
Kybernetika

Jan Hartman; Ladislav Lukšan; Jan Zítko
Automatic differentiation and its program realization

Kybernetika, Vol. 45 (2009), No. 5, 865--883

Persistent URL: http://dml.cz/dmlcz/140037

Terms of use:
© Institute of Information Theory and Automation AS CR, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/140037
http://project.dml.cz

KYBERNET IK A — VOLUME 4 5 (2 0 0 9) , N U MBE R 5 , P AG E S 8 6 5 – 8 8 3

AUTOMATIC DIFFERENTIATION
AND ITS PROGRAM REALIZATION

Jan Hartman, Ladislav Lukšan and Jan Źıtko

Automatic differentiation is an effective method for evaluating derivatives of function,
which is defined by a formula or a program. Program for evaluating of value of function
is by automatic differentiation modified to program, which also evaluates values of deriva-
tives. Computed values are exact up to computer precision and their evaluation is very
quick. In this article, we describe a program realization of automatic differentiation. This
implementation is prepared in the system UFO, but its principles can be applied in other
systems. We describe, how the operations are stored in the first part of the derivative
computation and how the obtained records are effectively used in the second part of the
computation.

Keywords: automatic differentiation, modeling languages, systems for optimization

AMS Subject Classification: 26A24, 65K99

1. INTRODUCTION

When computing (not only) complicated technical problems, we face the problem
of how to quickly and repeatedly calculate the value of the derivative, the gradient
or the values of elements of the Hessian matrix. Automatic differentiation, created
according to these requests, is the method which computes the derivatives. The
gained values of the derivatives are accurate up to the machine precision and the
evaluation of the derivative is very fast. Moreover, it is possible to use the sparsity of
the Jacobian or Hessian matrix to compute the derivatives faster and more effectively.

The first papers in this area can be found in 1960’s, when the forward mode
was described by Wengert (1964). Further improvement were described later, for
example, by Kedem (1980) and Rall (1981). The basics of the reverse mode were
independently discovered by several mathematicians, for example, by Linnainmaa
(1969), Spielpenning (1980), Kim (1984) or others.

The development and usage of automatic differentiation is directly connected
with the properties and capability of programming languages, their compilers and
computers at all. Thanks to very quick development in this area and thanks to its
properties, the popularity of automatic differentiation is increasing. Its theoretical

866 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

properties are studied, as well as its extensions, methods of implementation, new
algorithms and also practical applications, e. g. [1, 2, 3, 5, 11].

Interactive system for functional optimization UFO (Universal Functional Op-
timization) has been developed in the Institute of Computer Science of Academy
of Sciences of the Czech Republic. Large system has been created since 1989. It
solves many types of optimization problems and is available for wide sphere of users.
Classes of problems which can be solved by UFO system can be found in [10].

Because of popularity of automatic differentiation and its properties, the imple-
mentation of techniques of automatic differentiation in the system UFO was designed
and created. However, used principles can be easily transformed to other computer
systems. The aim of this article is to introduce the implementation of automatic
differentiation generally and in details.

The whole implementation with all the details is described in the technical re-
port [8].

Automatic differentiation in FORTRAN77 has been implemented in other sys-
tems, e. g.

• ADIFOR, see http://www.mcs.anl.gov/research/projects/adifor/,

• TAPENADE, see http://www-sop.inria.fr/tropics/,

• REVOLVE, see http://www.math.tu-dresden.de/wir/project/revolve/

• or others, see http://www.autodiff.org/?module=Tools&language=Fortran77

The presented implementation uses and exploits specific properties of the system
UFO, as will be described in section 3.2

The paper is organized as follows. In the first part, we briefly mention the basic
properties of automatic differentiation and we describe algorithms for computing of
derivatives in the forward and reverse mode. The main principles of the implemen-
tation are described in the second part. Finally, we demonstrate advantages and
efficiency of automatic differentiation on one of the testing programs from the UFO
system.

2. BASIC PROPERTIES OF AUTOMATIC DIFFERENTIATION

In this section, the basic properties of automatic differentiation are briefly intro-
duced. More details can be found e. g. in [5, 7] or [9].

2.1. Code list

Let us assume, that the computer program, which we want to transform, computes
the value of the components of the vector function

f = [f1, f2, . . . , fm]T : D ⊂ Rn −→ Rm.

Each component of f is a composition of basic functions (e. g. adding, multiplication
etc.) and elementary functions (i. e. functions of the programming language, e. g.
sinus etc.).

Automatic Differentiation and Its Program Realization 867

The program computes step by step result values of the basic or elementary
functions and uses these values for evaluation of forthcoming basic or elementary
operations. Let us denote vi the value of ith elementary or basic function.

Moreover, let us order the values vi by the following way:

v1−n, . . . , v0︸ ︷︷ ︸
x

, v1, v2, . . . , vl−m, vl−m+1, . . . , vl︸ ︷︷ ︸
y

, (1)

where x = (x1, . . . xn) are input (independent) variables and y = (y1, . . . ym) = f(x)
are output (dependent) variables.

