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PROPER UNIFORM ALGEBRAS ARE FLAT
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(Received March 2, 2005)

Abstract. In this brief note, we see that if A is a proper uniform algebra on a compact
Hausdorff space X, then A is flat.
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A Banach space E is flat if there is a curve of length two in the unit sphere of E with

antipodal endpoints; i.e., E is flat if there is a continuous function γ : [0, 1] → E such

that ‖γ(t)‖ = 1 for each t ∈ [0, 1], sup
{ m

∑

n=1

‖γ(tn) − γ(tn−1)‖ : 0 = t0 < t1 < . . . <

tm = 1
}

= 2 and γ(0) = −γ(1). Schäffer’s monograph [4] contains a wealth of

information about flat spaces and related topics. In [4], the scalar field is always

the real numbers, but in this paper we are more interested the complex case. It’s

clear that if E is a complex Banach space with a flat real-linear subspace, then E

itself is also flat and so this will not cause any problems. For a compact Hausdorff

space X , let C(X) denote the complex-valued continuous functions on X and let

C(X,R) denote the real-valued continuous functions on X . Equip both with the

supremum norm ‖f‖∞ = sup{|f(x)| : x ∈ X}. The compact Hausdorff space X is

scattered if every nonempty subset of X contains a relatively isolated point. From

work of Niykos and Schäffer [2] (also see [4]) we have C(X,R) (and thus C(X)) is

flat whenever X is not scattered. A subalgebra A of C(X) is a uniform algebra on

X if A is closed, contains the constant functions, and separates the points of X . If A

is a uniform algebra on X and A 6= C(X), A is said to be a proper uniform algebra

on X . An old result of Rudin [5] asserts that if X is a compact Hausdorff space

and there exists a proper unifrom algebra on X then X is not scattered. In view of

these results, it seems natural to determine whether every proper uniform algebra is
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flat. As a final preliminary, for K ⊂ C compact, let P (K) denote the closure of the

polynomials (in one complex variable) in C(K).

Theorem. Every proper uniform algebra is flat.

P r o o f. Let A be a proper uniform algebra on a compact Hausdorff space X .

Let f ∈ A. For any polynomial p, p ◦ f ∈ A and ‖p ◦ f‖∞ = sup{|p(z)| : z ∈ f(X)}.

Since A is closed in C(X), P (f(X)) is isometric to a subalgebra of A. If f(X) is

countable, then f(X) has no interior and the complement of f(X) is connected.

By Mergelyan’s Theorem, P (f(X)) = C(f(X)) and so, the complex conjugate of

f , f ∈ A. Since A 6= C(X), it follows from the Stone-Weierstrass Theorem that

there is some g ∈ A such that g 6∈ A. Thus K = g(X) is an uncountable compact

metric space. By a theorem of Pe lczyński [3], P (K) contains a subspace isometric to

C([0, 1]). As mentioned above, C([0, 1]) is flat hence P (K) is flat. Since A contains

a subspace isometric to P (K), A is flat as well. �

Remarks. In the proof above, the argument that g(X) is uncountable for some

g ∈ A is essentially Rudin’s argument in [5]. The full generality of Pe lczyński’s

result from [3] is not needed, we only need this result for P (K), where K ⊂ C is

compact and uncountable. One can show that the outer boundary of K contains an

uncountable compact set S of harmonic measure zero so S is a peak interpolation

set for P (K). Applying the linear extention theorem of Michael and Pe lczyński [1]

yields a subpace of P (K) isometric to C(S). Since this argument does not seem to

lead to anything beyond what we have above, the details are omitted.
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