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Abstract. The main objective of this paper is to study the boundedness character, the
periodic character, the convergence and the global stability of positive solutions of the
difference equation

xn+1 =

(

A+
k
∑

i=0

αixn−i

)

/

k
∑

i=0

βixn−i, n = 0, 1, 2, . . .

where the coefficients A, αi, βi and the initial conditions x
−k, x

−k+1, . . . , x−1, x0 are pos-
itive real numbers, while k is a positive integer number.
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gence, global stability
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1. Introduction

Our goal in this paper is to investigate the boundedness character, the periodic

character, the convergence and the global stability of positive solutions of the differ-

ence equation

(1) xn+1 =

(
A +

k∑

i=0

αixn−i

)/ k∑

i=0

βixn−i, n = 0, 1, 2, . . .

where the coefficients A, αi, βi and the initial conditions x−k, x−k+1, . . . , x−1, x0 are

positive real numbers, while k is a positive integer number. The case when any of

A, αi, βi is allowed to be zero gives different special cases of the equation (1) which
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have been studied by many authors (see for example [1]–[14]). For related work see

[15]–[27]. The study of these equations is challenging and rewarding and is still in

its infancy. We believe that nonlinear rational difference equations are of paramount

importance in their own right. Furthermore, the results about such equations offer

prototypes for the development of the basic theory of the global behavior of nonlinear

difference equations.

Definition 1. A difference equation of order (k + 1) is of the form

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, 2, . . .

where F is a continuous function which maps some set Jk+1 into J and J is a set

of real numbers. An equilibrium point x̃ of this equation is a point that satisfies the

condition x̃ = F (x̃, x̃, . . . , x̃). That is, the constant sequence {xn}∞n=−k with xn = x̃

for all n > −k is a solution of that equation.

Definition 2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equa-

tion (1). Then

(i) An equilibrium point x̃ of the difference equation (1) is called locally stable

if for every ε > 0 there exists δ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞) with

|x−k − x̃| + . . . + |x−1 − x̃| + |x0 − x̃| < δ, then |xn − x̃| < ε for all n > −k.

(ii) An equilibrium point x̃ of the difference equation (1) is called locally asymptoti-

cally stable if it is locally stable and there exists γ > 0 such that, if x−k, . . . , x−1, x0 ∈
(0,∞) with |x−k − x̃| + . . . + |x−1 − x̃| + |x0 − x̃| < γ, then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1) is called a global attractor

if for every x−k, . . . , x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1) is called globally asymptotically

stable if it is locally stable and a global attractor.

(v) An equilibrium point x̃ of the difference equation (1) is called unstable if it is

not locally stable.

Definition 3. We say that a sequence {xn}∞n=−k is bounded and persists if there

exist positive constants m and M such that

m 6 xn 6 M for all n > −k.

Definition 4. A sequence {xn}∞n=−k is said to be periodic with period p if

xn+p = xn for all n > −k. A sequence {xn}∞n=−k is said to be periodic with prime

period p if p is the smallest positive integer having this property.
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Assume that ã =
k∑

i=0

αi, ā =
k∑

i=0

(−1)iαi, b̃ =
k∑

i=0

βi and b̄ =
k∑

i=0

(−1)iβi. Since

the coefficients A, αi, βi are positive, a positive equilibrium point x̃ of Eq. (1) is a

solution of the equation

(2) x̃ =
A + ãx̃

b̃x̃
.

Consequently, the positive equilibrium point x̃ of the difference equation (1) is given

by

x̃ = x̃1,2 =
ã ±

√
ã2 + 4Ab̃

2b̃
.

Let F : (0,∞)k+1 −→ (0,∞) be a continuous function defined by

(3) F (u0, u1, . . . , uk) =

(
A +

k∑

i=0

αiui

)/ k∑

i=0

βiui.

We have

yn+1 =
k∑

j=0

∂F (x̃, . . . , x̃)

∂uj

yn−j ,

and then the linearized equation is

(4) yn+1 =

k∑

j=0

bjyn−j,

where

(5) bj = (αj − βj x̃)/b̃ x̃.

