
Kybernetika

Roman Lukáš; Alexander Meduna
Multigenerative grammar systems and matrix grammars

Kybernetika, Vol. 46 (2010), No. 1, 68--82

Persistent URL: http://dml.cz/dmlcz/140054

Terms of use:
© Institute of Information Theory and Automation AS CR, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/140054
http://project.dml.cz

KYBERNET IKA — VOLUME 4 6 (2 0 1 0) , NUMBER 1 , PAGES 6 8 – 8 2

MULTIGENERATIVE GRAMMAR SYSTEMS

AND MATRIX GRAMMARS

Roman Lukáš and Alexander Meduna

Multigenerative grammar systems are based on cooperating context-free grammatical
components that simultaneously generate their strings in a rule-controlled or nonterminal-
controlled rewriting way, and after this simultaneous generation is completed, all the gen-
erated terminal strings are combined together by some common string operations, such
as concatenation, and placed into the generated languages of these systems. The present
paper proves that these systems are equivalent with the matrix grammars. In addition,
we demonstrate that these systems with any number of grammatical components can be
transformed to equivalent two-component versions of these systems. The paper points out
that if these systems work in the leftmost rewriting way, they are more powerful than the
systems working in a general way.

Keywords: multigenerative grammar systems, simultaneously controlled derivations, ma-
trix grammars

Classification: 68Q05, 68Q45

1. INTRODUCTION

Indisputably, the investigation of cooperating distributed grammar systems repre-
sents a crucially important trend in today’s formal language theory (see [1, 2, 3, 4, 8, 9,
10, 13, 15, 18]). In essence, these grammars consist of several cooperating grammat-
ical components that generate a single string (see [6] for an overview of the key
concepts and results). Recently, a completely new type of these grammar systems,
called multigenerative grammar systems, have been introduced (see [14]).

As opposed to the other cooperating distributed grammar systems, all the gram-
matical components of the multigenerative grammar systems systems simultaneously
generate their strings in a rule-controlled or nonterminal-controlled rewriting way,
and this generation is performed in the leftmost ways – that is, during one genera-
tion step, each component rewrites the leftmost occurrence of a nonterminal in its
sentential form. After this simultaneous leftmost generation is completed, all the
generated strings are composed into a single string by some common string opera-
tion, such as concatenation. More precisely, for a positive integer n, an n-generative
grammar system works with n context-free grammatical components, each of which
makes a leftmost derivation, and these n leftmost derivations are simultaneously

Multigenerative Grammar Systems and Matrix Grammars 69

controlled by a finite set of n-tuples consisting of nonterminals or rules. In this way,
the grammar system generates n terminal strings, which are combined together by
operation union, concatenation or the selection of the first generated string. The
main result concerning the power of these systems says that they characterize the
family of recursively enumerable languages (see Theorem 3 in [14]).

In this paper, we discuss general versions of multigenerative grammar systems by
dropping the requirement that each generation step is leftmost. In other words, each
grammatical component rewrites any nonterminal occurrence in its sentential form;
otherwise, they work as described above. We prove that multigenerative grammar
systems generalized in this way are less powerful than their leftmost versions in the
present paper. More specifically, they are equivalent to the matrix grammars, which
generate a proper subfamily of the family of recursively enumerable languages. This
result is indeed of some interest when compared to the corresponding results in
terms of other language models. In terms of context-free grammars, their leftmost
versions and their general versions are equally powerful (see Theorem 5.1.1.1 in [12]).
In terms of programmed grammars, the leftmost versions are less powerful than the
general versions (see Theorem 1.4.1 in [5]).

Considering these results, it comes as a surprise that general versions of multigen-
erative grammar systems are less powerful than their leftmost versions as proved in
the present paper. In addition, we demonstrate that multigenerative grammar sys-
tems with any number of grammatical components can be transformed to equivalent
two-component versions of these systems.

2. DEFINITIONS

This paper assumes that the reader is familiar with the formal language theory
(see [11, 12, 16, 17]). For a set, Q, card(Q) denotes the cardinality of Q. For an
alphabet, V , V ∗ represents the free monoid generated by V under the operation of
concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically,
V + is thus the free semigroup generated by V under the operation of concatenation.

Definition 2.1. A context-free grammar is a quadruple,

G = (N,T, P, S),

where N and T are two disjoint alphabets. Symbols in N and T are referred to as
nonterminals and terminals, respectively, and S ∈ N is the start symbol of G. P is
a finite set of rules of the form A → x, where A ∈ N and x ∈ (N ∪ T)∗. To declare
that a label r denotes the rule, this is written as (r : A → x). Let u, v ∈ (N ∪ T)∗.
For every (r : A → x ∈ P), we write uAv ⇒ uxv[r], or simply uAv ⇒ uxv. Let ⇒∗

denote the transitive-reflexive closure of ⇒. The language of G, L(G), is defined as
L(G) = {w ∈ T ∗|S ⇒∗ w in G}.

Definition 2.2. A matrix grammar is a pair,

H = (G,M),

70 R. LUKÁŠ AND A. MEDUNA

where G = (N,T, P, S) is a context-free grammar and M is a finite language over
alphabet P , M ⊆ P ∗. Let x0, x1, . . . , xn ∈ (N ∪ T)∗ for any n ≥ 1, xi−1 ⇒G xi[ri]
in G for all i = 1, . . . , n and r1r2 . . . rn ∈ M . Then matrix grammar H makes
direct derivation step from x0 to xn, denoted as x0 ⇒H xn. Let ⇒∗ denote the
transitive-reflexive closure of ⇒. The language of H , L(H), is defined as L(H) =
{w ∈ T ∗|S ⇒∗ w in H}.

