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Abstract. For any holomorphic function f on the unit polydisk Dn we consider its re-
striction to the diagonal, i.e., the function in the unit disc D ⊂ C defined by Diag f(z) =
f(z, . . . , z), and prove that the diagonal map Diag maps the spaceQp,q,s(Dn ) of the polydisk

onto the space Q̂
q
p,s,n(D ) of the unit disk.
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1. Introduction

Let D denote the unit disk in the complex plane C, T = ∂D its boundary. Let Dn

be the unit polydisk in C
n and T n its Shilov boundary. Let dm2(z) = π

−1r dr dθ

denote the normalized area measure on D, dm2n(z) =
n∏

j=1

dm2(zj), where zj ∈ D for

each j ∈ {1, . . . , n}, dmn being the normalized surface measure on T n. When n = 1,

we use dm(ξ) to denote the normalized Lebesgue measure on T . Let H(Dn) be the

space of all holomorphic functions on D
n. The integral mean of f is defined as

Mp
p (f, r) =

∫

T n

|f(rξ)|p dmn(ξ), M∞(f, r) = max
ξ∈T n

|f(rξ)|, r ∈ (0, 1), f ∈ H(Dn).

Here rξ = (r1ξ1, . . . , rnξn).

Let X ⊂ H(D) and F ∈ X . If Y = Y (Dn) is a subspace of H(Dn) and

X = Diag Y = {f(z, . . . , z) ; f ∈ Y, Y ⊂ H(Dn)}
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then in some cases, that is, for some X and Y (for example, for the Bergman spaces),

the relation

(1) ‖F‖X ≍ inf
ϕ

‖ϕ(F )‖Y

holds, where ϕ(z1, . . . , zn) is an arbitrary extension of the function F from the di-

agonal (z, . . . , z) onto the unit polydisk. The notation A ≍ B means that there is a

positive constant C such that A/C 6 B 6 CA.

With any holomorphic function f on the unit polydisk Dn we associate the function

Diag f(z) = f(z, . . . , z).

This operator is called the diagonal mapping. In [9] Rudin suggested the study of this

mapping. Recently, the diagonal mapping has been investigated by many authors,

see, for example, [1], [8], [11] and the related references therein.

For example, it is well known ([11]) that for the weighted Bergman space Y =

A p
α (Dn), i.e.,

A
p
α (Dn) =

{
f ∈ H(Dn) :

∫

Dn

|f(z)|p
n∏

j=1

(1 − |zj |
2)αj dm2(zj) < ∞

}
,

where p ∈ (0,∞), α = (α1, . . . , αn), αj > −1, j = 1, . . . , n, its diagonal is the

weighted Bergman space on the unit disk X = A
p
|α|+2n−2(D), where |α| =

n∑
j=1

αj and

0 < p < ∞.

As we can see from the above discussion, the problem of describing the diagonal

of a space Y (Dn) which is a subspace of H(Dn) is equivalent (in some sense) to the

problem of finding equivalent quasinorms ‖ · ‖X on X = Diag Y . In Section 3 we

give some new results in this direction.

The so called BMOA type spaces have been investigated recently by many authors,

see, for example, [2] and [6]. Hence, the problem of describing the diagonal of

the multidimensional BMOA type spaces appears naturally. In this paper we give

complete solutions of this problem with some restrictions on parameters.

Throughout this paper, absolute constants will be denoted by C, which need not

be the same from line to line.

2. Auxiliary results

In order to prove the main results of the paper we need some known auxiliary

results which are incorporated in the following lemmas.

352



Lemma A. Suppose 0 < p < ∞ and α > −1. Then

∫

D

|f(z)|p(1 − |z|)α dm2(z) ≍

(
|f(0)|p +

∫

D

|f ′(z)|p(1 − |z|)p+α dm2(z)

)

for all f ∈ H(D).

For the proof of Lemma A and its generalizations, see, for example, [12], [13], [15],

[17], [18] and the references therein.

The following inequality can be found, for example, in [11].