The characteristic equation of the linearized equation (4) is given by

(6) λn+1 =

k∑

j=0

bjλ
n−j ,

which can be rewritten in the form

(7)
k∑

j=0

bjλ
−j−1 = 1.

2. Main results

In this section we establish some results which show that the positive equilibrium

point x̃ of the difference equation (1) is globally asymptotically stable and every

positive solution of the difference equation (1) is bounded and has prime period two.
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Theorem 1 ([13] The linearized stability theorem).

Suppose F is a continuously differentiable function defined on an open neighbour-

hood of the equilibrium x̃. Then the following statements are true.

(i) If all roots of the characteristic equation (6) of the linearized equation (4) have

absolute value less than one, then the equilibrium point x̃ is locally asymptoti-

cally stable.

(ii) If at least one root of Eq. (6) has absolute value greater than one, then the

equilibrium point x̃ is unstable.

(iii) If all roots of Eq. (6) have absolute value greater than one, then the equilibrium

point x̃ is a source.

Theorem 2 (See [4], [10], [13], [17]). Assume that a, b ∈ R and k ∈ {0, 1, 2, . . .}.
Then

(8) |a| + |b| < 1

is a sufficient condition for the asymptotic stability of the difference equation

(9) xn+1 + axn + bxn−k = 0, n = 0, 1, . . .

R em a r k 1 (See [13]). Theorem 1 can be easily extended to a general linear

difference equation of the form

(10) xn+k + p1xn+k−1 + . . . + pkxn = 0, n = 0, 1, 2, . . .

where p1, p2, . . . , pk ∈ R and k ∈ {1, 2, . . .}. We can see that the equation (10) is
asymptotically stable provided that

(11)
k∑

i=1

|pi| < 1.

Theorem 3 (See [13]). Consider the difference equation

xn+1 = F (xn, xn−1, . . . , xn−k)

where F ∈ C(Ik+1,R) where I is an open interval of real numbers and R is the set

of real numbers. Let x̃ ∈ I be an equilibrium of this equation. Suppose also that

(i) F is a nondecreasing function in each of its arguments.
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(ii) F satisfies the negative feedback property

(x − x̃)[F (x, x, . . . , x) − x] < 0 for all x ∈ I − {x̃}.

Then the equilibrium point x̃ is a global attractor.

The following lemma is an extension of that obtained in [16], [22] which is needed

here.

Lemma 4. Suppose that bj (j = 0, 1, . . . , k) are real numbers such that
k∑

j=0

|bj| 6=

0 and σj (j = 0, 1, . . . , k) are positive integers. Then the equation
k∑

j=0

|bj |x−σj = 1

has a unique solution in x ∈ (0,∞).

Theorem 5. If all roots of the polynomial equation (6) lie in the open unit disk

|λ| < 1, then

(12)

k∑

j=0

|bj | < 1.

P r o o f. Assume that µ is a nonzero root of the equation (6) satisfying |µ| < 1.

Let us write µ = r exp(iθ), i =
√
−1 and then write (7) in the form

(13)

k∑

j=0

bjr
−j−1 cos(j + 1)θ = 1

and

(14)

k∑

j=0

bjr
−j−1 sin(j + 1)θ = 0.

Let us now discuss the following cases:

C a s e 1. If bj > 0 (j = 0, 1, . . . , k), then by virtue of Lemma 4 we see that the

equation
k∑

j=0

bj̺
−j−1
1 = 1 has a unique solution ̺1 ∈ (0,∞). Thus, (r, θ) = (̺1, nπ)

where n = 0, 2, 4, . . . is a solution of the equations (13), (14). This implies that

̺1 = r = |µ| < 1. But then we get

1 =

k∑

j=0

bj̺
−j−1
1 >

k∑

j=0

|bj |.
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C a s e 2. If bj < 0 (j = 0, 2, 4, . . .) and bj > 0 (j = 1, 3, 5, . . .), then by virtue

of Lemma 4 we see that the equation
k∑

j=0

|bj|̺−j−1
2 = 1 has a unique solution ̺2 ∈

(0,∞). Thus, (r, θ) = (̺2, nπ) where n = 1, 3, 5, . . . is a solution of the equations

(13), (14). This implies that ̺2 = r = |µ| < 1. But then we get

1 =

k∑

j=0

|bj |̺−j−1
2 >

k∑

j=0

|bj |.

