences that preserve —1. Moreover, we implicitly assume a quaternion-svmbol
equivalence to be taken always with respect to (v%,v%). Hence in what follows.
unless stated otherwise, the phrase ‘a quaternion-symbol equivalence’ actually
means ‘a quaternion-symbol equivalence (with respect to the sets of real points)
that preserves —1’. It was shown in 7, Theorem 3.1] that any quaternion-symbol
cquivalence preserves the parity of a valuation in the sense that

ordy, f =ordrp tf (mod 2) for every f € K/K? and every p € ~ .

A tame Harrison isomorphism together with the canonically induced bijec
tion T: v — 4% is a quaternion-symbol equivalence (see [6, Proposition 3.1] .
Conversely, if (¢,T') is a quaternion-symbol equivalence (recall that we implicitly
assume that ¢t maps —1 to —1), then t is a tame Harrison map.

In Theorem 2.5 we prove that a Harrison map for which the diagiam 2.6
commutes is tame. This result is a real counterpart of the analogous result
proved for global fields in [14]. Next, in Proposition 3.4 we show that anv tame
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Harrison map induces an integral equivalence. The converse of this is generally
false. However in Proposition 3.5 we show that the ezistence of an integral
cquivalence implies the existence of a tame Harrison map.

2. Isomorphism of a coproduct ring

Paper [14] presents a criterion for a Hilbert-symbol equivalence of global fields
to be tame (recall, [11], [13], that a Hilbert-symbol equivalence is a predecessor
of a quaternion-symbol equivalence, in particular those two terms coincide on
global function fields). Theorem 2.5, that we present in this section, can be
treated as a certain analogue of that result.

First we need the following lemma. Here, for a non-empty set I, we denote
Z1) a coproduct of card(I) copies of Z. Obviously, Z() is a group but we can
augment it with a ring structure (without a unit!) by considering a component-
wise multiplication. In particular, if we denote &; € Z) a ‘Kronecker delta’ (i.c.
an element having 1 on i-th coordinate and zeros everywhere else), then we have

0; 1=
Py 2.1
0i-9; {O, if i #j. @1

LEMMA 2.2. If®: ZU) — Z(0) is a ring automorphism of Z1), then there exists
such a permutation o of the set I that

D ((n)ier) = (na(i))iel’

Proof. Fixi € I. The element d; is then a unit of a subring Z; of the ring Z(1),
defined by Z; := {(xj)jef : z; = 0forj # z} = 7. Moreover Z; = 6; - ZU),
hence

B(Z;) = 8(6,)(ZD) = ®(5;) - 2. (2.3)
Thus, we need only to show that there is j € I such that ®(d;) = J;. Let
O(6;) =p1+ -+ Bn where B € Z;, < ZI) are the all nonzero coordinates of
®(5;). Now 62 = §; and so

Brotoot B =(07) = 2(6:)° = (B ++ -+ Bn) = f7 + - + 57

Here the last equality follows from (2.1). Consequently 82 = f € Z;, =~ Z,
hence B = 4;,.

Now Z; is a free Z-module of rank 1 and so is its image ®(Z;). On the other
hand

O(Zi) = (6i, +-++8,) 2D =Ly, @ 0 Zi,
is a free Z-module of rank n. Therefore, n = 1 and ®(0;) = §;,. O
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Now, if instead of a single ring Z(!) we consider two such rings, then the above
lemma transcribes to:

COROLLARY 2.4. Let A, B be two non-empty sets of the same cardinality. If
®: 2 — 7B s a ring isomorphism, then there erists a bijection T: A — B
such that

B((m)ies) = (n72) e

We are now ready to state our first main result. Recall that any Harrison
map t: K/K? — L/L? induces the isomoiphism of Witt rings WK — V'L
sending (f1,..., fn) to (tf1,...,tfn). Such an isomorphism is called a strong
Witt isomorphism associated to t.

THEOREM 2.5. Lett: K/K? — L/L? be a Harrison map and leti,: WK — WL
denote a strong Witt isomorphism associated with t. If the diagram

WK 2. @ WK(p)

peyk

zl l@ (2.6

WL —— @ WL(q)

dL qE'yL

commutes, where the vertical arrows are ring isomorphisms, then t is tame.

Proof. For every point p € % we have K(p) = k, likewise for every point

q€~l. Hence @ WK(p) = Z0") and &P WL(q) = z0"). By the previous
penk ge L

corollary the isomorphism ® induces the bijection T': v — ~L. Thanks to 6.

Theorem 3.2] and [7, Theorem 3.1], all we need to do is to prove that (¢.7) is a

quaternion-symbol equivalence.

We claim that the pair (t,T") preserves a parity of a valuation in the sense
that ord, f = ordpp tf (mod 2) for every f € K/K? and every p € v, Indeed,
take a point p € 4%, fix its uniformizer p and let ¢ := tp. Consider the second
residue homomorphism d,: WK, — WK(p) = Z. We have J,(p) = 1. so using
the commutativity of (2.6) we obtain

1= (@[5, 0 9x)(p)) = (mrp 0 ) ((tp)) — D1y ({a ),
here mpy 70" Zyp denotes the projection. Thus ¢ is a uniformizer of T'p.
Similarly —p is mapped to —¢ and this proves our claim.

In particular this implies that ¢ factors through K, g for every point p € ™.
Indeed, take a point p € ¥ and such a square class f € I.('/I'(2 that f € Kg
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We then have 9,(fp) = 1 and so the commutativity of (2.6) implies that also
Ory((tf - a)) = (B |, o k) =1,
thus tf € L7,.

