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THE STABILITY OF PARAMETER ESTIMATION
OF FUZZY VARIABLES

Duc HuN HonaG

Recently, the parameter estimations for normal fuzzy variables in the Nahmias’ sense
was studied by Cai [4]. These estimates were also studied for general T-related, but not
necessarily normal fuzzy variables by Hong [10] In this paper, we report on some properties
of estimators that would appear to be desirable, including unbiasedness. We also consider
asymptotic or “large-sample” properties of a particular type of estimator.
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1. INTRODUCTION

Zadeh [23] and Nahmias [18] introduced the concept of a variable as a possible
theoretical framework from which a rigorous theory could ultimately be constructed
about fuzziness. Cai et al. [2, 3] established fuzzy variables as a basis for the probist
reliability theory, but little attention has been paid to the parameter estimation
issues of fuzzy variables except in the case of fuzzy software reliability modeling.
Badard [1] considered the “minimum fuzziness estimator” for fuzzy models and
studied the convergence of these estimators. Wang [22] presented various methods to
estimate the membership function under the name of ‘fuzzy statistics’. Dishkant [6]
discussed the parameter estimation of fuzzy variables in the Zadeh’s sense. Cai [4]
studied parameter estimation methods for normal fuzzy variables in the Nahmias’
sense. Recently, Hong [10] conducted additional investigations on the parameter
estimations of general T-related, but not necessarily normal fuzzy variables using
the results of Hong [11], Hong and Hwang [14], Mesiar [17], Markovd [16] and Hong
and Ro [13]. But as Cai [4] mentioned in his concluding remarks, the stability
behavior of parameter estimates are still falling within the scope of open problems.
The purpose of this paper is to introduce a way of studying stability properties of
parameter estimations of T-related fuzzy variables in the Nahmias’ sense, including
unbiasedness, mean squared error and consistency.

2. PRELIMINARIES

First we recall some definitions and notations relevant to this subject.
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Definition 2.1. For a base set I', suppose that G is the class of all subsets of I'.
Suppose a scale, o, is defined on G and satisfies the following properties:

(i) o(®) =0and o(I') = 1.

(ii) For any collection of sets A, of G(finite, countable or uncountable),

(UA )—SUpO’A ).

Then o is the scale measure and the triple (I",G, o) is referred to as the pattern
space.

Definition 2.2. A fuzzy variable X is a mapping from I" to R (the real number
line).

Definition 2.3. The membership function of a fuzzy variable X, denoted by ux,
is a mapping from R to the unit interval [0, 1] and is given by

px(x) =o(y: X(v) =2)

for all z € R. Note that

sup o (2) = o { | J(v : X(3) = 2)} = o(1) = 1.

x

In general we denote X = x to be the subset {v: X(v) =} of G.

It has been shown that the value of ux(x) at point x can be interpreted as the
possibility that X = x holds [2], though we are not asked to adopt Zadeh’s definition
of possibility measure [23]. Therefore the membership function of X can be viewed
as the possibility of X and we arrive at the following definitions.

Definition 2.4. The possibility distribution function of a fuzzy variable X, de-
noted by mx or px, is a mapping from R to the unit interval [0,1] and is given by
mx(x) = px(x) =o(X =z) for all z € R.

A function T : [0,1] x [0, 1] — [0,1] is said to be a t-norm [21] iff T" is symmetric,
associative, and non-decreasing in each argument, and furthermore, T'(z,1) = x for
all z € [0,1]. It is noted that T'(z,y) = min(z,y) is the strongest t-norm.

Recall that a continuous ¢-norm 7" is Archimedean iff T'(x, z) < z for all x € (0, 1).
A well-known theorem (see [21]) asserts that for each continuous Archimedean -
norm there exists a continuous, decreasing function f : [0,1] — [0, 00] with f(1) =0

such that
T(xz,y) = T (f(2) + f(y)
for all 2,y € (0,1). Here fI=1: [0, 00] — [0,1] is defined by

{f‘l(y) if y € [0, £(0))

(=1(y) =
) 0 if y € [f(0), o0].
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The function f is called the additive generator of T' and is unique up to positive
multiplicative factors.

