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G-SPACE OF ISOTROPIC DIRECTIONS AND G-SPACES OF
¢-SCALARS WITH G = O(n, 1, R)

ALEKSANDER MISIAK, EUGENIUSZ STASIAK, Szczecin

(Received March 3, 2007)

Abstract. There exist exactly four homomorphisms ¢ from the pseudo-orthogonal group
of index one G = O(n, 1, R) into the group of real numbers Ry. Thus we have four G-spaces
of ¢-scalars (R, G, hy) in the geometry of the group G. The group G operates also on the
sphere S™~2 forming a G-space of isotropic directions (S"_Q, G, *). In this note, we have
solved the functional equation F(Axqi, Axqa, ..., Axqgm) = ¢(A)-F(q1,q2, - .., gm) for given
independent points q1,42,...,9m € 5772 with 1 < m < n and an arbitrary matrix A € G
considering each of all four homomorphisms. Thereby we have determined all equivariant
mappings F: (S"72)"™ — R.
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1. INTRODUCTION

For n > 2 consider the matrix Fy = diag(+1,...,+1,—1) € GL(n, R).
Definition 1. A pseudo-orthogonal group of index one is a subgroup of the
group GL(n, R) satisfying the condition

G=0(n,1,R)={A: Ac GL(n,R)NAT -E,- A= E}.

It is known that there exist exactly four homomorphisms ¢ from the group G
into the group Rg. Denoting A = [Az |t € G we can specify these homomorphisms,
namely 1(A4) = 1,e(A) = det A = sign(det A), n(A) = sign(A?) and e(A) - n(A4).

Definition 2. A G-space is the triple (M, G, f), where f is an operation of the
group G on the set M.
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Definition 3. By a G-space of p-scalars we understand the triple (R, G, hy),
where the mappings ¢: G — Rg and h,: R x G — R fulfil the conditions

a) A\ w(A-B)=p(A) o(B),
A,BeG

b) A A he(z,A) =¢(A) -z
zeR AeG
Let two G-spaces (M, G, fo) and (Mg, G, f3) be given.

Definition 4. A mapping F,,3: M, — Mg is called equivariant if the condition

(1) N N\ Fas(falz, A) = fo(Fap(x), A)

zeM, AEG

is fulfilled.

The class of G-spaces with equivariant maps as morphisms constitutes a category
which is called a pseudo-Euclidean geometry of index one. In particular, there exist
in this geometry the G-space of contravariant vectors

(2) (R",G,f),  where A\ A flu,A)=A4-u

ueR™ AeG

and four G-spaces of objects with one component and linear transformation rule

1.z for -scalars,
e(A) -z for e-scalars,
(3) (R,G, h), where /\ /\ h(z,A) = (4)
2€R ACG n(A) - x for n-scalars,
g(A) -n(A) -z for en-scalars.

All equivariant maps from the product of linearly independent contravariant vec-
tors into G-spaces of y-scalars were determined in [4], [5] and [6]. In particular,
the equivariant in the G-space of 1-scalars of a pair of vectors u and v is the in-
variant p(u,v) = u? - E; - v. In fact, for an arbitrary matrix A € G we have
p(Au, Av) = (Au)? - By - (Av) = uT - (AT - By - A) - v = uT - By - v = p(u,v).
The invariant p enables us to determine an invariant subset of isotropic vectors,
namely the transitive, isotropic cone ‘0/ ={u: u € R" Ap(u,u) = 0Au # 0}. Let
us introduce in addition the sphere S"~2 included in the hyperplane ¢" = 1 and
immersed in the space R™, namely

S"_Qz{q:q:[ql,qQ,..., =] 7Wherez: }
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n

Let ¢ € "2 and A € G. For brevity let us denote W (g, A) = >~ A?q". Let us recall
i=1
(see [5]) that

(4) A\ sienWi(g, A) = sign(A7) = n(A).
qeSn—2 A€G

0
Because of u™ # 0 we can write every isotropic vector u € V in the form

ul unfl

T
_ nT _ . n _.n 1 2 n—1 T . n
U—[u,u,...,u] =u - ﬁa"'? un a]-:| =u '[QaQa"'7q 71] =u -q,

where ¢ € S"72. Let us call u" = u"(u) the parameter and ¢ = g(u) the direction

0
of the isotropic vector u. For an arbitrary matrix A € G we have A-u € V and
applying the transformation rule for the vector (2) we get

n n

T
A -u= {ZA%ui,...,ZA?ui] =

i=1 i=1

= W) (g A+ a).

So, we have obtained the transformation rules for the parameter and the direction
of the isotropic vector u:

1

() (A= u"(w) Wig, A) and g(4-w) = s

“A-q(u) =Axgq.