Lemma B. Suppose 0 < p 6 1 and α > 1/p − 2. Then

(2)

(∫

D

|f(z)|(1 − |z|)α dm2(z)

)p

6 C

∫

D

|f(z)|p(1 − |z|)αp+2p−2 dm2(z)

for all f ∈ H(D).

The next lemma is folklore.

Lemma C. Suppose that f ∈ A p
α (D), p > 0 and α > −1. Then there is a

constant C = C(p, α) such that

|f(z)| 6
C

(1 − |z|2)(α+2)/p
‖f‖A

p
α
.

By a slight modification of the main result in [16], or of the proof of Theorem 7

in [14] the following result can be proved.

Lemma D. Assume that p > 2 and α > −1. Then

(3) |f(0)|p +

∫

D

|f(z)|p−2|f ′(z)|2(1 − |z|)α+2 dm2(z) ≍

∫

D

|f(z)|p(1 − |z|)α dm2(z).

The following inequality was proved in [3].
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Lemma E. Assume that 2 6 s < p + 2 and f ∈ Hp(D). Then

∫

D

|f ′(z)|s|f(z)|p−s(1 − |z|)s−1 dm2(z) 6 C‖f‖p
Hp

for some positive constant C independent of f.

Before we formulate the next lemma we introduce the following definitions and no-

tation. The Hardy spaces, denoted by Hp(D)(0 < p < ∞), consist of all holomorphic

functions on the unit disk such that

sup
06r<1

∫

T

|f(rζ)|p dm(ζ) < ∞.

Let α > 1, ζ ∈ T . Define

Γα(ζ) = {z ∈ D : |1 − ζz| < α(1 − |z|)}.

Assume that f ∈ H(D) with the Taylor expansion f(z) =
∞∑

k=0

akzk. Then D tf(z)

is defined as

D
tf(z) =

∞∑

k=0

(k + 1)takzk.

Lemma F ([4]). Assume that p, t ∈ (0,∞). Then f ∈ Hp(D) if and only if

I :=

∫

T

(∫

Γα(ζ)

|D tf(z)|2(1 − |z|)2t−2 dm2(z)

)p/2

dm(ζ) < ∞,

moreover,

I ≍ ‖f‖p
Hp .

The following lemma was proved in [6], see also [11].

Lemma G. Suppose that s > −1, r, v > 0, v − s < 2 < r − s and r + v − s > 2.

Then ∫

D

(1 − |ζ|)s dm2(ζ)

|1 − ζz|r|1 − ζw|v
6

C

|1 − zw|v(1 − |z|2)r−s−2
, z, w ∈ D.
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3. Some inequalities for Bergman spaces and mixed norm spaces

In this section we present one-dimensional results of type (1).

Theorem 1. The following statements hold true.

(a) Assume that τ ∈ (−α − 1, α(2/p − 1)), p > 2 and α > max{1, p/2}. Then, for

every f ∈ H(D),

(∫

D

|f(z)|p(1 − |z|)α−2 dm2(z)

)2/p

(4)

6 C

(
|f(0)|2 + inf

w∈S

∫

D

|f ′(z)|2(1 − |z|)α+τ dm2(z)

w(z)

)

for some positive constant C independent of f , where S is the set of all non-

negative measurable functions on D such that

‖w‖S = sup
z∈D

w(z)(1 − |z|)α(2/p−1)−τ < 1.

(b) Assume that α > 1 and 2 < p. Then, for every f ∈ H(D),

(5) |f(0)|p + inf
w∈S1

∫

D

|f ′(z)|2(1− |z|)α+τ dm2(z)

w(z)
6 C

∫

D

|f(z)|p(1− |z|)α−2 dm2(z),

where S1 is the set of all nonnegative measurable functions on D such that

‖w‖S1 = sup
z∈D

(w(z)(1 − |z|)α(2/p−1)−τ )1/(2−p) < C(α, p).