We say that j ≺ i if and only if the variable value vi depends directly on the
variable vj and we will write

vi = ϕi(vj)j≺i. (2)

Using above defined notation, the computer program can be expressed by the
code list in Figure 1.

vi−n = xi for i = 1, . . . , n

vi = ϕi(vj)j≺i for i = 1, . . . , l

ym−i = vl−i for i = m − 1, . . . , 0

Fig. 1. Code list.

The input values x1, . . . , xn are assigned into the variables v1−n, . . . , v0 in the first
row. Then the components of f(x) are computed and finally the output variables
(y1, . . . , ym) = f(x) are assigned in the third row. Let us note that partial derivatives
of the basic and elementary functions ∂ϕi

∂vj
must exist and must be known in points

where the derivative is to be evaluated.
The principles of automatic differentiation will be demonstrated on the following

sample example.

Example 1. Let M = {[x1, x2] ∈ R2; x1 6= 0 and x2 6= 0} and consider the func-
tion f : M ⊆ R2 → R

f(x1, x2) =
sinx1

x1x2
+ x1x2. (3)

Figure 2 demonstrates the code list for evaluation of y = f(π/4, 1).

2.2. The first derivative computation – forward mode

The forward mode evaluates directional derivatives of all dependent variables. We
assign a new adjoint variable v̇i to every variable vi,

v̇i =
∑

j≺i

∂ϕi

∂vj
(vk)k≺i · v̇j , (4)

which is a derivative of (2) where the chain rule has been used. The adjoint code
list is in Figure 3.

868 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

v−1 = x1 = π
4 = 0.7854

v0 = x2 = 1.0000
v1 = sin v−1 = 0.7071
v2 = v−1 ∗ v0 = 0.7854
v3 = v1/v2 = 0.9003
v4 = v2 + v3 = 1.6857
y = v4 = 1.6857

Fig. 2. Code list for Example 1.

vi−n = xi

v̇i−n = ẋi

}
i = 1, . . . n

vi = ϕi(vk)k≺i

v̇i =
∑

j≺i
∂ϕi

∂vj
(vk)k≺i · v̇j

}
i = 1, . . . l

ym−i = vl−i

ẏm−i = v̇l−i

}
i = m − 1, . . . 0

Fig. 3. Code list derived by forward mode.

We evaluate the derivative in the point x = (x1, x2, . . . , xn) in the direction ẋ. If
ẋ = ei, then the partial derivative with respect to the ith variable is computed.

Example 2. Let us continue in the sample Example 1. Now the gradient of the
function f defined by (3) at the point (π/4, 1) will be computed.

At first, the derivative with respect to x1 is computed by the code list in Figure 4.
Let us note that the function value f(π/4, 1) is computed by this code list too.

To obtain the derivative with respect to x2 in the same point, it is necessary to
execute the code list in Figure 4 again but with the initial values (ẋ1, ẋ2) = (0, 1).

In general, the schema in Figure 3 can be expressed in the form of a matrix
multiplication (see e. g. [5])

f ′(x) = QmAlAl−1 · · · A2A1P
T
n . (5)

The matrix Ai is the identity matrix except the (i+n)th row where the element ∂ϕi

∂vj

lies in the (j + n)th column for all j ≺ i.

Example 3. Let us continue in the sample Example 2. In this part of our exam-
ple, the matrices A1 and A2 are presented for calculation of the derivatives of the
function (3).

Automatic Differentiation and Its Program Realization 869

x1 = π
4 = 0.7854

ẋ1 = 1 = 1.0000
x2 = 1 = 1.0000
ẋ2 = 0 = 0.0000
v1 = sinx1 = 0.7071
v̇1 = cos x1 ∗ ẋ1 = 0.7071
v2 = x1 ∗ x2 = 0.7854
v̇2 = x1 ∗ ẋ2 + x2 ∗ ẋ1 = 1.0000
v3 = v1/v2 = 0.9003
v̇3 = (v̇1 − v3 ∗ v̇2)/v2 = −0.2460
v4 = v2 + v3 = 1.6857
v̇4 = v̇2 + v̇3 = 0.7540
y = v4 = 1.6857
ẏ = v̇4 = 0.7540

Fig. 4. Code list derived by forward mode for Example 2.

It holds that n = 2, m = 1 and l = 4. Matrices A1 and A2 have the form

A1 =




1 0 0 0 0 0
0 1 0 0 0 0

∂ϕ1

∂v−1

∂ϕ1

∂v0
0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




=




1 0 0 0 0 0
0 1 0 0 0 0

cos v−1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




=




1 0 0 0 0 0
0 1 0 0 0 0

0.7071 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




∈ R6×6

and

A2 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

∂ϕ2

∂v−1

∂ϕ2

∂v0

∂ϕ2

∂v1
0 0 0

0 0 0 0 1 0
0 0 0 0 0 1




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
v0 v−1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0.7854 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




∈ R6×6.