Let us observe that B (A% q) = (B-A)*q holds for A, B € G and FE * q = q for the
unit matrix £. In what follows the group G operates on the sphere S™~2.

Definition 5. The G-space

_ A-q
6 S"2 @, %), where x(q,A) =Axqg=———,
© ( : /}72 ARG W(g, A)
qeSs AeG

is called a G-space of isotropic directions.
Definition 6. The system of directions ¢; = q(u) € S*~2 fori = 1,2,...,m is
3

0
called independent if the system of vectors Ul U € V is linearly independent.
m
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In this paper we determine all equivariant mappings from the product of isotropic
directions into p-scalars. More accurately, having in mind (1), (3) and (6) we solve
the functional equations

(7) FAxq,A*xqay...,A%qn)=1-F(q1,q92,---,Gm),

(8) FAxq,Axqo,...,A%qn) =¢(A) - F(q1,q92,---,qm),

(9) FAxq,A*xqa, ..., A% qn) =n(A) - Flq1,q92,---,qm),

(10) FAxq,A*xqa,...,Axqn) =¢c(A)-n(A) - F(q1,q92,- -, qm)

for an arbitrary matrix A € G and the given system of independent points
q1,q2,s -5 Gm € S"2 with 1< m < n.

2. CERTAIN PARTICULAR SOLUTIONS

For the pair of points g;,q; € S"2 let us denote 1 — E qr qj Qg q5) = Qij

for brevity. The Euclidean distance between these pomts

n—1

lgi sl = /D (g% — )2 = <1 - Zqz qj) =1/2-Q(¢i,q5) = /2 Qij

k=1

is not an invariant under the operation of the group G. Let the isotropic vectors u, u
i

correspond to the directions ¢;, ¢;, respectively. Since we have p(Au, Au) = p(u
i

=g
<.

for an arbitrary matrix A € G, according to (5) we get

Q(gi, q5)
W(Qia A) ! W(Qja A)7

which means

llgi; ¢l
||A* g, Axqj| = .

For different points g1, g2, g3, ¢4 € S™ 2, which is possible if n > 2, we can construct

easily two simple but nontrivial invariants

Q13Q24 Q14Q23 or equivalently llg1, gsll - lg2s qall g, gall - 1|2, g3l
Q12Q34" Q12Q34 llar, a2l - lgss aall " 1lqrs @2l - llas, qall

which can be interpreted in a quadrilateral or tetrahedron with vertices ¢1, g2, ¢3, q4-

In addition we have

det(A’lll,, AQQI,, o Au) =€(A) - det(zlt, Uy ,u),

n

3
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80, in particular, for isotropic vectors Uty U in view of (5) we get
n

E(A) i det(QlaQ2a .. 7Qn)
W(ql,A) . W(QQ,A) el W(qn,A)

(12) det(Axq, A*qa,...,A%q,) =

Now (12) together with (4) yields

e(A) - signdet(qy, ..., qy,) for even n,
(13) signdet(A*qh..,,A*qn)_{ (4) - sig (1 n)

e(A) -n(A) - signdet(qi, . .., qn) for odd n.

Lemma 1. For arbitrary possible m = 1,2,... and an arbitrary matrix A € G
the functional equation

- F
e(A)-n(A) - Fq1,...,qm) ifn=2,4,6,...

FAxq,...,A%qp) =

77(14) F(q177qm) 1fn:2,3,4,7
£ (q15- -5 qm) ifn=23,517,...,

=

has only the trivial solution F(q1,q2,-..,qm) = 0.

Proof. If A € G then obviously (—A) € G and A x ¢ = (—A) x g. Inserting A
and then (—A) into the first equation and having in mind n(—A) = —n(A) we get
simultaneously

Flar, - .yqm)=nm(4) - F(A*xq1,...,Axqn) =—n(A) - F(A*xq,..., A% qn).

An analogous result is obtained for the two remaining equations using e(—A4) =
—¢(A) in the case of n odd and g(—A) - n(—A) = —e(A) - n(A) in the case of n
even. ]

We have to consider the cases n = 2 and n = 3. If n = 2 then the sphere S° has
only two different points q; = [¢f,1]7 and g2 = [¢3,1]T = [~q}, 1] where (¢})? = 1.
An arbitrary pseudo-orthogonal matrix is of the form

g-n-coshx e-n-sinhz

A =

(&, @) n-sinhz n-coshz ] ’

where €2 =1, n> = 1, v € R. Since we have A x q; = [eq}, 1]7, so putting the matrix
A(qi,n, ) into functional equations (7) and (8) we get solutions