Definition 2.3. A general n-generative rule-synchronized grammar system (n-GGR)
is an n+ 1 tuple,

Γ = (G1, G2, . . . , Gn, Q),

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i = 1, . . . , n, and Q is
a finite set of n-tuples of the form (p1, p2, . . . , pn), where pi ∈ Pi for all i = 1, . . . , n.
Let Γ = (G1, G2, . . . , Gn, Q) be an n-GGR. Then, a sentential n-form of n-GGR is an
n-tuple of the form χ = (x1, x2, . . . , xn), where xi ∈ (Ni ∪ Ti)

∗ for all i = 1, . . . , n.
Let χ = (u1A1v1, u2A2v2, . . . , unAnvn) and χ = (u1x1v1, u2x2v2, . . . , unxnvn) be
two sentential n-form, where Ai ∈ Ni and ui, vi, xi ∈ (Ni ∪ Ti)

∗ for all i = 1, . . . , n.
Let (pi : Ai → xi) ∈ Pi for all i = 1, . . . , n and (p1, p2, . . . , pn) ∈ Q. Then χ directly
derives χ in Γ, denoted by χ ⇒ χ. In the standard way, we generalize ⇒ to ⇒k for
all k ≥ 0, ⇒∗, and ⇒+.

The n-language of Γ, n-L(Γ), is defined as
n-L(Γ) = {(w1, w2, . . . , wn)|(S1, S2, . . . , Sn) ⇒∗ (w1, w2, . . . , wn), wi ∈ T ∗

i for all
i = 1, . . . , n}

The language generated by Γ in the union mode, Lunion(Γ), is defined as
Lunion(Γ) =

⋃n
i=1{wi|(w1, w2, . . . , wn) ∈ n-L(Γ)}

The language generated by Γ in the concatenation mode, Lconc(Γ), is defined as
Lconc(Γ) = {w1w2 . . . wn|(w1, w2, . . . , wn) ∈ n-L(Γ)}

The language generated by Γ in the first mode, Lfirst(Γ), is defined as
Lfirst(Γ) = {w1|(w1, w2, . . . , wn) ∈ n-L(Γ)}

Example 2.4. Γ = (G1, G2, Q), where

G1 = ({S1, A1}, {a, b, c}, {(1 : S1 → aS1), (2 : S1 → aA1), (3 : A1 → bA1c),

(4 : A1 → bc)}, S1),

G2 = ({S2}, {d}, {(1 : S2 → S2S2), (2 : S2 → S2), (3 : S2 → d)}, S2),

Q = {(1, 1), (2, 2), (3, 3), (4, 3)}

is a general 2-generative rule-synchronized grammar system.
Notice that 2-L(Γ) = {(anbncn, dn)|n ≥ 1}, Lunion(Γ) = {anbncn|n ≥ 1} ∪

∪{dn|n ≥ 1}, Lconc(Γ) = {anbncndn|n ≥ 1}, and Lfirst(Γ) = {anbncn|n ≥ 1}.

Multigenerative Grammar Systems and Matrix Grammars 71

3. RESULTS

In this section, we prove that all variants of multigenerative grammar systems defined
in the previous section are equivalent to the matrix grammars.

Algorithm 3.1. A conversion of an n-GGR in the union mode to an equivalent
matrix grammar

• Input: An n-GGR Γ = (G1, G2, . . . Gn, Q).

• Output: A matrix grammar H = (G,M) satisfying Lunion(Γ) = L(H).

• Method:

– Let Gi = (Ni, Ti, Pi, Si) for all i = 1, . . . , n, and without loss of generality,
we can assume that for any j, k = 1, . . . , n, where j 6= k, it holds: Nj ∩
Nk = ∅; let us choose arbitrary S satisfying S /∈ ⋃n

j=1 Nj . Then:

– G = (N,T, P, S), where:
N := {S} ∪ (

⋃n
i=1 Ni) ∪ (

⋃n
i=1{A|A ∈ Ni});

T :=
⋃n

i=1 Ti;
P := {(s1 : S → S1h(S2) . . . h(Sn)), (s2 : S → h(S1)S2 . . . h(Sn)), . . . (sn :
S → h(S1)h(S2) . . . Sn)}∪ (

⋃n
i=1 Pi)∪ (

⋃n
i=1{h(A) → h(x)|A → x ∈ Pi}),

where h is a homomorphism from ((
⋃n

i=1 Ni)∪(
⋃n

i=1 Ti))
∗ to (

⋃n
i=1{A|A ∈

Ni})∗ defined as: h(a) = ε for all a ∈ ⋃n
i=1 Ti and h(A) = A for all

A ∈ ⋃n
i=1 Ni.

– M = {s1, s2, . . . , sn} ∪ {p1p2 . . . pn|(p1, p2, . . . , pn) ∈ Q}∪
{p1p2 . . . pn|(p1, p2, . . . , pn) ∈ Q}∪ . . .∪{p1p2 . . . pn|(p1, p2, . . . , pn) ∈ Q}.
Notation:
Let (p : A → x) be a rule. Then, p denotes the rule h(A) → h(x).

Claim 3.2. Let (S1, S2, . . . , Sn) ⇒m (y1, y2, . . . , yn) in Γ, where m ≥ 0, yi ∈ (Ni ∪
Ti)

∗ for all i = 1, . . . , n. Then, S ⇒m+1 h(y1)h(y2) . . . h(yj−1)yjh(yj+1) . . . h(yn) for
any j = 1, . . . , n in H .

P r o o f . This claim is proved by induction on m ≥ 0.

Basis:
Let m = 0. Then, (S1, S2, . . . , Sn) ⇒0 (S1, S2, . . . , Sn) in Γ.
Notice that S ⇒1 h(S1)h(S2) . . . h(Sj−1)Sjh(Sj+1) . . . h(Sn) inH for any j = 1, . . . , n,
because (sj : S → h(S1)h(S2) . . . h(Sj−1)Sjh(Sj+1) . . . h(Sn)) ∈ M .

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 0, . . . , k, for some
k ≥ 0.

Induction step:
Consider (S1, S2, . . . , Sn) ⇒k+1 (y1, y2, . . . , yn) in Γ. Then, there exists a sentential
n-form (u1A1v1, u2A2v2, . . . , unAnvn), where ui, vi ∈ (Ti ∪Ni)

∗, Ai ∈ Ni such that
(S1, S2, . . . , Sn) ⇒k (u1A1v1, u2A2v2, . . . , unAnvn) ⇒ (u1x1v1, u2x2v2, . . . , unxnvn)
in Γ, where uixivi = yi for all i = 1, . . . , n.