870 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

On this sample example, it is easy to see that the matrix multiplication (5) corre-
sponds to the Figure 4.

2.3. The first derivative computation – reverse mode

By the reverse mode, we evaluate a linear combination of 5fi. We want to compute
the derivatives in the form (see [5])

x̄ = ȳ · f ′(x). (6)

where the parameter ȳ = (ȳ1, ȳ2, . . . , ȳm) is an input row weight vector. Let us define
new variable

v̄i =
∂(ȳ · f(x))

∂vi
, i = 1 − n, . . . , l. (7)

To understand better the definition (7), let us formulate the following theorem.

Theorem 2.1. The following equalities hold:

v̄j = ȳj−l+m for j = l − m + 1, . . . , l, (8)

v̄j =
∑

i ; iÂj

v̄i · ∂ϕi

∂vj
for j = 1 − n, . . . , l − m. (9)

P r o o f . The equalities (8) follow immediately from the relation (1).
For the simplicity, let us show the equality (9) in the special case for m = 1 and
three variables vi1 , vi2 and vi3 which depend directly on vj , i. e.

j ≺ i1, j ≺ i2 and j ≺ i3. (10)

The variable vl ∈ R1 can be express as a function of vj and some other variables
vp1 , . . . , vpr , which do not depend on vj . Let us express this fact by the relation

vl = vl(vj , vp1 , . . . , vpr).

In view of (10), it holds

vl = vl(vi1 , vi2 , vi3 , vp1 , . . . , vpr)

and

vi1 = vi1(vj , . . .),

vi2 = vi2(vj , . . .),

vi3 = vi3(vj , . . .)

where dots (. . .) are used instead of variables not depending on vj . Hence we can
write

vl = vl(vi1(vj , . . .), vi2(vj , . . .), vi3(vj , . . .), vp1 , . . . , vpr).

Automatic Differentiation and Its Program Realization 871

Application of the chain rule yields the formulas

∂vl

∂vj
=

∂vl

∂vi1

· ∂vi1

∂vj
+

∂vl

∂vi2

· ∂vi2

∂vj
+

∂vl

∂vi3

· ∂vi3

∂vj
+

∂vl

∂vp1

· ∂vp1

∂vj
+ · · · +

∂vl

∂vpr

· ∂vpr

∂vj

=
∂vl

∂vi1

· ∂vi1

∂vj
+

∂vl

∂vi2

· ∂vi2

∂vj
+

∂vl

∂vi3

· ∂vi3

∂vj

due to
∂vp1

∂vj
= · · · =

∂vpr

∂vj
= 0

because vp1 , . . . , vpr do not depend on vj .

Now it is easy to see that in general case

∂vl

∂vj
=

∑

i ; iÂj

∂vl

∂vi
· ∂vi

∂vj
,

i. e.
v̄j =

∑

i ; iÂj

v̄i · ∂ϕi

∂vj
.

¤

By reformulating of the sum (9), the code list described in Figure 5 is obtained.
This code list can be also derived from the relations (5) and (6).

vi−n = xi i = 1, . . . , n

vi = ϕi(vk)k≺i i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0

v̄l−i = ȳm−i i = 0, . . . ,m − 1

v̄i = 0 i = l − m, . . . , 1 − n

for i = l, . . . , 1 do
for j ≺ i do

v̄j = v̄j + v̄i · ∂ϕi

∂vj
(vk)k≺i

end for
end for
x̄i = v̄i−n i = n, . . . , 1

Fig. 5. Code list derived by reverse mode.

After execution of the code list in Figure 5, the computed derivatives are stored
in variables (see (9))

x̄ = ȳ · f ′(x).

872 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

Example 4. Let us continue in the Example 3. We want to compute the gradient
of the function f in the point (π/4, 1).

The code list derived by the reverse mode for Example 4 is in Figure 6. Not only
the value of gradient ∇f(π/4, 1) = (v̄−1, v̄0) = (0.7540,−0.1149) was computed but
also the function value y = f(π/4, 1) = v4 = 1.6857 was evaluated.

v−1 = x1 = π
4 = 0.7854

v0 = x2 = 1.0000
v1 = sin v−1 = 0.7071
v2 = v−1 ∗ v0 = 0.7854
v3 = v1/v2 = 0.9003
v4 = v2 + v3 = 1.6857
y = v4 = 1.6857

v̄4 = 1.0000
v̄i = 0 i = 3, . . . , −1
v̄3 = v̄3 + v̄4 = 1.0000
v̄2 = v̄2 + v̄4 = 1.0000
v̄1 = v̄1 + v̄3/v2 = 1.2732
v̄2 = v̄2 + v̄3 ∗ (−v1/v2

2) =
= v̄2 − v̄3 ∗ v3/v2 = −0.1463

v̄0 = v̄0 + v̄2 ∗ v−1 = −0.1149
v̄−1 = v̄−1 + v̄2 ∗ v0 = −0.1463
v̄−1 = v̄−1 + v̄1 ∗ cos v−1 = 0.7540
∂f
∂x1

= v̄−1 = 0.7540
∂f
∂x2

= v̄0 = −0.1149

Fig. 6. Code list derived by reverse mode for Example 4.