1-scalars) F'(¢1) = ¢ and F(q1,q2) = ¢,
1
1
e-scalars) F(q1) =c-q; and F(q1,q2) =2c-qf = —2c-q3 = c- qi
q3

where ¢ denotes a constant.
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In the case n = 3 the circle S' is an uncountable set. For the given different
points qi,qo,q3 € S' there exists a matrix 181 € G such that 5({)1) =1, n(fél) =
signdet(q1, g2, q3) and 181 xq1 =[0,1,1]T, 181 * g2 = [0,—1,1]7 and 181 xq3 = [1,0,1]T.
Inserting this matrix into equations (7) and (10) we get solutions

1-scalars) F'(¢1) = c and F(q1,q2) = ¢ and F(q1,q2,q3) = ¢,

en-scalars) F'(¢g1) = 0 and F'(q1,q2) = 0 and F(q1,q2,q3) = ¢ - sign[det(q1, g2, g3)],
where ¢ again denotes an arbitrary constant.

Just in the case m =4 and g4 ¢ {q1, g2, ¢3} we get two non-trivial invariants and
general solutions of the equations:

L-scalars) F'(q1, g2, g3, q4) = O(Q13Q24/Q12Q34, Q14Q23/Q12Q34) = O(4, Y1),

en-scalars) F'(q1, 2,43, q4) = O(x4,y4)-signdet(qi, g2, q3), where O is an arbitrary
function of two variables.

3. GENERAL SOLUTION OF EQUATION (7)

For n = 4,5,6,... let n independent points ¢; = [¢},¢?,...,¢" *,1]T € S*~2
be given, where i = 1,2,...,n, and let Q(s) = det[Q;;]] for s = 2,3,...,n. Let
us remark that [det(q1,qo,...,q,)]? = (=1)"*1Q(n) and (-1)**1Q(s) > 0. We are
going to construct a matrix C' = C(q1,492,--.,qn) = [C’f]{b € G which will enable us
to solve equation (7). We start with the last three rows. For i =1,2,...,n — 1 let

0?72 _ QQSQ%( +1i13qéé$12q§ and CZ_Q _ Q1(2 1)76;213,(32—(523,
e C?lglq)én_ %Téqf O =
n Q23q} + Q13g5 and  C" = —Q13 — Q23 .
(=1D)"/Q(3) (=1)"/Q(3)

We have formulas for the (n — 2)-nd and (n — 1)-st components of an arbitrary point
C * ¢, namely

_ Q13Q2r + Q23Q 1, — Q1203

n—2
(14) (€= a) Q13Q2r + Q23Q1, ’
(C gt = Q13Q2, — Q23Q1,
" Q13Q2r + Q23Q1,

These components in accordance with (11) are 1-scalars. In particular, for r = 1,2,3
we get

(15) Cxq =10,...,0,1,1]7,C % g = [0,...,0,—1,1]7,C % g3 = [0,...,0,1,0,1]T.

294



Let the elements of the first row C} of the matrix C' be coefficients of z; in the
Laplace expansion in terms of elements of the last row of the determinant

R SO L |
1 2 n—1
. q q ... q
1 signdet(q1,...,qn) 2 2 2
v 1 . =
( ) Q( ) q}L—l Q%—l qui 1
21 Z2 . Zpn—1 Zn

Then we have (C x¢q,)! =0 for r =1,2,...,n — 1. Analogously, the coefficients of z;
in the Laplace expansion in terms of elements of the last row of the determinant

A T
CQ _ 1 1 ) n~_-1 :
N \/(_1)n—1Q(n ) Un—o Gn_o -+ Gq,_o
ct o ... cl, -C}
“1 22 e Zn—1 Zn

are the elements C? of the second row of the matrix C. Now, (C x ¢,)? = 0 for
r=1,2,...,n—2. Proceeding in the same way we can determine (k — 1) rows of the
matrix C' and then the k-th row using the determinant

q1 q7 q1 1
. 1 G Gk qZ:,i 1
Cr = \/(—1)"—k+1Q(n — Cll 021 o C’,lkl —C’,ll
k—1 k—1 k—1 _
okl okt okl okl
21 Z9 e Zn—1 Zn

We get (C * q,)¥ =0 only for r = 1,2,...,n — k. In this way we construct the rows
number k =2,3,...n— 3 and (n — 2) again. We describe the k-th coordinate of the
point C * ¢, by the formula

