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Abstract. In the paper by Hilout and Piétrus (2006) a semilocal convergence analysis was
given for the secant-like method to solve generalized equations using Hölder-type conditions
introduced by the first author (for nonlinear equations). Here, we show that this convergence
analysis can be refined under weaker hypothesis, and less computational cost. Moreover finer
error estimates on the distances involved and a larger radius of convergence are obtained.
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique

solution x∗ of the generalized equation

(1.1) 0 ∈ f(x) +G(x),

where f is a continuous function from a Banach space X into a Banach space Y

and G is a set-valued map from X into the subsets of X with closed graph. Many

problems from applied sciences can be formulated like equation (1.1), see [4], [11]–

[21]. A survey on results concerning solution of the generalized equation (1.1) can

be found in [1], [4], [5]–[21], and the references there.

As in the work [12] we use the secant-like method

(1.2) 0 ∈ f(xk) + [yk, xk; f ](xk+1 − xk) +G(xk+1),

where for x0 and x1 being given initial guesses, yk = αxk +(1−α)xk−1 and α ∈ [0, 1)

is fixed.
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A local convergence analysis was provided for method (1.2) under the following

Hölder-type conditions introduced by us in [1], [4], [5] to solve nonlinear equations:

(1.3) ‖[x, y; f ]− [u, v; f ]‖ 6 ν(‖x− u‖p + ‖y − v‖p)

for all x, y, u, v ∈ X, x 6= y, u 6= v, some ν > 0 and p ∈ [0, 1],

where [x, y; f ] ∈ L(X,Y ), the space of bounded linear operators from X into Y , is

called a divided difference of order one at the points x and y, satisfying

(1.4) [x, y; f ](y − x) = f(y) − f(x) for all x, y in X with x 6= y.

Note that if f is Fréchet-differentiable, then [x, x; f ] = ∇f (see [2]–[4]).
In general, ν and p in (1.3) are not easy to compute. This is our motivation for

introducing weaker hypotheses

(1.5) ‖[x, y; f ] − [z, y; f ]‖ 6 ν1‖x− z‖p

and

(1.6) ‖[x∗, x; f ] − [y, x; f ]‖ 6 ν0‖y − x∗‖p

for all x, y, z in X , x 6= y, z 6= y, x 6= x∗ and some ν1 > 0, ν0 > 0.

Note that in general

(1.7) ν0 6 ν1 6 ν

holds, and ν/ν0, ν/ν1, ν1/ν0 can be arbitrarily large [2]–[4]. Note that parameters

ν0 and ν1 are easier to determine than ν. Moreover, as it turns out, conditions (1.5)

and (1.6) are actually needed in the proof of semilocal convergence of the secant-like

method (1.2). Using the above observations we provide under weaker hypotheses and

at less computational cost a local convergence analysis with the following advantages:

finer error estimates on the distances ‖xn − x∗‖ (n > 0), and a larger radius of

convergence which allows a larger choice of initial guesses x0 and x1.

These observations are very important in computational mathematics [2], [4].
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2. Preliminaries and assumptions

In order to make the paper as self-contained as possible, we recall some definitions

that can also be found in [5], [6], [10]–[12], [15], [21].

Definition 2.1. The distance from a point x to a set A in a metric space (Z, ̺) is

defined by dist(x,A) = inf{̺(x, y), y ∈ A} and the excess e from the set A to a set C
is given by e(C,A) = sup{dist (x,A), x ∈ C}. Let Λ: X ⇉ Y be a set-valued map;

we denote gph Λ = {(x, y) ∈ X × Y, y ∈ Λ(x)} and Λ−1(y) = {x ∈ X, y ∈ Λ(x)}.
We denote by Br(x) the closed ball centered at x with radius r.

Definition 2.2. A set-valued Λ is pseudo-Lipschitz around (x0, y0) ∈ gph Λ

with modulus M if there exist constants a and b such that

(2.1) sup
z∈Λ(y′)∩Ba(y0)

dist(z,Λ(y′′)) 6 M‖y′ − y′′‖ for all y′ and y′′ in Bb(x0).

Using the excess, we have an equivalent definition replacing the inequality (2.1)

by

(2.2) e(Λ(y′) ∩Ba(y0),Λ(y′′)) 6 M‖y′ − y′′‖ for all y′ and y′′ in Bb(x0).

This property is also called “Aubin continuity” [6]. Characterizations of the pseudo-

Lipschitz property were also obtained by Rockafellar using the Lipschitz continuity

of the distance function dist(y,Λ(x)) around (x0, y0) in [20] and by Mordukhovich

in [16] via the concept of coderivative of multifunctions.

We need a lemma on fixed points whose proof can be found in [9], [15].

Lemma 2.3. Let (Z, ̺) be a complete metric space, ϕ a set-valued map from Z

into the closed subsets of Z, let η0 ∈ Z and let r and λ be such that 0 6 λ < 1 and

(a) dist(η0, ϕ(η0)) 6 r(1 − λ),

(b) e(ϕ(x1) ∩Br(η0), ϕ(x2)) 6 λ̺(x1, x2), ∀x1, x2 ∈ Br(η0).