2.4. The second (and higher) derivative computation

The program for evaluating of the second (or higher) derivatives can be derived by
a combination of the forward and reverse mode, see e. g. [5]. Firstly, we use the
reverse mode to obtain the gradient of the component of the function f . Then we
apply the forward mode and we get a schema for the second derivative evaluation
in the form

ȳ · f ′′(x) · ẋ + ˙̄y · f ′(x), (11)

where ˙̄y is an input parameter, similar to ẋ or ȳ. Let us denote the expression (11)
as ˙̄x. If we want to compute only the second derivative of the form ȳ · f ′′(x) · ẋ, it
is necessary to assign ˙̄y = 0. The expression ȳ · f ′′(x) · ẋ can be interpreted as

ȳ · f ′′(x) · ẋ =
∂

∂α
ȳ · f ′(x + αẋ)

∣∣∣∣
α=0

∈ Rn.

The code list can be obtained by application of the forward mode to a code list

Automatic Differentiation and Its Program Realization 873

obtained by the reverse mode. The expression

v̄j = v̄j + v̄i · ∂ϕi

∂vj
(vk)k≺i

is transformed to

˙̄vj = ˙̄vj + ˙̄vi · ∂ϕi

∂vj
(vk)k≺i + v̄i · ∂ϕ̇i

∂vj
(vk)k≺i, (12)

where
∂ϕ̇i

∂vj
(vk)k≺i =

∑

l≺i

∂2ϕi

∂vj∂vl
(vk)k≺i · v̇l.

The code list for the evaluation of the second derivatives is in Figure 6. The
values of the second derivatives ȳ · f ′′(x) · ẋ are the components of the vector

˙̄x = (˙̄x1, . . . , ˙̄xm).

vi−n = xi

v̇i−n = ẋi

}
i = 1, . . . , n

vi = ϕi(vk)k≺i

v̇i =
∑

j≺i
∂ϕi

∂vj
(vk)k≺i · v̇j

}
i = 1, . . . l

ym−i = vl−i

ẏm−i = v̇l−i

}
i = m − 1, . . . 0

v̄l−i = ȳm−i

˙̄vl−i = 0

}
i = 0, . . . ,m − 1

v̄i = 0
˙̄vi = 0

}
i = 1 − n, . . . , l − m

for j = l, . . . , 1 do
for j ≺ i

v̄j = v̄j + v̄i · ∂ϕi

∂vj
(vk)k≺i

˙̄vj = ˙̄vj + ˙̄vi · ∂ϕi

∂vj
(vk)k≺i + v̄i · ∂ϕ̇i

∂vj
(vk)k≺i

end for
end for

x̄i = v̄i−n

˙̄xi = ˙̄vi−n

}
i = n, . . . , 1

Fig. 7. Code list derived by reverse and forward mode for the second derivatives.

3. AUTOMATIC DIFFERENTIATION IN THE UFO SYSTEM

In the previous section, we briefly reviewed basic principles of automatic differenti-
ation. In this part, we describe how to implement these techniques in a computer
system in general and also in particular in the UFO system. The implementation
will be demonstrated on a simple example. More details about the UFO system can
be found in the technical report [10].

874 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

3.1. A brief description of the UFO system

The UFO system can be used for solution of optimization problems and prepara-
tion of optimization algorithms. The typical task is to find a local minimum of a
function F .

Solution of the optimization problem consists of four steps:

1. Specification of the optimization problem and selection of the method. It is
done by the UFO control language and it is saved into a file.

2. This file is transformed by the UFO preprocessor. According to its commands,
the computer program in FORTRAN 77 is automatically generated which
solves the original optimization problem.

3. This program is compiled and linked with library subroutines.

4. The solution of the optimization problem is obtained after running the pro-
gram.

Let us demonstrate the above formulated four stages on the following example.
We want to find a local minimum of the Rosenbrock function

F (x) = 100(x2
1 − x2)

2 + (x1 − 1)2.

Let x = (−1.2, 1.0) be the initial approximation. According to the first stage, the
input file for the UFO system is prepared:

$SET(INPUT)

X(1)=-1.2D0; X(2)=1.0DO

$ENDSET

$SET(FMODELF)

FF = 1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0DO)**2

$ENDSET

$NF=2

$NOUT=1

$BATCH

$STANDARD

This file sets the initial approximation (INPUT) for the iterative method, object
function (FMODELF), number of its independent variables (NF) and the form of the
output (NOUT). The successful processing of this file yields the results:

FF= .2333078060D-15

X= .9999999847D+00 .9999999694D+00

TIME= 0:00:00.66

The local minimum was found at the point X and the value F (X) is stored in the
variable FF.