72 R. LUKÁŠ AND A. MEDUNA

First, observe that (S1, S2, . . . , Sn) ⇒k (u1A1v1, u2A2v2, . . . , unAnvn) in Γ im-
plies
S ⇒k+1 h(u1A1v1)h(u2A2v2) . . . h(uj−1Aj−1vj−1)ujAjvjh(uj+1Aj+1vj+1) . . .
. . . h(unAnvn) for any j = 1, . . . , n in H by the induction hypothesis.

Furthermore, let (u1A1v1, u2A2v2, . . . , unAnvn) ⇒ (u1x1v1, u2x2v2, . . . , unxnvn)
in Γ Then, it holds: ((p1 : A1 → x1), (p2 : A2 → x2), . . . , (pn : An → xn)) ∈ Q.
Algorithm 1 implies that
p1p2 . . . pj−1pjpj+1 . . . pn ∈ M for any j = 1, . . . , n. Hence,
h(u1A1v1)h(u2A2v2) . . . h(uj−1Aj−1vj−1)ujAjvjh(uj+1Aj+1vj+1) . . . h(unAnvn) ⇒
h(u1x1v1)h(u2x2v2) . . . h(uj−1xj−1vj−1)ujxjvjh(uj+1xj+1vj+1) . . . h(unxnvn) in H
by the matrix p1p2 . . . pj−1pjpj+1 . . . pn for any j = 1, . . . , n.

As a result, we obtain:

S ⇒k+2 h(u1x1v1)h(u2x2v2) . . . h(uj−1xj−1vj−1)ujxjvjh(uj+1xj+1vj+1) . . . h(unxnvn)
in H for any j = 1, . . . , n. �

Claim 3.3. Consider derivation steps S ⇒m y in H , where m ≥ 1, y ∈ (N ∪ T)∗.
Then, there exist j ∈ {1, . . . , n} and yi ∈ (Ni ∪ Ti)

∗ for i = 1, . . . , n such that
(S1, . . . , Sn) ⇒m−1 (y1, . . . , yn) in Γ and y = h(y1) . . . h(yj−1)yjh(yj+1) . . . h(yn).

P r o o f . This claim is proved by induction on m ≥ 1.

Basis:
Let m = 1. Then, there exists exactly one of the following one-step derivation in H :
S ⇒1 S1h(S2) . . . h(Sn) by the matrix s1 or S ⇒1 h(S1)S2 . . . h(Sn) by the matrix s2
or . . . or S ⇒1 h(S1)h(S2) . . . Sn by the matrix sn. Notice that (S1, S2, . . . , Sn) ⇒0

(S1, S2, . . . , Sn) in Γ trivially.

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 1, . . . , k, for some
k ≥ 1.

Induction step:
Consider S ⇒k+1 y in H . Then, there exists a sentential form w such that S ⇒k

w ⇒ y in H , where w, y ∈ (N ∪ T)∗.

As w ⇒ y in H , this derivation step can use only a matrix of a following form
p1p2 . . . pj−1pjpj+1 . . . pn ∈ Q, where pj is a rule from Pj and pi ∈ h(Pi) for i =
1, . . . , j − 1, j + 1, . . . , n. Hence, w ⇒ y can be written as
h(wi) . . . h(wj−1)wjh(wj+1) . . . h(wn) ⇒ z1 . . . zn, where wj ⇒ zj by the rule pj
and h(wi) ⇒ zi by pi for i = 1, . . . , j − 1, j + 1, . . . , n. Each rule pi rewrites a
barred nonterminal Ai ∈ h(Ni). Of course, then each rule pi can be used to rewrite
the respective occurrence of a non-barred nonterminal Ai in wi in such a way that
wi ⇒ yi and h(yi) = zi, for all i = 1, . . . , j − 1, j + 1, . . . , n. By setting yj = zj, we
obtain (w1, . . . , wn) ⇒ (y1, . . . , yn) in Γ and y = h(y1) . . . h(yj−1)yjh(yj+1) . . . h(yn).

As a result, we obtain:

(S1, S2, . . . , Sj−1, Sj , Sj+1, . . . , Sn) ⇒k

(u1x1v1, u2x2v2, . . . , uj−1xj−1vj−1, ujxjvj , uj+1xj+1vj+1, . . . , unxnjn) in Γ so that
y = u1x1v1u2x2v2 . . . uj−1xj−1vj−1ujxjvjuj+1xj+1vj+1 . . . unxnvn. �

Multigenerative Grammar Systems and Matrix Grammars 73

Theorem 3.4. Let Γ = (G1, G2, . . .Gn, Q) be a n-GGR. On input Γ, Algorithm 1
halts and correctly constructs a matrix grammar H = (G,M) such that Lunion(Γ) =
L(H).

P r o o f . Consider Claim 1 for any m ≥ 0 and yi ∈ T ∗
i for all i = 1, . . . , n.

Notice that h(a) = ε for all a ∈ Ti. We obtain an implication of the form: if
(S1, S2, . . . , Sn) ⇒∗ (y1, y2, . . . , yn) in Γ, then S ⇒∗ yj for any j = 1, . . . , n in H .
Hence, Lunion(Γ) ⊆ L(H). Consider Claim 2 for any m ≥ 1 and y ∈ T ∗. Notice that
h(a) = ε for all a ∈ Ti. We obtain an implication of the form: if S ⇒∗ y in H , then
(S1, S2, . . . , Sn) ⇒∗ (y1, y2, . . . , yn) in Γ, and there exist an index j = 1, . . . , n such
that y = yj. Hence, L(H) ⊆ Lunion(Γ). �

Algorithm 3.5. A conversion of an n-GGR in the concatenation mode to an equiv-
alent matrix grammar

• Input: An n-GGR Γ = (G1, G2, . . . Gn, Q).

• Output: A matrix grammar H = (G,M) satisfying Lconc(Γ) = L(H).

• Method:

– Let Gi = (Ni, Ti, Pi, Si) for all i = 1, . . . , n, and without loss of generality,
we can assume that for any j, k = 1, . . . , n, where j 6= k, it holds: Nj ∩
Nk = ∅; let us choose arbitrary S satisfying S /∈ ⋃n

j=1 Nj . Then:

– G = (N,T, P, S), where:
N := {S} ∪ (

⋃n
i=1 Ni);

T :=
⋃n

i=1 Ti;
P := {(s : S → S1S2 . . . Sn)} ∪ (

⋃n
i=1 Pi).