Thus, the proof of Theorem 5 is completed. �

Theorem 6. Let {xn}∞n=−k be a positive solution of the difference equation (1)

such that for some n0 > 0,

either xn > x̃1 for all n > n0(15)

or xn 6 x̃1 for all n > n0.(16)

Then {xn} converges to the equilibrium point x̃1 as n → ∞.

P r o o f. Assume that (15) holds. The case when (16) holds is similar and will

be omitted. Then for n > n0 + k we deduce that

xn+1 =

(
A +

k∑

i=0

αixn−i

)/ k∑

i=0

βixn−i

=

[ k∑

i=0

αixn−i

][(
1 +

A
k∑

i=0

αixn−i

)/ k∑

i=0

βixn−i

]

6

[ k∑

i=0

αixn−i

]
[1 + (A/ãx̃1)]

b̃x̃1

=

[ k∑

i=0

αixn−i

]
(A + ãx̃1)

ãb̃x̃2
1

.

With the aid of (2) the last inequality becomes

xn+1 6

[ k∑

i=0

αixn−i

]
(A + ãx̃1)

b̃x̃1

( 1

ãx̃1

)
6

k∑

i=0

αixn−i/ã,

and so

(17) xn+1 6 max
06i6k

{xn−i} for n > n0 + k.
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Set

(18) yn = max
06i6k

{xn−i} for n > n0 + k.

Then clearly

(19) yn > xn+1 > x̃1 for n > n0 + k.

Next we claim that

(20) yn+1 6 yn for n > n0 + k.

We have

yn+1 = max
06i6k

{xn+1−i} = max{xn+1, max
06i6k−1

{xn−i}} 6 max{xn+1, yn} = yn.

From (19) and (20) it follows that the sequence {yn} is convergent and that

(21) y = lim
n→∞

yn > x̃1.

To complete the proof, it suffices to prove that y 6 x̃1. To this end, we note that

xn+1 6

(
A +

k∑

i=0

αixn−i

)
/b̃x̃1 6 (A + ã yn)/b̃x̃1.

From this and by using (20) we obtain

xn+i 6 (A + ãyn+i−1)/b̃x̃1 6 (A + ãyn)/b̃x̃1 for i = 1, . . . , k + 1.

Then

(22) yn+k+1 = max
16i6k+1

{xn+i} 6 (A + ãyn)/b̃x̃1,

and letting n −→ ∞, we have

y 6
A + ãy

b̃x̃1

.

Consequently, we obtain

(23) y
(
1 − ã

b̃x̃1

)
6

A

b̃x̃1

.

From (2) and (23) we deduce that

y

x̃1

( b̃x̃1 − ã

b̃

)
6

( b̃x̃1 − ã

b̃

)
.

Since x̃1 > ã/b̃, the term in the two brackets is positive. Thus, we have y 6 x̃1.

Therefore, we have lim
n→∞

yn = x̃1 and with help of (19) we obtain lim
n→∞

xn = x̃1. The

proof of Theorem 6 is completed. �
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Theorem 7. If {xn}∞n=−k is a positive solution of Eq. (1) which is monotonic

increasing, then it is bounded and persists.

P r o o f. Let {xn}∞n=−k be a positive solution of the difference equation (1). It

follows from Eq. (1) that

xn+1 = (A + α0xn + α1xn−1 + . . . + αkxn−k)/(β0xn + β1xn−1 + . . . + βkxn−k).

Since β0xn < β0xn + β1xn−1 + . . . + βkxn−k, we have

A/(β0xn + β1xn−1 + . . . + βkxn−k) < A/(β0xn),

and also we note that

(α0xn)/(β0xn + β1xn−1 + . . . + βkxn−k) <
α0

β0
.