The formula for the object function is defined by the variable FMODELF. It is possi-
ble to define, moreover, the variables GMODELF and HMODELF with formulae for Jacobi

Automatic Differentiation and Its Program Realization 875

and Hessian matrix respectively. In absence of these variables, the derivatives are
evaluated numerically by the divided differences. The instruction $BATCH suppresses
the dialogue mode and the statement $STANDARD creates the program that solves the
optimization problem.

Let us remark that the UFO preprocessor is based on the interpreter BEL (Batch
Editor Language), which was developed as a part of the UFO system. The BEL
interpreter was modified during implementation of the automatic differentiation.

3.2. Automatic differentiation in the UFO system

Since the beginning of automatic differentiation, its implementation has been pre-
pared in several systems. However, the advantages and features of our implementa-
tion in the UFO system are following:

• automatic differentiation is the part of the UFO system and does not need any
additional programs or parameters,

• the UFO system generates program for solving of optimization problem and
automatic differentiation is only a part of the system,

• automatic differentiation is a part of the interpreter BEL and it has and ex-
ploits knowledge about optimization problem, e. g. the sparsity of matrices,

• the UFO system works with macro-variables that can be used e. g. as parame-
tres,

• compared to e. g. LANCELOT system for functional optimization (see [12]),
the description of the objective function in the UFO system is much more
simple.

By the automatic differentiation, it is possible to evaluate the first or the second
derivatives of the functions defined by the variables FMODELF, FMODELA or FMODELC.
Let us introduce three new variables $IADF, $IADA and $IADC. They express whether
and what derivatives will be evaluated by the automatic differentiation.

• $IADF=0 (default value)
The derivatives of the function FF defined by the variable FMODELF are not
evaluated by the automatic differentiation.

• $IADF=1
The first derivatives of the function FF defined by the variable FMODELF are
evaluated by the reverse mode of the automatic differentiation. The new vari-
able FGMODELF is created and it contains the formulae for the evaluation of the
function FF and also its gradient GF. The variable FMODELF is deleted.

• $IADF=2
The second derivatives of the function FF defined by the variable FMODELF are
evaluated by the combination of the reverse and forward modes. The new
variable FGMODELF is created and it contains the formulae for the evaluation of

876 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

the function FF and also its gradient GF by the reverse mode. The new variable
HMODELF is also created and it contains the formulae for the evaluation of the
function FF, its gradient GF and Hessian matrix by the reverse and forward
modes. Then, variable FMODELF is deleted.

The variables $IADA and $IADC are used in the same way, but they change the
functions FA and FC defined by the variables FMODELA and FMODELC. New variables
FGMODELA or HMODELA and FGMODELC or HMODELC are created.

There are a few limitations by application of the variables FMODELF, FMODELA and
FMODELC which can be found in [8]. These limitations are not restrictive and it is
easy to meet them.

3.3. The implementation of the automatic differentiation
in the UFO system

3.3.1. The first derivative

When the first derivatives are evaluated, the reverse mode of the automatic differen-
tiation is used. The independent variables and all basic and elementary operations
are subsequently stored in arrays, including their values, arguments and the type of
the operation.

If $IADF=1 or 2, the following arrays are used :

• REAL*8 V($NADARR) – the array where the values vi = ϕi(vj)j≺i are stored;
see the relation (2)

• REAL*8 VBAR($NADARR) – the array where the values v̄i =
∑

jÂi v̄j · ∂ϕj

∂vi
are

stored; see the relation (9)

• INTEGER OPCODE($NADARR) – the array stores the type of the performed oper-
ation, e. g. addition corresponds to number 10, sin corresponds to number 60
etc.

• INTEGER ARG1($NADARR) – the array stores the pointers (array indexes) to the
first argument of the basic or elementary operation

• INTEGER ARG2($NADARR) – the array stores the pointers (array indexes) to the
second argument of the basic or elementary operation

For $IADF=2, there are two more arrays:

• REAL*8 VDOT($NADARR) – the array where the values
v̇i =

∑
j≺i

∂ϕi

∂vj
(vk)k≺i · v̇j are stored; see the relation (4)

• REAL*8 VBARDT($NADARR) – is the array which stores the values ˙̄vi, see the
relation (12)

Each basic or elementary operation ϕi(vj)j≺i is replaced by a subprogram which
performs not only the operation ϕi(vj)j≺i, but records its call to the arrays V, VBAR,
OPCODE, ARG1, ARG2, and possibly to VDOT, VBARDT. For example, the operation

Automatic Differentiation and Its Program Realization 877

multiplication or sin are replaced by the subprograms BMULTG, resp. SING which are
listed below.