Take now two square classes f,g € K / K? of K and a point p € v, Assume
that a quaternion algebra (%) splits. This is possible only if at least one of the
elements: f, g, fg is a square in the completion K,. As we have already noted,
t preserves local squares, so tf, tg or tftg must be a square in Ly, which means

that a quaternion algebra (%’Tif) splits. All in all, [7, Theorem 3.1] implies that

(t,T) is tame in every point of ¥ and so [6, Theorem 3.2] implies that ¢ is a
tame Harrison map. O

3. Integral equivalence

Let R(K) (respectively R(L)) denote the ring of regular functions on ¥
(resp. vF), for details see [1]. It is a Dedekind domain (see [12, §III.2]) and can
be explicitly written as

R(K)={f€ K: ord, f >0 for all p € v¥}.
By [10, Corollary 1V.3.3] and [4, Theorem 11.2] the following sequence is exact:
0— WR(K) - WK — @ WK(p) — 2" -0, (3.1)

pevK

where M is the number of semi-algebraically connected components of y*. Of
course we can build a similar sequence for the field L, as well:

0—WR(L) = WL — € WL(q) - ZV — 0. (3.2)
qevE
Following the terminology of [2], [7] we shall say that a quaternion-symbol
equivalence (t,T) is integral if the induced strong isomorphism of Witt rings
WK — WL maps WR(K) onto WR(L). Here, as in the rest of this paper, we
identify W R(K) with its image in WK under (3.1). First let us note down an
immediate observation.

OBSERVATION 3.3. If the sequences (3.1) and (3.2) are isomorphic, then there
ezists a tame Harrison map K/K? — L/L?.

Indeed, if (3.1) and (3.2) are isomorphic, then M = N, so v and 4 both
have the same number of semi-algebraically connected components. Hence, [6,
Corollary 3.9] implies the assertion.
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PROPOSITION 3.4. Let t: K/K? — L/L? be a tame Harrison map and let
T: v5 — 4L be the associated bijection, then (t,T) is an integral quaternion-
symbol equivalence.

Proof. Fix a quadratic form ¢ over K and assume that ¢ € WR(K) C WK.
It follows from the exactness of (3.1) that 9, = O for every point p € .

Let ¢ = (f1,..., f&) + () (fk+1,---, fn) with ordyp = 1 (mod 2) and ord, f;
= 0 (mod 2) for 1 < i < n. Then 0 = Jpp = sgn(fe+1(p),..., fn(p)), now t
being tame preserves local signs (see [6, Lemma 3.3]), hence

0= <tfk+1(Tp)a SRR tfn(Tp)> = 8Tpit(‘P)'
Thus, exactness of (3.2) implies that i, € WR(L). O
It is natural to ask whether the opposite implication is also true: whether
integrality implies tameness. Unfortunately, in general the answer is negative.

To see this consider a bijection T: P*(R) \ {1} — P(R) \ {£1} of a projective
line P!(R) with points +1 excluded, which inverts the interval (—1,1). Namely,

T|_yp=-id,  Tlp d.

B)\[-1,1) |

Now [6, §4] implies that T gives rise to a Harrison automorphism ¢ of
. )
R(X)/R(X) . It is straightforward to check that (¢,T") is integral but ¢ maps

t(P-(-1)) = P_(-1) t(Py(—1)) = P_(1)
t(P-(1)) = Py(-1) t(Py(1) = Pi(1),

hence, it does not preserve 1-pt fans and so it is not tame.

Nevertheless, although we cannot expect an integral equivalence to be tame,
the following existential result does hold.

PROPOSITION 3.5. If there exists an integral quaternion-symbol equivalence of
K and L, then there exists a tame Harrison map K/K? — L/L?.

Before we proceed with the proof, let us first make a simple observation.
Denote

E(K):={f € K/K*: ordy, f =0 (mod 2) for every p € v*}.
Now it follows from the exactness of (3.1):

OBSERVATION 3.6. Let f € K/K? be a square class. Then f € E(K) if and
only if (f) € WR(K).

Now equipped with the above observation we are ready to prove 3.5.
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Proof. Assume that the asserted Harrison map does not exists. Hence, by
[6, Corollary 3.9], the real curves v and 4% have different numbers of semi-
algebraically connected components. Let 45, ..., v% be the components of v
and vf, ... ,'yk, be the components of v, Without loss of generality we may
assume that M > N. By [6, §4] we can find finite subsets S C v¥, S’ C vL and
a quaternion-symbol equivalence (¢, T) of K, L with respect to (v \ S,v*\ S").
(This is the only part of this paper, where we consider a quaternion-symbol
equivalence with respect to anything else than (y%,~%)).) It is tame at every
point of X\ S (see [7, Theorem 3.1]), hence in particular it preserves local signs
at those points: sgn f(p) = sgn(tf)(Tp) for every f € K/K? and p € v5\ S.

By the means of [4, Theorem 2.10], for every 1 < i < M, we can find a function
gi € K such that g; is regular on v/, positive definite on v* \ v/ and negative
definite on 4X. In particular, by the above observation, (g;) € WR(K). Hence
the integrality implies (tg;) € WR(L). Consequently, using again the above
observation, we have tg; € E(L), which means that it has a constant sign on
every component of y~.

Now, since % has more components than y~, thus at least one component
of ¥ must be mapped into more than one component of v%. To express this
precisely: we can find 1 < j,k < M and 1 <[ < N such that both T'yJK Nk
and Ty N~} are open and non-empty. Therefore, tg; is positive definite on
T Ny} and negative definite on Ty N[, so it changes sign on 7/ a
contradiction. O
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