Similarly, we can show that

(α1xn−1)/(β0xn + β1xn−1 + . . . + βkxn−k) <
α1

β1
,

and so on. Now, we deduce that

(24) xn+1 6
A

β0xn

+

k∑

i=0

αi

βi

, n > 0.

Since the sequence {xn}∞n=−k is positive and monotonic increasing, we have xn+1 >

xn and hence (24) can be rewritten in the form

x2
n − xn

k∑

i=0

αi

βi

6
A

β0
.

Consequently, we have

(
xn − 1

2

k∑

i=0

αi

βi

)2

6
1

4

( k∑

i=0

αi

βi

)2

+
A

β0
.

From this we deduce that

(25) xn 6
1

2

[( k∑

i=0

αi

βi

)
+

Ã

( k∑

i=0

αi

βi

)2

+
4A

β0

]
= M,
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whereM is a positive constant. On the other hand, the change of variables xn = 1/zn

transforms the equation (1) to

(26)
1

zn+1
=

(
A +

k∑

i=0

αi

zn−i

)/ k∑

i=0

βi

zn−i

.

Consequently, we get

zn+1 = β0zn−1 . . . zn−k + β1znzn−2 . . . zn−k + . . . + βkznzn−1 . . . zn−k+1

× (Aznzn−1 . . . zn−k + α0zn−1 . . . zn−k

+ α1znzn−2 . . . zn−k + . . . + αkznzn−1 . . . zn−k+1)
−1,

from which we deduce that

α0zn−1 . . . zn−k < Aznzn−1 . . . zn−k + α0zn−1 . . . zn−k + . . . + αkznzn−1 . . . zn−k+1,

and hence

β0zn−1 . . . zn−k

× (Aznzn−1 . . . zn−k + α0zn−1 . . . zn−k + . . . + αkznzn−1 . . . zn−k+1)
−1 <

β0

α0
.

Similarly, we see that

β1znzn−2 . . . zn−k

× (Aznzn−1 . . . zn−k + α0zn−1 . . . zn−k + . . . + αkznzn−1 . . . zn−k+1)
−1 <

β1

α1
,

and so on. Now, we deduce that

zn+1 6

k∑

i=0

βi

αi

= H, for all n > 0.

Thus, we obtain

(27) xn =
1

zn

>
1

H
= m,

where H and m are positive constants. From (25) and (27) we get

m 6 xn 6 M.

Therefore, the solution of the difference equation (1) is bounded and persists. The

proof of Theorem 7 is completed. �
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Theorem 8. The positive equilibrium points x̃1,2 of the difference equation (1)

are globally asymptotically stable.

P r o o f. The linearized equation (4) with the equation (5) can be written in the

form

yn+1 +

k∑

j=0

βj x̃i − αj

b̃x̃i

yn−j = 0 (i = 1, 2),

and its characteristic equation is

λn+1 +

k∑

j=0

βj x̃i − αj

b̃x̃i

λn−j = 0 (i = 1, 2).

Now, we discuss the following cases:

C a s e 1. Since x̃1 > ã/b̃, we have

∞∑

j=0

∣∣∣
βj x̃1 − αj

b̃x̃1

∣∣∣ =

∞∑

j=0

βjx̃1 − αj

b̃x̃1

=
b̃x̃1 − ã

b̃x̃1

=

√
ã2 + 4Ab̃ − ã√
ã2 + 4Ab̃ + ã

< 1.

C a s e 2. Since x̃2 < ã/b̃, we have

∞∑

j=0

∣∣∣
βj x̃2 − αj

b̃x̃2

∣∣∣ =
∞∑

j=0

αj − βj x̃2

b̃x̃2

=
ã − b̃x̃2

b̃x̃2

=
ã −

√
ã2 + 4Ab̃

ã +
√

ã2 + 4Ab̃
< 1.