P r o o f. (a) Without loss of generality we may assume that f(0) = 0. By

inequality (2) we have

(6)

(∫

D

|f(z)|(1 − |z|)α−2 dm2(z)

)p

6 C

∫

D

|f(z)|p(1 − |z|)αp−2 dm2(z)

when p 6 1, α > 1/p and f ∈ H(D).

Employing inequality (6) with p → 2/p, Lemma A and the definition of ‖ · ‖S, we

have

(7)

(∫

D

|f(z)|p(1 − |z|)α−2 dm2(z)

)2/p

6 C

∫

D

|f(z)|2(1 − |z|)2α/p−2 dm2(z)

6 C

∫

D

|f ′(z)|2(1 − |z|)2α/p dm2(z)

6 C‖w‖S

∫

D

|f ′(z)|2(1 − |z|)α+τ dm2(z)

w(z)
,

from which the inequality in (4) follows.
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(b) Set

w(z) = |f(z)|2−p(1 − |z|)τ .

We have

w(z)(1 − |z|)α
(
2/p−1

)
−τ = (|f(z)|(1 − |z|)α/p)2−p.

Since f ∈ A
p
α−2(D), in view of Lemma C it follows that w ∈ S1.

Putting so defined w(z) into the expression

Iw(f) =

∫

D

|f ′(z)|2(1 − |z|)α+τ dm2(z)

w(z)

and using Lemma D, we obtain

Iw(f) =

∫

D

|f(z)|p−2|f ′(z)|2(1 − |z|)α dm2(z) 6 C

∫

D

|f(z)|p(1 − |z|)α−2 dm2(z).

Hence

inf
w∈S1

∫

D

|f ′(z)|2(1 − |z|)α+τ dm2(z)

w(z)
6 C

∫

D

|f(z)|p(1 − |z|)α−2 dm2(z),

which completes the proof of the theorem. �

Theorem 2. Assume that s > 0 and p < 2. Then

(8)

∫

T

(∫

Γa(ζ)

|Df(z)|2 dm2(z)

)p/2

dm(ζ)

≍

(
inf

w∈S2

∫

D

|Df(z)|s(1 − |z|)s−1 dm2(z)

w(z)

)p/2

,

where S2 is the set of all nonnegative measurable functions on D such that

I1 :=
∥∥∥ sup

Γa(ζ)

w(z)(1 − |z|)2−s|Df(z)|2−s
∥∥∥

L p/(2−p)(T )
< 1,

where ζ ∈ T .

P r o o f. Assume that q > 2 and let

I2 =
∥∥∥ sup

Γa(ζ)

w(z)(1 − |z|)q−s|Df(z)|q−s
∥∥∥

L p/(q−p)(T )
.
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Then, by Hölder’s inequality with exponents q/p and q/(q − p), we obtain

∫

T

(∫

Γa(ζ)

|Df(z)|q(1 − |z|)q−2 dm2(z)

)p/q

dm(ζ)

6 C

∫

T

(
sup

z∈Γa(ζ)

w(z)(1 − |z|)q−s|Df(z)|q−s

)p/q

×

(∫

Γa(ζ)

|Df(z)|s(1 − |z|)s−2 dm2(z)

w(z)

)p/q

dm(ζ)

6 I
1−p/q
2

(∫

T

∫

Γa(ζ)

|Df(z)|s(1 − |z|)s−2 dm2(z)

w(z)
dm(ζ)

)p/q

6 I
1−p/q
2

(∫

D

|Df(z)|s(1 − |z|)s−2

∫

T

χAz(ζ) dm(ζ)
dm2(z)

w(z)

)p/q

6 CI
1−p/q
2

(∫

D

|Df(z)|s(1 − |z|)s−1 dm2(z)

w(z)

)p/q

,

where we have used the fact that the linear measure of the set Az = {ζ : z ∈ Γα(ζ)}

behaves as 1 − |z|. For q = 2 we obtain one direction of (8). �

Now we prove the reverse inequality. Let

w(z) =
1

‖f‖2−p
Hp

(
(1 − |z|)s−2|Df(z)|s−2|f(z)|2−p

)
.