!--- transformed operation multiplication ---

INTEGER FUNCTION BMULTG(IARG1, IARG2) !input parameters: indexes (order)

!to the arrays, which values are

!to be multiplied

!output variable: index (order)

!to the arrays for this operation

COMMON /AD_F1/ V, VBAR, OPCODE, ARG1, ARG2, INDARR

REAL*8 V($NADARR), VBAR($NADARR)

INTEGER OPCODE($NADARR), ARG1($NADARR), ARG2($NADARR)

INTEGER INDARR

INTEGER IARG1, IARG2

V(INDARR)=V(IARG1)*V(IARG2) !evaluation of the operation multiplication

VBAR(INDARR)=0.0D0 !the variable v_i with the bar is set to 0

!(we will add to it some values)

OPCODE(INDARR)=30 !store the code of this operation

!(30 = multiplication)

ARG1(INDARR)=IARG1 !store the pointer (index) to the 1st argument

ARG2(INDARR)=IARG2 !store the pointer (index) to the 2nd argument

BMULTG=INDARR !the index (order) of this operation

INDARR=INDARR+1 !shift the pointer to the arrays - preparation

!for the next basic or elementary operation

END

!--- transformed operation sin ---

INTEGER FUNCTION SING(IARG1)

COMMON /AD_F1/ V, VBAR, OPCODE, ARG1, ARG2, INDARR

REAL*8 V($NADARR), VBAR($NADARR)

INTEGER OPCODE($NADARR), ARG1($NADARR), ARG2($NADARR)

INTEGER INDARR

INTEGER IARG1

V(INDARR)=SIN(V(IARG1))

VBAR(INDARR)=0.0D0

OPCODE(INDARR)=60 !store the code of this operation

!(60 = sin)

ARG1(INDARR)=IARG1 !sin has only one argument

SING=INDARR

INDARR=INDARR+1

END

All independent variables and basic and elementary operations are represented
by the order of the operation. This order is the same as the index in the arrays,
where information about it is stored.

The subroutine RVRSWP is called in the last stage of the derivative evaluation. It
goes through the arrays V, VBAR, OPCODE, ARG1, ARG2 backwards and evaluates the
derivatives (9), i. e.

v̄i =
∑

jÂi

v̄j · ∂ϕj

∂vi
.

It can be reformulated to

v̄i = v̄i + v̄j · ∂ϕj

∂vi
(vk)k≺j pro i ≺ j j = l, . . . , 1.

878 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

The listing of the subroutine RVRSWP follows:

SUBROUTINE RVRSWP()

COMMON /AD_F1/ V, VBAR, OPCODE, ARG1, ARG2, INDARR

REAL*8 V($NADARR), VBAR($NADARR)

INTEGER OPCODE($NADARR), ARG1($NADARR), ARG2($NADARR)

INTEGER INDARR

REAL*8 DERIV

INTEGER I

DO 999, I=INDARR-1, 1, -1 !the loop through operations backwards

!i.\,e. through arrays backwards

.

.

IF(OPCODE(I).EQ.30) THEN !operation multiplication

VBAR(ARG1(I))=VBAR(ARG1(I))+VBAR(I)*V(ARG2(I)) !addition to the

!variables v_. with bar

VBAR(ARG2(I))=VBAR(ARG2(I))+VBAR(I)*V(ARG1(I)) !addition to the

!variables v_. with bar

.

.

ELSEIF(OPCODE(I).EQ.60) THEN !operation sin

DERIV=COS(V(ARG1(I))) !temporary variable

VBAR(ARG1(I))=VBAR(ARG1(I))+VBAR(I)*DERIV !addition to the

!variables v_. with bar

.

.

ELSEIF(OPCODE(I).EQ.2) THEN !operation - the definition

!of the independent variable

CONTINUE !do nothing

.

.

ENDIF

999 CONTINUE

END

The values of the derivatives are stored in the corresponding elements of the array
VBAR, after processing of RVRSWP.

Example 5. We will demonstrate, how the values are stored in the arrays V, VBAR,
OPCODE, ARG1 a ARG2.

Let us define the function f(x1, x2) = x1x2+1. The program computes this value
by the statement

X(1) * X(2) + 1.

Automatic differentiation transforms this statement to

BPLUSG(BMULTG(IAD X(1),IAD X(2)),MKCNST(DBLE(1))),

where IAD X(1) and IAD X(2) are pointers to arrays (array indexes) where indepen-
dent values X(1) a X(2) are stored.

The main principles of data storing in the arrays V, VBAR, OPCODE, ARG1 and
ARG2 are shown in Figure 8. The subroutine MKINDP and MKCNST store the value of
the independent variable x(i) and the value of a constant, respectively, into above
declared arrays.

Automatic Differentiation and Its Program Realization 879

the order of the 1 2 3 4 5 . . .
performed operation
performed operation definition of definition of x1x2 definition x1x2 + 1 . . .

independent independent of constant . . .
variable variable 1 . . .
X(1) X(2) . . .

subroutine which MKINDP MKINDP BMULTG MKCNST BPLUSG . . .
created the record (X(1)) (X(2)) (.,.) (DBLE(1)) (.,.) . . .
in the arrays

array index 1 2 3 4 5 . . .

array V value value value value value . . .
x1 x2 x1 · x2 1 x1 · x2 + 1 . . .

array VBAR 0 0 0 0 0 . . .

array OPCODE 2 2 30 1 10 . . .

array ARG1 0 0 1 0 3 . . .

array ARG2 0 0 2 0 4 . . .