Then ϕ has a fixed point in Br(η0). That is, there exists x ∈ Br(η0) such that

x ∈ ϕ(x). If ϕ is single-valued, then x is the unique fixed point of ϕ in Br(η0).

Throughout this work, the distance ̺ in Lemma 2.3 is replaced by the norm.

We make the following assumptions:

(H1) The set-valued map (f(x∗) + G)−1 is pseudo-Lipschitz with modulus M

around (0, x∗).

(H2) For all x, y ∈ V we have ‖[x, y; f ]‖ 6 d, ‖f(x) − f(x∗)‖ 6 d0‖x− x∗‖ and
Md < 1.
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3. Local convergence analysis for the secant-like method (1.2)

We need to introduce some notation. First, define a set-valued map Q : X ⇉ Y

by

(3.1) Q(x) = f(x∗) +G(x).

For k ∈ N
∗ and xk, yk defined in (1.2), we consider the quantity

(3.2) Zk(x) := f(x∗) − f(xk) − [yk, xk; f ](x− xk).

Finally, define a set-valued map ψk : X ⇉ X by

(3.3) ψk(x) := Q−1(Zk(x)).

We will show the following main local result for the method (1.2):

Theorem 3.1. Let x∗ be a solution of (1.1). Suppose that assumptions (1.5),

(1.6), (H1) and (H2) are satisfied. For every C > (1−Md)−1Mν0[(1−α)p+αp] = C0,

one can find δ > 0 such that for every distinct starting points x0 and x1 in Bδ(x
∗)

there exists a sequence (xk) defined by (1.2) which satisfies

(3.4) ‖xk+1 − x∗‖ 6 C‖xk − x∗‖max{‖xk − x∗‖p, ‖xk−1 − x∗‖p}.

To prove Theorem 3.1, we first prove the following proposition:

Proposition 3.2. Under the assumptions of Theorem 3.1, one can find δ > 0 such

that for every distinct starting points x0 and x1 in Bδ(x
∗) (x0, x1 and x

∗ distinct),

the set-valued map ψ1 has a fixed point x2 in Bδ(x
∗) satisfying

(3.5) ‖x2 − x∗‖ 6 C‖x1 − x∗‖max{‖x1 − x∗‖p, ‖x0 − x∗‖p}.

Note that the point x2 is a fixed point of ψ1 if and only if

(3.6) 0 ∈ f(x1) + [y1, x1; f ](x2 − x1) +G(x2).

Once xk is computed, we will show that the function ψk has a fixed point xk+1 in

X . This process is useful for proving existence of a sequence (xk) satisfying (1.2).
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P r o o f o f P r o p o s i t i o n 3.2. Since the iterate y1 in (1.2) is defined by y1 =

αx1 + (1 − α)x0, it is clear that y1 ∈ Bδ(x
∗).

By hypothesis (H1) there exist positive numbers M , a and b such that

(3.7) e(Q−1(y′) ∩Ba(x∗), Q−1(y′′)) 6 M‖y′ − y′′‖, ∀y′, y′′ ∈ Bb(0).

Fix δ > 0 such that

(3.8) δ < δ0 = min

{

a; p+1

√

b

ν0((1 − α)p + αp)
;

1
p
√
C

;
b

2d0
; p+1

√

b

2p+2ν1

}

.

To prove Proposition 3.2 we intend to show that both the assertions (a) and (b) of

Lemma 2.3 hold, where η0 := x∗, ϕ is the function ψ1 defined by (3.3) and r and λ

are numbers to be set. According to the definition of the excess e, we have

(3.9) dist(x∗, ψ1(x
∗)) 6 e(Q−1(0) ∩Bδ(x

∗), ψ1(x
∗)).

Moreover, for all points x0 and x1 in Bδ(x
∗) (x0, x1 and x

∗ distinct) we have

‖Z1(x
∗)‖ = ‖f(x∗) − f(x1) − [y1, x1; f ](x∗ − x1)‖.

By assumption (1.6) we deduce

(3.10) ‖Z1(x
∗)‖ = ‖([x∗, x1; f ] − [y1, x1; f ])(x∗ − x1)‖

6 ‖[x∗, x1; f ] − [y1, x1; f ]‖‖x∗ − x1‖
6 ν0‖x∗ − y1‖p‖x∗ − x1‖
6 ν0((1 − α)‖x∗ − x0‖ + α‖x∗ − x1‖)p‖x∗ − x1‖.

Thus

(3.11) ‖Z1(x
∗)‖ 6 ν0[(1 − α)p‖x∗ − x0‖p + αp‖x∗ − x1‖p]‖x∗ − x1‖.