Then

I1 = ‖ sup
Γa(ζ)

w(z)(1 − |z|)2−s|Df(z)|2−s‖L p/(2−p)(T )

=

(∫

T

sup
Γa(ζ)

|f(z)|p/‖f‖p
Hp dm(ζ)

)(2−p)/p

< 1.

For so defined w(z), by Lemma E we have

∫

D

|Df(z)|s(1 − |z|)s−1 dm2(z)

w(z)

= ‖f‖2−p
Hp

∫

D

|Df(z)|2|f(z)|p−2(1 − |z|) dm2(z) 6 C‖f‖p
Hp .

Employing Lemma F with t = 1, the result follows. Theorem 2 is proved.
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4. On the diagonal map of BMOA-type spaces

Let Qp,q,s = Qp,q,s(D
n) be the subspace of all f ∈ H(Dn) such that

‖f‖q
Qp,q,s

= sup
w∈Dn

n∏

j=1

(1 − |wj |)
p

∫

Dn

|f(z)|q
n∏

k=1

(1 − |zk|)
s

n∏
k=1

|1 − wkzk|2p

dm2n(z) < ∞,

where 0 < p, q < ∞ and s > −1. This is the so called BMOA-type space, see, for

example, [2], [6].

Let Q̂t,q,s,p(D
n) be the space of all f ∈ H(Dn) such that

‖f‖q

Q̂t,q,s,p
= sup

w∈Dn

(1 − |w|)t

∫

Dn

|f(z)|q
n∏

k=1

(1 − |zk|)
s

n∏
k=1

|1 − |w|ζkzk|2p

dm2n(z) < ∞,

where w = |w|(ζ1, . . . , ζn), 0 < p, q < ∞ and s > −1.

Let further Q̂q
p,s,n = Q̂q

p,s,n(D) be the subspace of all f ∈ H(D) such that

‖f‖q

Q̂q
p,s,n

= sup
w∈Dn

n∏

j=1

(1 − |wj |)
p

∫

D

|f(z)|q(1 − |z|)ns+2n−2

n∏
k=1

|1 − wkz|2p

dm2(z) < ∞,

where 0 < p, q < ∞ and s > −1.

Finally, let Q̂q
p,t,s,n be the space consisting of all f ∈ H(D) such that

‖f̂‖q

Q̂q
p,t,s,n

= sup
w∈Dn

∫

D

(1 − |w|)t(1 − |z|)ns+2n−2|f(z)|q

n∏
k=1

|1 − |w|ζkz|2p

dm2(z) < ∞,

where wk = |w|ζk, k ∈ {1, . . . , n}.

An interesting question is:

Q u e s t i o n. When does the equality

Diag Qp,q,s(D
n) = Q̂q

p,s,n(D)

hold, and for which p, q, s?

Case q 6 1. In this subsection we consider the case q 6 1. An answer to the

above question for this case is given by the following theorem.
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Theorem 2. Suppose that s > max{2p− 2,−1}, q 6 1 and p > 0. Then

Diag Qp,q,s(D
n) = Q̂q

p,s,n(D).

P r o o f. Fix w ∈ D
n. By using dyadic decomposition of the polydisk for fixed

w ∈ D
n, the following inequality can be obtained for all 0 < p, q < ∞ and s > −1,

as in [11]:

(9)

∫

Dn

|f(z)|q
n∏

k=1

(1 − |zk|)
s

n∏
k=1

|1 − wkzk|2p

dm2n(z) > C

∫

D

|f(z, . . . , z)|q(1 − |z|)ns+2n−2

n∏
k=1

|1 − wkz|2p

dm2(z).

Multiplying (9) by
n∏

j=1

(1−|wj |)
p, then taking the supremum over Dn we obtain that

(10) ‖ϕ(f̃)‖Qp,q,s > C‖Diag f‖Q̂q
p,s,n

for every analytic extension ϕ(f̃) of the function f̃ on the polydisk (f̃ = f(z, . . . , z) =

Diag f).