– M = {s} ∪ {p1p2 . . . pn|(p1, p2, . . . , pn) ∈ Q}.

Claim 3.6. Consider a sequence of derivation steps (S1, S2, . . . , Sn) ⇒m (y1, y2, . . . , yn)
in Γ, where m ≥ 0, yi ∈ (Ni ∪ Ti)

∗ for all i = 1, . . . , n. Then, S ⇒m+1 y1y2 . . . yn.

P r o o f . This claim is proved by induction on m ≥ 0.

Basis:
Let m = 0. Then, (S1, S2, . . . , Sn) ⇒0 (S1, S2, . . . , Sn) in Γ.
Notice that S ⇒1 S1S2 . . . Sn in H , because (s : S → S1S2 . . . Sn) ∈ M .

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 0, . . . , k, for some
k ≥ 0.

Induction step:
Consider (S1, S2, . . . , Sn) ⇒k+1 (y1, y2, . . . , yn) in Γ. Then, there exists a sentential
n-form (u1A1v1, u2A2v2, . . . , unAnvn), where ui, vi ∈ (Ti ∪Ni)

∗, Ai ∈ Ni such that
(S1, S2, . . . , Sn) ⇒k (u1A1v1, u2A2v2, . . . , unAnvn) ⇒ (u1x1v1, u2x2v2, . . . , unxnvn)
in Γ, where uixivi = yi for all i = 1, . . . , n.

74 R. LUKÁŠ AND A. MEDUNA

First, observe that (S1, S2, . . . , Sn) ⇒k (u1A1v1, u2A2v2, . . . , unAnvn) in Γ im-
plies
S ⇒k+1 u1A1v1u2A2v2 . . . unAnvn in H by the induction hypothesis.

Furthermore, let (u1A1v1, u2A2v2, . . . , unAnvn) ⇒ (u1x1v1, u2x2v2, . . . , unxnvn)
in Γ. Then, it holds: ((p1 : A1 → x1), (p2 : A2 → x2), . . . , (pn : An → xn)) ∈ Q.
Algorithm 2 implies that p1p2 . . . pn ∈ M . Hence,
u1A1v1u2A2v2 . . . unAnvn ⇒ u1x1v1u2x2v2 . . . unxnvn inH by the matrix p1p2 . . . pn.

As a result, we obtain:

S ⇒k+2 u1x1v1u2x2v2 . . . unxnvn in H . �

Claim 3.7. Let S ⇒m y inH , wherem ≥ 1, y ∈ (N∪T)∗. Then, (S1, S2, . . . , Sn) ⇒m−1

(y1, y2, . . . , yn) in Γ, where yi ∈ (Ni ∪ Ti)
∗ for all i = 1, . . . , n such that y =

y1y2 . . . yn.

P r o o f . This claim is proved by induction on m ≥ 1.

Basis:
Let m = 1. Then, there exists exactly one one-step derivation in H : S ⇒1

S1S2 . . . , Sn by the matrix s. Notice that (S1, S2, . . . , Sn) ⇒0 (S1, S2, . . . , Sn) in
Γ trivially.

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 1, . . . , k, for some
k ≥ 1.

Induction step:
Consider S ⇒k+1 y in H . Then, there exists a sentential form w such that S ⇒k

w ⇒ y in H , where w, y ∈ (N ∪ T)∗.

First, observe that S ⇒k w inH implies that (S1, S2, . . . , Sn) ⇒k−1 (w1, w2, . . . , wn)
in Γ so that w = w1w2 . . . wn, where wi ∈ (Ni ∪ Ti)

∗ for all i = 1, . . . , n, by the in-
duction hypothesis.

Furthermore, let w ⇒ y in H by the matrix p1p2 . . . pn ∈ M , where w =
w1w2 . . . wn. Let pi be a rule of the form Ai → xi. The rule pi can be applied
only inside substring wi, for all i = 1, . . . , n. Assume that wi = uiAivi, where
ui, vi ∈ (N ∪ T)∗, Ai ∈ Ni for all i = 1, . . . , n. There exist a derivation step
u1A1v1u2A2v2 . . . unAnvn ⇒ u1x1v1u2x2v2 . . . unxnvn inH by the matrix p1p2 . . . pn ∈
M . Algorithm 2 implies that ((p1 : A1 → x1), (p2 : A2 → x2), . . . , (pn : An → xn)) ∈
Q, because p1p2 . . . pn ∈ M . Hence,
(u1A1v1, u2A2v2, . . . , unAnjn ⇒ (u1x1v1, u2x2v2, . . . , unxnjn) in Γ.

As a result, we obtain:

(S1, S2, . . . , Sn) ⇒k (u1x1v1, u2x2v2, . . . , unxnjn) in Γ so that
y = u1x1v1u2x2v2 . . . unxnvn. �

Theorem 3.8. Let Γ = (G1, G2, . . .Gn, Q) be a n-GGR. On input Γ, Algorithm 2
halts and correctly constructs a matrix grammar H = (G,M) such that Lconc(Γ) =
L(H).

Multigenerative Grammar Systems and Matrix Grammars 75

P r o o f . Consider Claim 3 for any m ≥ 0 and yi ∈ T ∗
i for all i = 1, . . . , n. We

obtain an implication of the form: if (S1, S2, . . . , Sn) ⇒∗ (y1, y2, . . . , yn) in Γ, then
S ⇒∗ y1y2 . . . yn in H . Hence, Lconc(Γ) ⊆ L(H). Consider Claim 4 for any m ≥
1 and y ∈ T ∗. We obtain an implication of the form: if S ⇒∗ y in H , then
(S1, S2, . . . , Sn) ⇒∗ (y1, y2, . . . , yn) in Γ, such that y = y1y2 . . . yn. Hence, L(H) ⊆
Lconc(Γ). �

Algorithm 3.9. A conversion of an n-GGR in the first mode to an equivalent ma-
trix grammar

• Input: An n-GGR Γ = (G1, G2, . . . Gn, Q).

• Output: A matrix grammar H = (G,M) satisfying Lfirst(Γ) = L(H).