Fig. 8. The main principles of the data storing in the arrays.

3.3.2. The second derivatives

Firstly, the reverse mode is applied to get the program for the first derivatives. Sec-
ondly, the forward mode is applied to this program to get the second derivatives. The
subroutines BMULTH and SINH not only store the values, but also the first derivatives
(directional derivatives) are evaluated. The subroutines for the second derivatives
are listed in [8].

4. EXAMPLE

The following example demonstrates advantages of the automatic differentiation.
Let us denote x ∈ RN and define the function F : RN → R

F (x) =

N∑

i=1

(N + i − Pi)
2
, (13)

where

Pi =
N∑

j=1

(
5 (1 + mod(i, 5) + mod(j, 5)) sin(xj) +

i + j

10
cos(xj)

)
,

and mod(a, b) is a remainder for the division of a by b. We want to calculate a local
minimum of the function F . Let x0 = (1, 1/2, . . . , 1/N) be an initial approximation.
The input file for the UFO system is in Figure 9. Let us describe this file briefly.

The derivatives of the function defined by the variable FMODELA are to be evaluated
by the automatic differentiation. Thus the command $IADA=1 on the line number 21
is stated. The number of the independent variables X(*) is defined by the variable

880 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

! declaration of temporary variables

INTEGER IAD_W($$NF+1) !01

REAL*8 W($$NF+1) !02

! initial settings:

$SET(INPUT) !03

DO 80 I=1, $$NF !04

X(I)=1.0D0/I !05

80 CONTINUE !06

$ENDSET !07

! elements of a sum of the objective function:

$SET(FMODELA) !08

W(1)=0.0D0 !09

DO 81 I=1, $$NF !10

A=5.0D 0*(1.0D 0+MOD(I,5)+MOD(KA,5)) !11

B=DBLE(I+KA)/1.0D1 !12

W(I+1)=W(I)+A*SIN(X(I))+B*COS(X(I)) !13

81 CONTINUE !14

FA=(DBLE($$NF+KA)-W($$NF+1))**2 !15

$ENDSET !16

! type of the optimization problem:

$MODEL=’AF’ !17

! number of independent variables:

$NF=50 !18

$NA=50 !19

$NOUT=1 !20

! automatic differentiation for FMODELFA:

$IADA=1 !21

$BATCH !22

$STANDARD !23

Fig. 9. Input file for the UFO system for the example with automatic differentiation.

$NF on the line 18, the type of the optimization problem is defined by the variables
MODEL and $NA on lines number 17 and 19. See also [10]. The evaluation of

(N + i − Pi)
2

(14)

(see the relation 13) is defined by the term FA in the variable FMODELA on lines 8 – 16.
The initial approximation x0 is in the variable INPUT on lines 3 – 7.

The input file (Figure 9) is transformed by the UFO system to a program, which
computes a local minimum of a function F . The first step of the input file processing
is the deletion of the variable FMODELA and the creation of the variable FGMODELA, be-
cause the value $IADA= 1. The value of the variable FGMODELA is shown in Figure 10.

Let us describe this transformed variable FGMODELF briefly. The variables X(.)

are denoted as the independent variables on lines 2 – 4. The statement on the line 13
in Figure 9 is transformed to lines 9 and 10 in Figure 10. Moreover, the statement
on the line 15 in Figure 9 is transformed to lines 12 and 13 in Figure 10.

The parameters of the subroutines BPLUSG, BMULTG etc. are array indexes and
are created as a composition of the string IAD and the original variable name, e. g.
IAD W. The computed value of FA is assigned on line 14. The statement on line 15

Automatic Differentiation and Its Program Realization 881

INDARR=1 !01

! denoting of the independent variables:

DO 85 IADCOUNT=1,50 !02

IAD_X(IADCOUNT)=MKINDP(X(IADCOUNT)) !03

85 CONTINUE !04

! transformed evaluation of FA:

IAD_W(1)=MKCNST(DBLE(0.0D0)) !05

DO 81 I=1, 50 !06

A=5.0D 0*(1.0D 0+MOD(I,5)+MOD(KA,5)) !07

B=DBLE(I+KA)/1.0D1 !08

IAD_W(I+1)=BPLUSG(BPLUSG(IAD_W(I),BMULTG(MKCNST(DBLE(A)),SING(IAD_ !09

& X(I)))),BMULTG(MKCNST(DBLE(B)),COSG(IAD_X(I)))) !10

81 CONTINUE !11

IAD_FA=BEXPG(BMINUG(MKCNST(DBLE(DBLE(50+KA))),IAD_W(50+1)),MKCNST(!12

& DBLE(2))) !13

! computed value of FA:

FA=V(IAD_FA) !14

! weight assigning:

VBAR(IAD_FA)=1.0D0 !15

! go through the arrays backwards and compute the derivatives:

CALL RVRSWP() !16

! assigning of computed derivatives:

DO 86 IADCOUNT=1,50 !17

GA(IADCOUNT)=VBAR(IAD_X(IADCOUNT)) !18

86 CONTINUE !19

Fig. 10. The value of the variable FGMODELF for the example

with automatic differentiation.

corresponds to the fourth line in Figure 5, i. e.

v̄l = 1.