Applying Theorem 1 we deduce that the equilibrium points x̃1,2 are locally asymp-

totically stable. It remains to prove that x̃1,2 are global attractors. To this end, we

apply Theorem 3 to the function F (u0, u1, . . . , uk) given by the formula (3) as follows:

The function F : (0,∞)k+1 −→ (0,∞) given by (3) is continuous and nondecreasing

in each of its arguments. In addition, we deduce for x ∈ (0,∞) that

[F (x, x, . . . , x) − x](x − x̃1) =
[A + ãx

b̃x
− x

]
(x − x̃1)

= −
( b̃x2 − ãx − A

b̃x

)
(x − x̃1) = − (x − x̃1)

2(x − x̃2)

x
< 0

for all x > x̃2. Thus, the conditions of Theorem 3 are satisfied. This proves that the

equilibrium point x̃1 is a global attractor. Similarly, we can show that

[F (x, x, . . . , x) − x](x − x̃2) = − (x − x̃1)(x − x̃2)
2

x
< 0

for all x > x̃1. This proves that the equilibrium point x̃2 is a global attractor. Now,

we have shown that the equilibrium points x̃ = x̃1,2 are global attractors. The proof

of Theorem 8 is completed. �

234



Theorem 9. A necessary and sufficient condition for the difference equation (1)

to have a positive prime period two solution is that the inequality

(28) A(b̃ − b̄)2 − ā(ã + ā)(b̃ − b̄) < b̄ā2

is valid, provided ā < 0 and b̄ > 0.

P r o o f. First, suppose that there exists a positive prime period two solution

. . . , P, Q, P, Q, . . .

of the difference equation (1). We shall prove that the condition (28) holds. It follows

from the difference equation (1) that if k is even, then xn = xn−k and we have

P =
A + α0Q + α1P + α2Q + α3P + . . . + αkQ

β0Q + β1P + β2Q + β3P + . . . + βkQ

and

Q =
A + α0P + α1Q + α2P + α3Q + . . . + αkP

β0P + β1Q + β2P + β3Q + . . . + βkP
,

while if k is odd, then xn+1 = xn−k and we have

P =
A + α0Q + α1P + α2Q + α3P + . . . + αkP

β0Q + β1P + β2Q + β3P + . . . + βkP

and

Q =
A + α0P + α1Q + α2P + α3Q + . . . + αkQ

β0P + β1Q + β2P + β3Q + . . . + βkQ
.

Now, we discuss the case when k is even (and in a similar way we can discuss the

case when k is odd which is omitted here). Consequently, we obtain

(29) A + α0Q + α1P + α2Q + . . . + αkQ = β0PQ + β1P
2 + β2PQ + . . . + βkPQ

and

(30) A + α0P + α1Q + α2P + . . . + αkP = β0PQ + β1Q
2 + β2PQ + . . . + βkPQ.

By subtracting, we deduce after some reduction that

(31) P + Q =
−ā

β1 + β3 + . . . + βk−1
,

while by adding we obtain

(32) PQ =
A(β1 + β3 + . . . + βk−1) − ā(α0 + α2 + . . . + αk)

b̄(β1 + β3 + . . . + βk−1)
,
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where βi > 0, ā < 0 and b̄ > 0. Assume that P and Q are two positive distinct real

roots of the quadratic equation

(33) t2 − (P + Q)t + PQ = 0.

We deduce that

(34)
( −ā

β1 + β3 + . . . + βk−1

)2

> 4
A(β1 + β3 + . . . + βk−1) − ā(α0 + α2 + . . . + αk)

b̄(β1 + β3 + . . . + βk−1)
.

From (34), we obtain

A(b̃ − b̄)2 − (ã + ā)(b̃ − b̄)ā < b̄ā2,

and hence the condition (28) is valid. Conversely, suppose that the condition (28)

is valid. Then we deduce immediately from (28) that the inequality (34) holds.