• Method:

– Let Gi = (Ni, Ti, Pi, Si) for all i = 1, . . . , n, and without loss of generality,
we can assume that for any j, k = 1, . . . , n, where j 6= k, it holds: Nj ∩
Nk = ∅; let us choose arbitrary S satisfying S /∈ ⋃n

j=1 Nj . Then:

– G = (N,T, P, S), where:
N := {S} ∪N1 ∪ (

⋃n
i=2{A : A ∈ Ni});

T := T1;
P := {(s : S → S1h(S2) . . . h(Sn))} ∪ P1 ∪ (

⋃n
i=2{h(A) → h(x)|A → x ∈

Pi}),
where h is a homomorphism from ((

⋃n
i=2 Ni)∪(

⋃n
i=2 Ti))

∗ to (
⋃n

i=2{A|A ∈
Ni})∗ defined as: h(a) = ε for all a ∈ ⋃n

i=2 Ti and h(A) = A for all
A ∈ ⋃n

i=2 Ni.

– M = {s} ∪ {p1p2 . . . pn|(p1, p2, . . . , pn) ∈ Q}.
Notation:
Let p = A → x be a rule. Then, p denotes the rule h(A) → h(x).

Claim 3.10. Let (S1, S2, . . . , Sn) ⇒m (y1, y2, . . . , yn) in Γ, where m ≥ 0, yi ∈ (Ni∪
Ti)

∗ for all i = 1, . . . , n. Then, S ⇒m+1 y1h(y2) . . . h(yn) in H .

P r o o f . This claim is proved by induction on m ≥ 0.

Basis:
Let m = 0. Then, (S1, S2, . . . , Sn) ⇒0 (S1, S2, . . . , Sn) in Γ.
Notice that S ⇒1 S1h(S2) . . . h(Sn) in H , because (s : S → S1h(S2) . . . h(Sn)) ∈ M .

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 0, . . . , k, for some
k ≥ 0.

Induction step:
Consider (S1, S2, . . . , Sn) ⇒k+1 (y1, y2, . . . , yn) in Γ. Then, there exists a sentential
n-form (u1A1v1, u2A2v2, . . . , unAnvn), where ui, vi ∈ (Ti ∪Ni)

∗, Ai ∈ Ni such that
(S1, S2, . . . , Sn) ⇒k (u1A1v1, u2A2v2, . . . , unAnvn) ⇒ (u1x1v1, u2x2v2, . . . , unxnvn)
in Γ, where uixivi = yi for all i = 1, . . . , n.

76 R. LUKÁŠ AND A. MEDUNA

First, observe that (S1, S2, . . . , Sn) ⇒k (u1A1v1, u2A2v2, . . . , unAnvn) in Γ im-
plies
S ⇒k+1 u1A1v1h(u2A2v2) . . . h(unAnvn) in H by the induction hypothesis.

Furthermore, let (u1A1v1, u2A2v2, . . . , unAnvn) ⇒ (u1x1v1, u2x2v2, . . . , unxnvn)
in Γ Then, it holds: ((p1 : A1 → x1), (p2 : A2 → x2), . . . , (pn : An → xn)) ∈ Q.
Algorithm 3 implies that
p1p2 pn ∈ M . Hence,
u1A1v1h(u2A2v2) . . . h(unAnvn) ⇒ u1x1v1h(u2x2v2) . . . h(unxnvn) in H by the ma-
trix p1p2 . . . pn.

As a result, we obtain:

S ⇒k+2 u1x1v1h(u2x2v2) . . . h(unxnvn) in H . �

Claim 3.11. Let S ⇒m y inH , wherem ≥ 1, y ∈ (N∪T)∗. Then, (S1, S2, . . . , Sn) ⇒m−1

(y1, y2, . . . , yn) in Γ, where yi ∈ (Ni∪Ti)
∗ for all i = 1, . . . , n so that y = y1h(y2) . . . h(yn).

P r o o f . This claim is proved by induction on m ≥ 1.

Basis:
Let m = 1. Then, there exists exactly one one-step derivation in H : S ⇒1

S1h(S2) . . . h(Sn) by the matrix s. Notice that (S1, S2, . . . , Sn) ⇒0 (S1, S2, . . . , Sn)
in Γ trivially.

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 1, . . . , k, for some
k ≥ 1.

Induction step:
Consider S ⇒k+1 y in H . Then, there is w such that S ⇒k w ⇒ y in H , where
w, y ∈ (N ∪ T)∗.

First, observe that S ⇒k w inH implies that (S1, S2, . . . , Sn) ⇒k−1 (w1, w2, . . . , wn)
in Γ so that w = w1h(w2) . . . h(wn),where wi ∈ (Ni ∪Ti)

∗ for all i = 1, . . . , n, by the
induction hypothesis.

Furthermore, let w ⇒ y in H , where w = w1h(w2) . . . h(wn). Let p1 be a rule of
the form A1 → x1. Let pi be a rule of the form h(Ai) → h(x) for all i = 2, . . . , n.
The rule p1 can be applied only inside substring w1, the rule pi can be applied
only inside substring wi, for all i = 2, . . . , n. Assume that wi = uiAivi, where
ui, vi ∈ (Ni ∪ Ti)

∗, Ai ∈ Ni for all i = 1, . . . , n. There exists a derivation step
u1A1v1h(u2A2v2) . . . h(unAnvn) ⇒ u1x1v1h(u2x2v2) . . . h(unxnvn) in H by the ma-
trix p1p2 . . . pn ∈ M . Algorithm 3 implies that
((p1 : A1 → x1), (p2 : A2 → x2), . . . , (pn : An → xn)) ∈ Q, because
p1p2 . . . pn ∈ M . Hence,
(u1A1v1, u2A2v2, . . . , unAnjn) ⇒ (u1x1v1, u2x2v2, . . . , unxnjn) in Γ

As a result, we obtain:

(S1, S2, . . . , Sn) ⇒k (u1x1v1, u2x2v2, . . . , unxnjn) in Γ so that
y = u1x1v1h(u2x2v2) . . . h(unxnvn). �

Multigenerative Grammar Systems and Matrix Grammars 77

Theorem 3.12. Let Γ = (G1, G2, . . . Gn, Q) be a n-GGR. On input Γ, Algorithm 3
halts and correctly constructs a matrix grammar H = (G,M) such that Lfirst(Γ) =
L(H).