The concept and terminology of ‘min-relatedness(unrelatedness)’ [18] can be gen-
eralized to T-relatedness as follows.

Definition 2.5. Given a pattern space (I',G, o) and a t-norm T', the sets 41, ..., A,
C G are said to be mutually T-related if for any permutation denoted by i1, ..., i,
and any k between 1 and n,

U(Aﬁ n--- ﬂAzk) = T(O’(Azl),,O'(AZk))

Definition 2.6. Given a pattern space (I, G, o) and a t-norm T, the fuzzy variables
X1,..., X, are said to be mutually T-related if the sets {X; = z1},...,{X, = xn}
are mutually T-related for all z¢,...,z, € R.

Another useful notation for fuzzy variables is the modal value, as a modal value
of fuzzy variable X may be imagined to be the ‘expected’ value of X. However we
note that a fuzzy variable may not have a modal value [20].

Definition 2.7. (Rao and Rashed [20]) Let X be a fuzzy variable with membership
function px. A real number m is said to be a modal value of X if ux(m) = 1.

Definition 2.8. (Rao and Rashed [20]) A fuzzy variable X is said to be unimodal,
if there exists a unique a € R such that pux(a) = 1. At this time we signify EX = a.

A fuzzy variable X is of the normal class [20], denoted N (a,b), if the membership
function pux is given by

z—a\’
,ux(x):exp<—( 5 )) for — oo <z < o0,

where a and b are constants.

Definition 2.9. A fuzzy variable X is of type H, denoted H(a,b), if the member-
ship function px is given by

Tr—a

px(z) = H (

) for — o0 < x < 00,

where H : R — [0, 1] is non-decreasing on (—oo, 0] and non-increasing on [0, c0) and
a,beR, b>0.

It is noted that if H(x) = e~ then N(a,b) = H(a,b).

We can describe the membership function of the fuzzy variable X of type H in
the following manner:

H_(z) for x < c,
px(z) =41 for c < x <d,
H,y(x) for d < z.
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We introduce the following function.
H~'(a) = inf{x: px(z) > a}
H{Y(@) =sup{z : ux(z) > a}

for a € [0, 1]
Heilpern [9] defined the expected interval of a fuzzy variable X of type H, which
is denoted by EI(X), as follows.

Definition 2.10. (Hilpern [9]) Assume [© 2z dH_(z)<occand [, x dH(z)<oo.
Then

EI(X) = {/C de_(x),/doode+(m)} =[EH_,EH,].

Definition 2.11. (Hilpern [9]) The center of the expected interval of a fuzzy
variable of type H is called the expected value of this variable. It is denoted by
EV(X),i.e., EV(X) = %(EH, +EH,).

The following two lemmas give us simple formulas for calculating the expected
interval and expected value of a fuzzy variable.

Lemma 2.1. (Hilpern [9]) Let X be a fuzzy variable of type H with EH_ < oo,
EH, < oo. Then

EH_:cf/ H_(z)dx,

oo
d

Lemma 2.2. (Hilpern [9]) Let H_ and H; be continuous with EH_ < 0o, EH < c0.
Then

1 1
EH_ = / H~'(t)dt and EH, = / H (1) dt.

0 0
A similar definition was defined by Chanas and Nowakowski in [5].

Suppose that Xy, ..., X, are fuzzy variables defined on (I",G, o). Then we have
the following result from Nahmias [18].