VQ@E) WE

16 Cxq, k=
(16) ( ) (Q13Q2r + Q23Q1,)/—Q(n — k)Q(n — k + 1)
where
0 Q12 Qiz . Qin-k-1 Qin-t Qin—k+1
Q21 0 Q23 ... Qan—k—1 Qon-t Q2n_ks1
Qn-t1 Qn-k2 @n-r3z - Qn-kn-k-1 0 Qn—kn—k+1
er QT‘Q QTB ce Qr,n—k—l Qr,n—k Qr,n—k—i—l
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which holds true for £k = 1,2,...,n — 2 and arbitrary r. Considering the formulas
(14) and (16) we see that C x ¢, depends on ¢i,qo,...,q. ounly, in spite of C =
C(q1,92,---,qn)- It allows us to select the lacking points of the sphere and construct
the matrix C in the case m < n. Formula (11) implies that (C * g,-)* is an invariant.
Considering the case when n = 2, n = 3 and (15) we have

Lemma 2. In the case 1 < m < 4, equation (7) has only the trivial solution
F(qu)=cforn >2, F(q1,q2) = ¢ forn > 2 and F(q1,q2,q3) = ¢ for n > 2, where ¢
is an arbitrary constant.

Considering the case n = 3 and formulas (14) and (15) and using for m =n =4

simply formula (16) we obtain

Lemma 3. The general solution of equation (7) in the case n > 2 and m = 4 is
of the form

llg1, asll - lg2, qall g1, qal| - HQQ;QBH)

F((J17CI2;(13;(]4):9( ’
HQhQQH : HQ3,Q4|| HQhQQH : HQ3,Q4||

where © is an arbitrary function of two variables.
We can conclude with

Lemma 4. The general solution of equation (7) for arbitrary 4 < m < n is of the

form

F(q17QQ7 . an) = 9((C * QT’)k)

where r runs from 4 to m and for every fixed r the index k changes from (n+1—r)
to (n — 1) and © is an arbitrary function of 3(m — 3)(m + 2) variables.

Despite omitting in Lemma 4 the trivial 1-scalars —1,0,+1, we have relations
C * g € S % as a result of the fact that (m — 3) arguments of the function © are
dependent on the others. Analysing formula (16) one can suppose that other kinds of
invariants exist, in addition to the arguments of the function © in Lemma 3. Because
it is easy to find the correct number %m(m — 3) of simple and independent 1-scalars,

we have

Theorem 1. The general solution of the functional equation

F(A*QIvA*q27"'7A*Qm):F(q17QQa"'an)
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for given independent points qi,qa, ..., qm € S"~2 and an arbitrary matrix A € G is
of the form
c ifm=1,2,3,
o <Q13Q24’ Q14Q23) ifm =4,
Q12Q31 Q12Q34

Q13Q2; Q23Q1; QliQQj) _
© (QUQ?’%" Q12Q3:" Q12Qi; ifi<msnm,

where 4 < j < i = 4,5,...,m, c is an arbitrary constant and © is an arbitrary

F(qlana"'7qM):

function of $m(m — 3) variables.

4. GENERAL SOLUTIONS TO EQUATIONS (8) AND (10)

Theorem 2. The general solution of the functional equation

F(A*QMA*(]Qa---aA*QM):5(A)'F(Q1aQQ7---an>

for given independent points q1,qa, ..., qm € S"~2 and an arbitrary matrix A € G is
of the form
c-qi ifn=2and m=1,
0 if n is odd,
Flav .- gm) = 0 ifn > 2 and m < n,
U -signdet(q1, q2,...,qn) ifn is even and m = n,

where c is an arbitrary constant and ¥ is the general solution of equation (7).
Proof. We have already proved the first two cases. Now, let m < n and
n > 2. Then the matrix C in the case n > 4 (or 1(4)1 in the case n = 3) satisfies

(Cxq)' =0forr=1,2,...,m. Let C denote a matrix obtained from the matrix C

by multiplying its elements of the first row by —1. From the relations ¢(C') = —(C)
and (C * q.) = (C * q,,) we get simultaneously

F(q1;Q27"'7Q'm) =¢(C F(C*QMC*(]%aC*Qm)
F(Cx*q1,C*qay...,C*qpm)

= _E(C)F(C*th*qQaaC*qm)
Let F(q1,q2,.-.,qn) be the general solution of equation (8) in the case m = n and
n even. Then the quotient F(q1,qa,...,qn) : signdet(qi, qa,...,qn) is the general

solution of equation (7), which proves the assertion of the theorem in the last case.
O
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Analogously we can prove

Theorem 3. The general solution of the functional equation
F(A*QIvA*q27"'7A*QM) :E(A) U(A) 'F(q17QQa"'7Qm)

for given independent points qi,qa, ..., qm € S"~2 and an arbitrary matrix A € G is
of the form

0 if n is even or m < n,

U -signdet(q1, g, ...,qn) ifn is odd and m = n,

F(q17QQ7"'7Qm)_{

where U is the general solution of equation (7).
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