P r o o f . Consider Claim 5 for any m ≥ 0 and yi ∈ T ∗
i for all i = 1, . . . , n.

Notice that h(a) = ε for all a ∈ Ti. We obtain an implication of the form: if
(S1, S2, . . . , Sn) ⇒∗ (y1, y2, . . . , yn) in Γ, then S ⇒∗ y1 in H . Hence, Lfirst(Γ) ⊆
L(H). Consider Claim 6 for any m ≥ 1 and y ∈ T ∗. Notice that h(a) = ε for all a ∈
Ti. We obtain an implication of the form: if S ⇒∗ y in H , then (S1, S2, . . . , Sn) ⇒∗

(y1, y2, . . . , yn) in Γ, such that y = y1. Hence, L(H) ⊆ Lfirst(Γ). �

Algorithm 3.13. A conversion of a matrix grammar to a 2-GGR

• Input: A matrix grammar H = (G,M); string w ∈ T
∗
, where T is any alpha-

bet.

• Output: A 2-GGR Γ = (G1, G2, Q) satisfying {w1|(w1, w) ∈ 2-L(Γ)} = L(H).

• Method:

– Let G = (N,T, P, S). Then:

– G1 = G;

– G2 = (N2, T2, P2, S2), where
N2 := {S2} ∪ {〈p1p2 . . . pk, j〉|p1, p2 . . . pk ∈ P, p1p2 . . . pk ∈ M, 1 ≤ j ≤
k − 1};
T2 := T ;
P2 := {S2 → 〈p1p2 . . . pk, 1〉|p1, p2 . . . pk ∈ P, p1p2 . . . pk ∈ M,k ≥ 2} ∪
{〈p1p2 . . . pk, j〉 → 〈p1p2 . . . pk, j + 1〉|p1p2 . . . pk ∈ M,k ≥ 2, 1 ≤ j ≤
k − 2} ∪
{〈p1p2 . . . pk, k − 1〉 → S2|p1, p2 . . . pk ∈ P, p1p2 . . . pk ∈ M,k ≥ 2} ∪
{S2 → S2|p1 ∈ M, |p1| = 1} ∪
{〈p1p2 . . . pk, k − 1〉 → w|p1, p2 . . . pk ∈ P, p1p2 . . . pk ∈ M,k ≥ 2} ∪
{S2 → w|p1 ∈ M, |p1| = 1};

– Q := {(p1, S2 → 〈p1p2 . . . pk, 1〉)|p1, p2 . . . pk ∈ P, p1p2 . . . pk ∈ M,k ≥
2} ∪
{(pj+1, 〈p1p2 . . . pk, j〉 → 〈p1p2 . . . pk, j + 1〉)|p1p2 . . . pk ∈ M,k ≥ 2, 1 ≤
j ≤ k − 2} ∪
{(pk, 〈p1p2 . . . pk, k−1〉 → S2)|p1, p2 . . . pk ∈ P, , p1p2 . . . pk ∈ M,k ≥ 2}∪
{(p1, S2 → S2)|p1 ∈ M, |p1| = 1} ∪
{(pk, 〈p1p2 . . . pk, k − 1〉 → w)|p1, p2 . . . pk ∈ P, p1p2 . . . pk ∈ M,k ≥ 2} ∪
{(p1, S2 → w)|p1 ∈ M, |p1| = 1};

Claim 3.14. Let x ⇒ y in H , where x, y ∈ (N ∪ T)∗ Then, (x, S2) ⇒∗ (y, S2) and
(x, S2) ⇒∗ (y, w) in Γ.

78 R. LUKÁŠ AND A. MEDUNA

P r o o f . In this proof, we distinguish two cases – I and II. In I, we consider a
derivation step x ⇒ y in H by a matrix consisting of a single rule. In II, we consider
x ⇒ y by a matrix consisting of several rules

I. Consider a derivation step x ⇒ y inH by a matrix, which contains only one rule
(p1 : A1 → x1). It implies that uA1v ⇒ ux1v[p1] in G, where uA1v = x, ux1v = y.
Algorithm 4 implies
(A1 → x1, S2 → S2) ∈ Q and (A1 → x1, S2 → w) ∈ Q. Hence,
(uA1v, S2) ⇒1 (ux1v, S2) and (uA1v, S2) ⇒1 (ux1v, w) in Γ.

II. Let x ⇒ y in H by a matrix of the form p1p2 . . . pk, where pi, . . . , pk ∈ P, k ≥ 2.
It implies that x ⇒ y1[p1] ⇒ y2[p2] ⇒ . . . ⇒ yk−1[pk1] ⇒ yk[pk], in G, where yk = y.
Algorithm 4 implies
(p1, S2 → 〈p1p2 . . . pk, 1〉) ∈ Q,
(pj+1, 〈p1p2 . . . pk, j〉 → 〈p1p2 . . . pk, j + 1〉) ∈ Q, where j = 1, . . . , k − 2,
(pk, 〈p1p2 . . . pk, k − 1〉 → S2) ∈ Q,
(pk, 〈p1p2 . . . pk, k − 1〉 → w) ∈ Q.
Hence,
(x, S2) ⇒ (y1, 〈p1p2 . . . pk, 1〉) ⇒ (y2, 〈p1p2 . . . pk, 2〉) ⇒ . . . ⇒ (yk−1, 〈p1p2 . . . pk, k −
1〉) ⇒ (yk, S2), where yk = y and (x, S2) ⇒ (y1, 〈p1p2 . . . pk, 1〉) ⇒ (y2, 〈p1p2 . . . pk, 2〉)
⇒ . . . ⇒ (yk−1, 〈p1p2 . . . pk, k − 1〉) ⇒ (yk, w), where yk = y. �

Claim 3.15. Let x ⇒m y in H , wherem ≥ 1, y ∈ (N∪T)∗. Then, (x, S2) ⇒∗ (y, w)
in Γ.

P r o o f . This claim is proved by induction on m ≥ 1.

Basis:
Let m = 1 and let x ⇒1 y in H . Claim 7 implies that (x, S2) ⇒∗ (y, w) in Γ.

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 1, . . . , k, for some
k ≥ 1.

Induction step:
Consider S ⇒k+1 y in H . Then, there exists w such that S ⇒ w ⇒k y in H , where
w, y ∈ (N ∪ T)∗.