Theorem 2.1. (Nahmias [18]) Let Xi,...,X,, be mutually T-related and Z =
Xi e X, then g (2) = supy 4o, =2 Tk (21), i, (22), -5 pix, ()

The following results are due to Hong and Hwang [14], Mesiar [17] and Hong and
Ro [13].
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Theorem 2.2. Let T be an continuous Archimedean t-norm with additive gen-
erator f and let Xi,...,X,, be mutually T-related fuzzy variables with px,(z) =
Hxz—-a;)i=1,...,n. If foH is a convex function on R, then the membership
function of S,, = X1 +--- 4+ X, is

s, (2) = f70 <nf (H (Z nA”>)> :

where A,, = a1 + - + a,.

The following results are generalizations of Theorem 5.2 [15] due to Dubois and
Prade [7] and Hong and Kim [12].

Theorem 2.3. Let X and Y be two T-related fuzzy variables with modal values
a and b respectively. Then a4+ b is a modal value for the fuzzy variables Z = X +Y.

Theorem 2.4. Let Xy,..., X, be mutually min-related fuzzy variables H (a1, b1),

..., H(ay,b,), and o, ..., o, non-zero scalars. Then Z = Y. | o;X; become

H(Z?ﬂ Qi Z?:l |cvi|b;).

3. LARGE-SAMPLE PROPERTIES

Recently, Cai [4] and Hong [10] discussed parameter estimation issues for fuzzy
variables. In this section, we discuss some properties of estimators that would appear
to be desirable, including unbiaseness. Throughout this section, let X be a unimodal
fuzzy variable defined on the pattern space (I'; G, o) and

MX(@:@X:@:H(”CZ“).

X can be imagined as some quantitative representation of an object. To estimate a
and b, we conduct experiments on the object n times with X; being the corresponding
quantitative representation for the ith experiment. We assume that X1,..., X, are
mutually T-related and x1,...,x, are their realizations.

Definition 3.1. An estimator D is said to be an unbiased estimator of 7(0) if
EV(D) = 7(0).

Otherwise, we say that D is a biased estimator of 7(0).

Example 3.1. Consider a fuzzy variable from a membership function N(6) with
6 = (a,b). Suppose T'= “min” and a is unknown, but b is known. Cai [4] introduced
two estimators in estimating a,

X 4 X

ay = )
n

1
o = — (max X; 4+ min Xl).
2 \1<i<n 1<i<n
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Since EVay; = EVds = a, both estimators are unbiased for a.

A general idea is to select the estimator that tends to be closest or “most con-
centrated” around the true value of the parameter. It might be reasonable to say
that Do is more concentrated than D; about 7(0) if

{1, () = a} D {pp, () = a}

for all a > 0.

Example 3.2. Let us reconsider Example 3.1. Suppose T is the classical product,
i.e., T(z,y) = 2y and b = 1. Then by Theorem 2.2,

—n(z—a)? —2(z—a)?

ay () = € and jig, (2) = e
noting that maxi<j<, X; = mini<;<, X; = X. So for n > 2, d; is more concentrated
than ay about a.

Definition 3.2. Let X be a fuzzy variable of type H. We denote |EV|(X) =
L1(|EH_| + |EH]). We call [EV|(X —EV/(X))? the variance of X and denote it by
Var(X).

If D is an unbiased estimator of 7(6), one with a smaller expected variance will
tend to be more concentrated and thus may be preferable. In Example 3.2 we can
easily find that for n > 2

Var(a]) S Var(<i2).

Definition 3.3. If D is an estimator of 7(6), the bias is given by
b(D) =EV (D) — 7(0),
and the mean squared error (MSE) of D is given by
MSE = |EV|[D — 7(0))*.

So far we have discussed properties of estimators. Estimators are defined for any
fixed sample size n. These are examples of “small-sample” properties. It is also
useful to consider asymptotic or “large-sample” properties of a particular type of
estimator. An estimator may have undesirable properties for small n, but still be a
reasonable estimator in certain applications if it has good asymptotic properties as
the sample size increases. Also it is quite often possible to evaluate the asymptotic
properties of an estimator when small-sample properties are difficult to determine.