Consequently, there exist two positive distinct real numbers P and Q such that

(35) P =
−ā

2(β1 + β3 + . . . + βk−1)
− 1

2

√
T1

and

(36) Q =
−ā

2(β1 + β3 + . . . + βk−1)
+

1

2

√
T1,

where T1 > 0 is given by the formula

(37) T1 =
( −ā

β1 + β3 + . . . + βk−1

)2

− 4
A(β1 + β3 + . . . + βk−1) − ā(α0 + α2 + . . . + αk)

b̄(β1 + β3 + . . . + βk−1)
.

Thus, P and Q represent two positive distinct real roots of the quadratic equation

(33). Now, we are going to prove that P and Q are positive solutions of prime period

two for the difference equation (1). To this end, we assume that

x−k = P, x−k+1 = Q, . . . , x−1 = Q, and x0 = P.

We wish to show that

x1 = Q and x2 = P.
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To this end, we deduce from the difference equation (1) that

x1 =
A + α0x0 + α1x−1 + . . . + αkx−k

β0x0 + β1x−1 + . . . + βkx−k

(38)

=
A + P (α0 + α2 + . . . + αk) + Q(α1 + α3 + . . . + αk−1)

P (β0 + β2 + . . . + βk) + Q(β1 + β3 + . . . + βk−1)
.

Multiplying the denominator and numerator of (38) by γ = −(β1+β3+ . . .+βk−1)/ā

and using (35)–(37) we obtain

x1 =
2Aγ + [1 +

√
K1](α0 + α2 + . . . + αk)

[1 +
√

K1](β0 + β2 + . . . + βk) + [1 −
√

K1](β1 + β3 + . . . + βk−1)
(39)

+
[1 −

√
K1](α1 + α3 + . . . + αk−1)

[1 +
√

K1](β0 + β2 + . . . + βk) + [1 −
√

K1](β1 + β3 + . . . + βk−1)

=
[(α0 + α2 + . . . + αk) + (α1 + α3 + . . . + αk−1) + 2Aγ

[(β0 + β2 + . . . + βk) + (β1 + β3 + . . . + βk−1)] + b̄
√

K1

+
[(α0 + α2 + . . . + αk) − (α1 + α3 + . . . + αk−1)]

√
K1

[(β0 + β2 + . . . + βk) + (β1 + β3 + . . . + βk−1)] + b̄
√

K1

=
[ã + 2Aγ] + ā

√
K1

b̃ + b̄
√

K1

,

where

(40) K1 = 1 −
[A(b̃ − b̄)2 − ā(ã + ā)(b̃ − b̄)

b̄ā2

]
,

and from the condition (28) we deduce that K1 > 0. Multiplying the denominator

and numerator of (39) by

b̃ − b̄
√

K1,

we have

x1 =
b̃[ã + 2Aγ] − b̄āK1

b̃2 − b̄2K1

+
[b̃ā − ãb̄ + −2Ab̄γ]

√
K1

b̃2 − b̄2K1

.

After some reduction, we deduce that

x1 =
(1 +

√
K1)T2

2γT2
=

−ā(1 +
√

K1)

2(β1 + β3 + . . . + βk−1)

=
−ā

2(β1 + β3 + . . . + βk−1)
+

1

2

√
T1 = Q,

where

T2 = 2(α1 + α3 + . . . + αk−1)(β0 + β2 + . . . + βk)

−2(α0 + α2 + . . . + αk)(β1 + β3 + . . . + βk−1) −
2Ab̄(β1 + β3 + . . . + βk−1)

B + ā
.
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Similarly, we can show that

x2 =
A + α0x1 + α1x0 + . . . + αkx

−(k−1)

β0x1 + β1x0 + . . . + βkx
−(k−1)

=
A + Q(α0 + α2 + . . . + αk) + P (α1 + α3 + . . . + αk−1)

Q(β0 + β2 + . . . + βk) + P (β1 + β3 + . . . + βk−1)
= P.

By using the mathematical induction, we have

xn = P and xn+1 = Q for all n > −k.

Thus the difference eqution (1) has a positive prime period two solution

. . . , P, Q, P, Q, . . .

The proof of Theorem 9 is completed. �

A c k n ow l e d g em e n t. The authors would like to express their deep thanks to

the referee for his interesting suggestions and comments on this paper.
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