The subroutine RVRSWP() goes backwards through the arrays. After its execu-
tion, the computed values of the derivatives are written into variables GA on the
lines 17 – 19.

There are no changes on the lines 10 – 12 in Figure 9, i. e. the lines 6 – 8 in
Figure 10, because they do not depend on the independent variables X(.). The
initial setting of the array index counter is on the line 1 in Figure 10.

Table. Comparison of evaluation time for a local minimum search.

Number of indep. variables automatic differentiation divided differences

N = 10 0.11 s 0.16 s
N = 20 0.49 s 0.94 s
N = 50 1.37 s 6.97 s
N = 100 3.36 s 44.93 s

The evaluation times for a local minimum search are compared in the Table. In
the second and third column, there are times for the case that automatic differenti-

882 J. HARTMAN, L. LUKŠAN AND J. ZÍTKO

ation and divided differences are used respectively, for various N . The table shows
that automatic differentiation yields faster convergence.

Moreover, it is clear that the numerical values computed by automatic differen-
tiation are more accurate than the values gained by divided differences.

ACKNOWLEDGEMENT

The work is a part of the research project MSM0021620839 financed by the Ministry of
Education, Youth and Sport of the Czech Republic. The work was also supported by the
Grant Agency of the Academy of Sciences of the Czech Republic, project IAA1030405, and
the institutional research plan AV0Z10300504.
The authors gratefully thank the anonymous referee for very valuable remarks leading to
improving this paper.

(Received December 18, 2007.)

REFERENC ES

[1] Automatic Differentiation of Algorithms: Theory, Implementation, and Application
(A. Griewank and G.F. Corliss, eds.). SIAM, Philadelphia 1992.

[2] Automatic Differentiation: Applications, Theory, and Implementations (H.M. Bucker,
G. F. Corliss, P. D. Hovland, U. Naumann, and B. Norris, eds.). Springer–Verlag,
Berlin 2005.

[3] Computational Differentiation – Techniques, Applications, and Tools (M. Berz, C.H.
Bischof, G. F. Corliss, and A. Griewank, eds.). SIAM, Philadelphia 1996.

[4] R. Griesse and A. Walther: Evaluating gradients in optimal control – Continuous
adjoints versus automatic differentiation. J. Optim. Theory Appl. 122 (2004), 1, 63–
86.

[5] A. Griewank: Evaluation Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. SIAM, Philadelphia 2000.

[6] A. Griewank and A. Walther: Introduction to automatic differentiation. PAMM 2
(2003), 45–49.

[7] J. Hartman: Realizace metod pro automatické derivováńı (Implementation of Methods
for Automatic Differentiation). Diploma Thesis. Faculty of Mathematics and Physics,
Charles University, Prague 2001.

[8] J. Hartman and L. Lukšan: Automatické derivováńı v systému UFO (Automatic Dif-
ferentiation in System UFO). Technical Report V-1002. ICSASCR, Prague 2007.

[9] J. Hartman and J. Źıtko: Principy automatického derivováńı (Principles of Automatic
Differentiation). Technical Report, Department of Numerical Mathematics, Faculty of
Mathematics and Physics, Charles University, Prague 2006.

[10] L. Lukšan, M. Tůma, J. Hartman, J. Vlček, N. Ramešová, M. Šǐska, and C. Matonoha:
UFO 2006 – Interactive System for Universal Functional Optimization. Technical Re-
port V-977. ICSAS CR, Prague 2006.

[11] A. Verma: Structured Automatic Differentiation. Ph.D. Thesis, Cornell University,
1988.

Automatic Differentiation and Its Program Realization 883

[12] A. Walther, A. Griewank, and O. Vogel: ADOL-C: Automatic differentiation using
operator overloading in C++. PAMM 2 (2003), 41–44.

Jan Hartman, Charles University, Faculty of Mathematics and Physics, Department

of Numerical Mathematics, Sokolovská 83, 186 75 Praha 8. Czech Republic.

e-mail: jan.hartman@email.cz

Ladislav Lukšan, Institute of Computer Science Academy of Sciences of the Czech

Republic, Pod Vodárenskou věž́ı 2, 182 07 Praha 8. Czech Republic.

e-mail: luksan@cs.cas.cz

Jan Źıtko, Charles University, Faculty of Mathematics and Physics, Department of

Numerical Mathematics, Sokolovská 83, 186 75 Praha 8. Czech Republic.

e-mail: zitko@karlin.mff.cuni.cz

		webmaster@dml.cz
	2012-06-06T21:12:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