For a fuzzy variable X and any subset C' of the real numbers, the quantity

Nes(X|C) =1 — sup px(z)
xzgC

is considered to be a measure of the necessity of X belonging to C' [23].
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Definition 3.4. A sequence of functions {D,,(X1,...,X,)} is called a consistent
sequence of estimators for 7(¢) if for all € > 0,

lim Nes(D,|(7(0) —¢,7(0) +¢)) = 1.

n—oo

Often one takes some liberty with the terminology and considering D,, as a rep-
resentative of {D,,} refers to D,, as a consistent estimator for 7(9).

Definition 3.5. An estimator D,, for 7(6) is said to be mean squared consistent if

lim [EV|[D,, —7(#))* = 0.

n—o0

Definition 3.6. An estimator D,, for 7(0) is said to be asymptotically unbiased if
lim EV(D,,) = 7(6).

n—oo
Example 3.3. Let H(0,1) = 1+ 2 on [~1,0], 1 — 3z on [0,2] and 0, otherwise
and let X; = H(a,b), i=1,2,...,n with a > 0, b > 2. In [10], Hong suggested that
if T'= “min”, for given possibility «, the estimate of b is given by
maxi<i<n X; — Minj<i<n X;
H{'(a) — HZ'(a)

E =
and the estimate of a is given by

1
a=- (max X;+ min X;)+
1<i<n

NS

2\ 1<i<n

(HZ'(a) + HJ(a))

If a= %, then it is not hard to show that

1-1iz ifo<z<2,
py(z) = ¢ 1+ sz if —2<2z<0,
0 otherwise
and
1+24(;J:3ab) if —a—3b<z<a,
pa(z) =<1 — 24(;;5‘2) ifa<z<3a+ %b,
0 otherwise,
noting that
1— if 0 <2 <30,
Pmax X;—min X; () = ¢ 1+ %x if —3b<az<0,

0 otherwise,
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and
1—z2a if 2a < x < 2a + 4b,
Prmax X;+min X; () = ¢ 1+ g”gbza if 2a — 2b < z < 2a,
0 otherwise.

Then EV(b) = 0 and EV(a) = a + 1b, hence a, b are biased estimators of a, b
respectively. Now, by Nguyen’s Theorem,

{'u(l;fb)Q(x) >a} = [(-2a+2-1b)% (—2a+2+b)?]

and hence
MSE(b) = [EV|[b— b]?
1
= %/ (—2a+2-b)%+ (—2a+2+b)?) da
0
4
= b+ .
+ 3
Now, if b = 4, then
1+ if —2a—6<2x<0,
M[lfa(x) _ 2a+6 . = -~
and
{Ha-ay2(x) > a} = [~(2a + 6)(2a + 10)(1 — a)?, (2a + 10)*(1 - a)?].
Hence
MSE(a) = |EV|[a— a)?
1 1
= 3 ((2a + 6)(2a + 10) + (2a + 10)?) / (1—a)? da}
0
4, 80
= - 12 I
3a + 12a + 3

Theorem 3.1. If D is an estimator of 7(#) and T' = min, then

MSE(D) < Var(D)(1 +2[b(D)]) + [b(D)|(2 + [b(D)])

Proof.

MSE(D) |[EV|[D — 7(0)]?
= |EV|[D - EV(D) +EV(D) — 7(8)]?
= |EVI|[(D - EV(D))? +2(EV(D) — 7(0))(D — EV(D))

+ (EV(D) - 7(6))*]
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Now, by the linearity of the expected interval [Theorem 2. [9]], and the inequality
|[EV|(D — EV(D)) <1+ |[EV|(D — EV(D))? = 1 + Var(D),
MSE(D) < [EV|(D —EV(D))*+2[EV(D) — 7(0)||[EV|(D — E(D))
+EV|(EV(D) - 7(6))’
Var(D) + 2|EV(D) — 7(0)|(Var(D) + 1) + (EV(D) — 7(6))?
Var(D)(1 + 2|b(D)]) + |b(D)|(2 + |b(D)]). |

IN

The following result follows immediately from Theorem 3.1.