First, observe that w ⇒k y in H implies that (w, S2) ⇒∗ (y, w) in Γ by the
induction hypothesis.

Furthermore, let x ⇒ w in H . Claim 7 implies that (x, S2) ⇒∗ (w, S2) in Γ.

As a result, we obtain: (x, S2) ⇒∗ (y, w). �

Claim 3.16. Let (y0, S2) ⇒ (y1, z1) ⇒ (y2, z2) ⇒ . . . ⇒ (yk−1, zk−1) ⇒ (yk, S2) or
(y0, S2) ⇒ (y1, z1) ⇒ (y2, z2) ⇒ . . . ⇒ (yk−1, zk−1) ⇒ (yk, w) in Γ, where zi 6= S2

for all i = 1, . . . , k − 1. Then, there exists a direct derivation step y0 ⇒ yk in H .

P r o o f . In this proof, we distinguish two cases – I and II. In I, we consider a
derivation step x ⇒ y in H by a matrix consisting of a single rule. In II, we consider
x ⇒ y by a matrix consisting of several rules.

Multigenerative Grammar Systems and Matrix Grammars 79

I. Let there exists only one derivation step of the form (uA1v, S2) ⇒ (ux1v, S2) or
(uA1v, S2) ⇒ (ux1v, w) in Γ, where uA1v = y0, ux1v = y1. Then, (A1 → x1, S2 →
S2) ∈ Q or (A1 → x1, S2 → w) ∈ Q. Algorithm 4 implies that there exists a matrix
of the form (p1 : A1 → x1) ∈ M . Hence, uA1v ⇒1 ux1v in H .

II. Let (y0, S2) ⇒ (y1, z1) ⇒ (y2, z2) ⇒ . . . ⇒ (yk−1, zk−1) ⇒ (yk, S2) or
(y0, S2) ⇒ (y1, z1) ⇒ (y2, z2) ⇒ . . . ⇒ (yk−1, zk−1) ⇒ (yk, w) in Γ, where zi 6= S2

for all i = 1, . . . , k − 1 and k ≥ 2. Algorithm 4 implies that there exists a matrix
p1p2 . . . pk ∈ M and holds zi = 〈p1p2 . . . pk, i〉 for all i = 1, . . . k− 1. Hence, y0 ⇒ yk
in H . �

Claim 3.17. Let (y0, S2) ⇒ (y1, z1) ⇒ (y2, z2) ⇒ . . . ⇒ (yr−1, zr−1) ⇒ (yr, w) in
Γ. Set m = Card({i|1 ≤ i ≤ r − 1, zi = S2}). Informally, m is number of zi of the
form S2. Then, y0 ⇒m+1 yr in H .

P r o o f . This claim is proved by induction on m ≥ 0.

Basis:
Let m = 0. Then, zi 6= S2 for all i = 1, . . . , k − 1. Claim 9 implies that there exists
a derivation step y0 ⇒1 yr in H .

Induction hypothesis:
Assume that the claim holds for all m-step derivations, where m = 0, . . . , k, for some
k ≥ 0.

Induction step:
Consider (y0, S2) ⇒ (y1, z1) ⇒ (y2, z2) ⇒ . . . ⇒ (yr−1, zr−1) ⇒ (yr, w) in Γ, where
Card({i|1 ≤ i ≤ r−1, zi = S2}) = k+1 Then, there exists p ∈ {1, . . . , r−1} such that
zp = S2, Card({i|1 ≤ i ≤ p−1, zi = S2}) = 0, Card({i|p+1 ≤ i ≤ r−1, zi = S2}) = k
and (y0, z0) ⇒ . . . ⇒ (yp, zp) ⇒ . . . ⇒ (yr−1, zr−1) ⇒ (yr, w) in Γ.

First, observe that (yp, zp) ⇒ . . . ⇒ (yr−1, zr−1) ⇒ (yr, w), where zp = S2 and
Card({i|p + 1 ≤ i ≤ r − 1, zi = S2}) = k implies that yp ⇒k+1 yr in H by the
induction hypothesis.

Furthermore, let (y0, z0) ⇒ . . . ⇒ (yp, zp). Card({i|1 ≤ i ≤ p− 1, zi = S2}) = 0
implies zi 6= S2 for all i = 1, . . . , p. Claim 9 implies that there exists a derivation
step y0 ⇒1 yp in H .

As a result, we obtain: y0 ⇒k+2 yr. �

Theorem 3.18. Let H be a matrix grammar and w be a word. On input H and
w, Algorithm 4 halts and correctly constructs a 2-GGR Γ = (G1, G2, Q) such that
{w1|(w1, w) ∈ 2-L(Γ)} = L(H).

P r o o f . To establish this theorem, we next prove:

1. {w1|(w1, w) ∈ 2-L(Γ)} = L(H).
Consider Claim 8 for any m ≥ 1, x = S and y ∈ T ∗. We obtain an implication
of the form: if S ⇒∗ y in H , then (S, S2) ⇒∗ (y, w) in Γ. Hence, L(H) ⊆
{w1|(w1, w) ∈ 2-L(Γ)}. Consider Claim 10 for any m ≥ 1, y0 = S and yr ∈
T ∗. We see that if (S, S2) ⇒∗ (yr, w) in Γ, then S ⇒∗ yr in H . Hence,
{w1|(w1, w) ∈ 2-L(Γ)} ⊆ L(H).

80 R. LUKÁŠ AND A. MEDUNA

2. {(w1, w2)|(w1, w2) ∈ 2-L(Γ), w2 6= w} = ∅.
Notice that Algorithm 4 implies that grammar G2 = (N2, T2, P2, S2) contains
only rules of the form A → B and A → w, where A,B ∈ N2. Hence, G2 gener-
ates ∅ or {w}. Γ containsG2 as a second component, hence {(w1, w2)|(w1, w2) ∈
2-L(Γ), w2 6= w} = ∅. �

Theorem 3.19. For every matrix grammar H , there is a 2-GGR Γ such that
L(H) = Lunion(Γ).

P r o o f . We use Algorithm 4 with matrix grammar H and w as input, where w is
any string in L(H), provided that L(H) is nonempty. Otherwise, w is any string.
We prove that L(H) = Lunion(Γ).