Then (3.8) yields Z1(x
∗) ∈ Bb(0). Hence from (3.7) one has

e(Q−1(0) ∩Bδ(x
∗), ψ1(x

∗)) = e(Q−1(0) ∩Bδ(x
∗), Q−1[Z1(x

∗)])(3.12)

6 Mν0[(1 − α)p‖x∗ − x0‖p + αp‖x∗ − x1‖p]‖x∗ − x1‖.

By (3.9) we get

dist(x∗, ψ1(x
∗)) 6 Mν0[(1 − α)p‖x∗ − x0‖p + αp‖x∗ − x1‖p]‖x∗ − x1‖(3.13)

6 Mν0[(1 − α)p + αp]‖x∗ − x1‖max{‖x1 − x∗‖p, ‖x0 − x∗‖p}.
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Since C(1−Md) > Mν0[(1−α)p +αp], there exists λ ∈ [Md, 1[ such that C(1−λ) >

Mν0[(1 − α)p + αp] and

(3.14) dist(x∗, ψ1(x
∗)) 6 C(1 − λ)‖x∗ − x1‖max{‖x1 − x∗‖p, ‖x0 − x∗‖p}.

By setting r := r1 = C‖x∗ − x1‖max{‖x1 − x∗‖p, ‖x0 − x∗‖p} we can deduce from
the inequality (3.14) that the assertion (a) in Lemma 2.3 is satisfied.

Now, we show that condition (b) of Lemma 2.3 is satisfied.

By (3.8) we have r1 6 δ 6 a and, moreover, for x ∈ Bδ(x
∗) we have

(3.15) ‖Z1(x)‖ = ‖f(x∗) − f(x1) − [y1, x1; f ](x− x1)‖
6 ‖f(x∗) − f(x)‖ + ‖[x, x1; f ] − [y1, x1; f ]‖‖x− x1‖.

Using the assumptions (1.5) and (H2) we obtain

(3.16) ‖Z1(x)‖ 6 d0‖x∗ − x‖ + ν1‖x− y1‖p‖x− x1‖
6 d0‖x∗ − x‖ + ν1(‖x− x∗‖ + ‖x∗ − y1‖)p‖x− x1‖
6 d0δ + ν1(2δ)

p2δ = d0δ + ν12
p+1δp+1.

Then by (3.8) we deduce that for all x ∈ Bδ(x
∗) we have Z1(x) ∈ Bb(0). Then it

follows that for all x′, x′′ ∈ Br0
(x∗) we have

e(ψ1(x
′) ∩Br1

(x∗), ψ1(x
′′)) 6 e(ψ1(x

′) ∩Bδ(x
∗), ψ1(x

′′)),

which yields by (3.7)

(3.17) e(ψ1(x
′) ∩Br1

(x∗), ψ1(x
′′)) 6 M‖Z1(x

′) − Z1(x
′′)‖

6 M‖[y1, x1; f ](x′′ − x′)‖
6 M‖[y1, x1; f ]‖‖x′′ − x′‖.

Using (H2) and the fact that λ > Md, we obtain

(3.18) e(ϕ0(x
′) ∩Br1

(x∗), ψ1(x
′′)) 6 Md‖x′′ − x′‖ 6 λ‖x′′ − x′‖

and thus condition (b) of Lemma 2.3 is satisfied. Since both conditions of Lemma

2.3 are fulfilled, we can deduce existence of a fixed point x2 ∈ Br1
(x∗) for the map

ψ1. Thus the proof of Proposition 3.2 is complete. �

P r o o f T h e o r e m 3.1. Proceeding by induction, keeping η0 = x∗ and setting

r := rk = C‖x∗ − xk‖max{‖xk − x∗‖p, ‖xk−1 − x∗‖p},

the application of Proposition 3.2 to the map ψk gives the existence of a fixed point

xk+1 for ψk which is an element of Brk
(x∗). This last fact gives the inequality (3.4)

and the proof of Theorem 3.1 is complete. �
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4. Concluding remarks

When α = 1, our method is no longer applicable, but if we suppose that f is

Fréchet-differentiable then (1.2) is equivalent to a Newton-type method for solving

(1.1). In this case conditions on ∇f give quadratic convergence (see [8]) and super-
linear convergence (see [18]) and in both cases the convergence is uniform (see [8]

and [19]). These results were further improved in [5].

When α = 0 the sequence (1.2) is reduced to the method introduced by M.Geoffroy

and A. Piétrus in [11]. Let us note that the problem studied in [11] can be seen as a

perturbation of (1.1) by a Fréchet differentiable function. In both cases, we obtain

a superlinear convergence using different assumptions, but in the present paper the

existence of second order divided differences is not required.

Finally, in order to compare our results with the corresponding ones in [12], under

hypotheses (1.3), (H1) and (H2)′ given by

(H2)′ for all x, y ∈ V we have ‖[x, y; f ]‖ 6 d and Md < 1,

let us define

(3.19) δ′0 = min

{

a; p+1

√

b

ν((1 − α)p + αp)
;

1
p
√
C′

;
b

2d
;

p+1

√

b

2p+2ν

}

and

(3.20) C′

0 =
Mν[(1 − α)p + αp]

1 −Md
.

In view of (1.7), (3.8), (3.19), (3.20) and the definitions of C0 and C
′ (C′ > C′

0) we

have

(3.21) C0 6 C′

0

and

(3.22) δ′0 6 δ0.

Note also that if strict inequality holds on the right hand side of inequality (1.7),

then so it does in (3.21) and (3.22). Hence, the claims made in the introduction

about the advantages of our approach over the corresponding ones in [12] have been

justified.
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