Theorem 3.2. Let T'= min. An estimator D,, for 7(6) is mean squared consistent
if it is asymptotically unbiased and lim,,,~, Var(D,,) = 0.
The following theorem is a fuzzy version of Markov inequality. We denote Pos(X|D)

= SUP,gp fix (7).

Theorem 3.3. Let X be a fuzzy variable with E(X) = 0. Then for any € > 0,

2|EV|(X?)

Pos(X|(—e,¢)) < =

Proof. Let {ux(xz) > a} = [X_(a),X+(a)] for 0 < a < 1. Then by Nguyen’s
Theorem,

{px2(z) > a} D [X_(a) X (a), max{X_(a)? X;(a)*}].

Now,
e? L px (r) = e*max{ux(—e), ux(e)}
< [ sl X (@ X (0 do
< /max{X 2, X1(a)?} da + 0) X+ (a) da
< 2|EV|(X?),

where the first inequality above comes from the fact that for a < pux(—¢), e2pux(—¢)
< X_(a)? and for a < px(e), e2pux(e) < Xy (a)? Therefore, we have

2|EV|(X?
Pos(X|(~e,¢)) = sup px(x) < 2 IED),
rZ(—e,e) €
From the above inequality, we have
2|EV|(X?
Nes(X|(—e,¢)) > 1 — % .

Using this inequality, we have the following result.
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Theorem 3.4. If an estimator D,, for 7(0) is mean squared consistent and
limy, 0 E(D,, — 7(0)) = 0, then it is simply consistent.

Proof. By the assumption, we can easily have that

lim |[EV|[D,, —7(0) — E(D, — 7(6))]* = 0.

n—oo

We have for large n

Nes(D, — 7(6)|(—<. <))
> Nes(D, — r(O)(E(D, — 7(0)) — /2, E(D,, — 7(6)) +/2))
—  Nes(D, — 7(6) — E(Dy — 7(60))|(—2/2,¢/2))

8|EV|[D,, — 7(0) — E(D,, — 7(0))]?

1- 2

)

where the last inequality comes from Theorem 3.3 and hence we complete the proof.
O

By Theorem 6 [13] and Theorem 3 [15], we also have the following result about
simply consistent.

Theorem 3.5. Let T be a continuous Archimedean ¢-norm with additive generator
f and foH is either a convex function on R or a convex function on [A4, B] and H = 0,
otherwise for some constants A, B such that A < 0 < B. Let X; = H(a,1), i =
1,2,...,n. Then (X7 +---+ X,,)/n is a consistent estimator for a.

Note. If T = min in Theorem 3.5, then (X; + --- 4+ X,,)/n is not a consistent
estimator for a, since for any n, (X; +---+ X,,)/n = H(a,1).

Example 3.4. Let T be product t-norm with the additive generator f(z) = —logz
and H(z) = e~ 1*l. Then f o H(z) = |z| which is convex. Let X; = H(a,1), i =
1,2,...,n, then by Theorem 3.5, (X; +--- 4+ X,,)/n is a consistent estimator for a.
By a result from Badard [1] or Theorem 2.2, we have that
(X 4ot X, () = €7l

Since [ e me=alde = oo for all n > 1, [EV|[(X1 + -+ + X,,)/n — a]* = oo for
all n > 1. Therefore (X; + --- + X,,)/n is not a mean squared consistent estimator
for a.

4. CONCLUSION

In this paper, we have discussed properties of estimators of T-related fuzzy variables
such as unbiasedness and MSE. We considered asymptotic or large-sample properties
of a particular type of estimator. We also have evaluated the asymptotic properties
of an estimator when the small-sample properties are difficult to determine.
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