1. If L(H) = ∅, take any word w and use Algorithm 4 to construct G. Observe
that Lunion(Γ) = ∅ = L(H).

2. If L(H) 6= ∅, take any w ∈ L(H) and use Algorithm 4 to construct Γ. As
obvious, Lunion(Γ) = L(H) ∪ w = L(H). �

Theorem 3.20. For every matrix grammar H , there is a 2-GGR Γ such that
L(H) = Lconc(Γ).

P r o o f . We use Algorithm 4 with the matrix grammar H and w = ε as input.
We prove that L(H) = Lconc(Γ). Theorem 4 says {w1|(w1, w) ∈ 2-L(Γ)} = L(H)
and {(w1, w2)|(w1, w2) ∈ 2-L(Γ), w2 6= w} = ∅. Lconc(Γ) = {w1w2|(w1, w2) ∈ 2-
L(Γ)} = {w1w2|(w1, w2) ∈ 2-L(Γ), w2 = w} ∪ {w1w2|(w1, w2) ∈ 2-L(Γ), w2 6= w} =
{w1w|(w1, w) ∈ 2-L(Γ)} ∪ ∅ = {w1w|(w1, w) ∈ 2-L(Γ)} = L(H), because w = ε. �

Theorem 3.21. For every matrix grammar H , there is a 2-GGR Γ such that
L(H) = Lfirst(Γ).

P r o o f . We use Algorithm 4 with matrix grammar H and any w as input. We
prove that L(H) = Lfirst(Γ). Theorem 4 says {w1|(w1, w) ∈ 2-L(Γ)} = L(H)
and {(w1, w2)|(w1, w2) ∈ 2-L(Γ), w2 6= w} = ∅. Lfirst(Γ) = {w1|(w1, w2) ∈ n-
L(Γ)} = {w1|(w1, w2) ∈ 2-L(Γ), w2 = w} ∪ {w1|(w1, w2) ∈ 2-L(Γ), w2 6= w} =
{w1|(w1, w) ∈ 2-L(Γ)} ∪ ∅ = {w1|(w1, w) ∈ 2-L(Γ)} = L(H). �

4. CONCLUSION

Let LGGRn,X denote the language families defined by n-GGR in the X mode, where
X ∈ union, conc, first, let LH denotes the family of languages generated by the
matrix grammars. From the previous results, we obtain:

LH = LGGRn,X , n ≥ 2, X ∈ {union, conc, first}.

Multigenerative Grammar Systems and Matrix Grammars 81

To summarize all the results, multigenerative grammar systems with any number
of grammatical components are equivalent with two-component versions of these
systems. Perhaps even more importantly, these systems are equivalent with matrix
grammars, which generate a proper subfamily of the family of recursively enumerable
languages (see [7]). Consequently, the general versions of multigenerative grammar
systems are less powerful than their leftmost versions, which characterize the family
of recursively enumerable languages (see [14]).

ACKNOWLEDGEMENT

This work was supported by the Czech Science Foundation under grant 201/07/0005 and
the MSM 0021630528 grant of the Ministry of Education, Youth and Sports of the Czech
Republic. The authors thank the referee of this paper and Jǐŕı Koutný for their helpful
comments and suggestions.

(Received February 4, 2008)

REFERENCES

[1] E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Ch. Păun: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London 1994.

[2] E. Csuhaj-Varju and G. Vaszil: On context-free parallel communicating grammar
systems: Synchronization, communication, and normal forms. Theoret. Comput. Sci.
255 (2001), 511–538.

[3] E. Csuhaj-Varju and G. Vaszil: Parallel communicating grammar systems with in-
complete information communication. Develop. Language Theory (2001), 381–392.

[4] J. Dassow: On cooperating distributed grammar systems with competence based start
and stop conditions. Fund. Inform. 76 (2007), 293–304.

[5] J. Dassow and G. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, New York 1989.

[6] J. Dassow, G. Păun, and G. Rozenberg: Grammar systems. In: Handbook of Formal
Languages (G. Rozenberg and A. Salomaa, eds.), Springer, Berlin 1997.

[7] J. Dassow, G. Păun, and A. Salomaa: Grammars with controlled derivations. In:
Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.), Springer, Berlin
(1997).

[8] H. Fernau: Parallel communicating grammar systems with terminal transmission. Acta
Inform. 37 (2001), 511–540.

[9] H. Fernau and M. Holzer: Graph-controlled cooperating distributed grammar systems
with singleton components. In: Proc. Third Internat. Workshop on Descriptional Com-
plexity of Automata, Grammars, and Related Structures, Vienna 2001, pp. 79–90.

[10] J. Gaso and M. Nehez: Stochastic cooperative distributed grammar systems and ran-
dom graphs. Acta Inform. 39 (2003), 119–140.

[11] M.A. Harrison: Introduction to Formal Language Theory. Addison-Wesley, London
1978.

[12] A. Meduna: Automata and Languages: Theory and Applications. Springer, London
2000.

82 R. LUKÁŠ AND A. MEDUNA

[13] A. Meduna: Two-way metalinear PC grammar systems and their descriptional com-
plexity. Acta Cybernet. 16 (2003), 126–137.

[14] A. Meduna and R. Lukas: Multigenerative grammar systems. Schedae Inform. 15
(2006), 175–188.

[15] G. Păun, A. Salomaa, and S. Vicolov: On the generative capacity of parallel commu-
nicating grammar systems. Internat. J. Comput. Math. 45 (1992), 45–59.

[16] G. Rozenberg and A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin
1997.

[17] A. Salomaa: Formal Languages. Academic Press, New York 1973.

[18] G. Vaszil: On simulating non-returning PC grammar systems with returning systems.
Theoret. Comput. Sci. 209 (1998), 1–2, 319–329.

Roman Lukáš, Brno University of Technology, Faculty of Information Technology, Depart-

ment of Information Systems, Božetěchova 2, 612 66 Brno. Czech Republic.

e-mail: lukas@fit.vutbr.cz

Alexander Meduna, Brno University of Technology, Faculty of Information Technology,

Department of Information Systems, Božetěchova 2, 612 66 Brno. Czech Republic.

e-mail: meduna@fit.vutbr.cz

		webmaster@dml.cz
	2013-09-21T15:48:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