The main problem is how to prove the reverse statement. As in [11] set

(11) F (f)(z) = C(α, n)

∫

D

(1 − |w|)αf(w)
n∏

j=1

(1 − wzj)(α+2)/n

dm2(w), α > −1, n ∈ N,

where f ∈ H(D), α is sufficiently large, for example, (α + 2)q/n > max{2p, s+2}, and

C(α, n) is the well known Bergman projection constant. Obviously Diag F (f)(z) =

f(z), by virtue of the reproducing property of the Bergman projection.

Now we prove the reverse inequality of (10), that is, ‖F (f)‖Qp,q,s 6 C‖f‖Q̂q
p,s,n

(for some p, q, s).

From (11) and (2) (see also [10]) we have

n∏

j=1

(1 − |wj |)
p

∫

Dn

|F (f)(z)|q
n∏

k=1

(1 − |zk|)
s

n∏
k=1

|1 − wkzk|2p

dm2n(z)

6 C

n∏

j=1

(1 − |wj |)
p

∫

Dn

∫

D

|f(ẑ)|q(1 − |ẑ|)αq+2q−2
n∏

k=1

(1 − |zk|)
s dm2(ẑ)

n∏
k=1

|1 − wkzk|2p
n∏

k=1

|1 − zkẑ|q(α+2)/n

dm2n(z)
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6 C

n∏

j=1

(1 − |wj |)
p

∫

D

|f(ẑ)|q
n∏

k=1

(1 − |ẑ|)ns+2n−2

n∏
k=1

|1 − wkẑ|2p

dm2(ẑ),

where in the last inequality we have used Lemma G with v = 2p and r = n−1(α+2)q,

that is, the inequality

∫

Dn

n∏
k=1

(1 − |zk|)
s dm2n(z)

n∏
k=1

|1 − wkzk|2p
n∏

k=1

|1 − zkẑ|(α+2)q/n

6
(1 − |ẑ|)t1

n∏
k=1

|1 − wkẑ|2p

where t1 = (s + 2)n − (α + 2)q. Note that by the choice of α we have

2p− s < 2 <
α + 2

n
q − s, s > −1 and

α + 2

n
q + 2p− s > 2,

so that Lemma G can be applied. Using this and the fact that t1 + αq + 2q − 2 =

ns + 2n − 2, the reverse inequality and consequently the theorem follow.

Note that we have proved above that

(12) ‖f‖q
Qp,q,s

= sup
w∈Dn

n∏

j=1

(1 − |wj |)
p

∫

Dn

|f(z)|q
n∏

k=1

(1 − |zk|)
s

|1 − wkzk|2p
dm2n(z)

> sup
w∈Dn

∫

D

(1 − |w|)np(1 − |z|)ns+2n−2|f(z, . . . , z)|q

n∏
k=1

|1 − |w|ζkz|2p

dm2(z)

= ‖f̂‖q

Q̂q
p,np,s,n

,

where wk = |w|ζk, k ∈ {1, . . . , n}.

This is true since

‖f‖q
Qp,q,s

> ‖f(z, . . . , z)‖q

Q̂q
p,s,n

= sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

D

|f(z, . . . , z)|q(1 − |z|)ns+2n−2

n∏
l=1

|1 − |wl|ζlz|2p

dm2(z)

> ‖f̂‖q

Q̂q
p,np,s,n

.
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As in the proof of the previous theorem, we also have

(13) (1 − |w|)t

∫

Dn

|F (f)(z)|q
n∏

l=1

(1 − |zl|)
s

|1 − wlzl|2p
dm2n(z)

6 C

∫

Dn

∫

D

|f(ẑ)|q
(1 − |w|)t(1 − |ẑ|)αq+2q−2 dm2(ẑ)

n∏
l=1

(1 − |zl|)
s

n∏
k=1

|1 − ẑzk|(α+2)q/n|1 − wkzk|2p

dm2n(z),

wk = |w|ζk, k ∈ {1, . . . , n}.

Further, similarly to the above we have that for every t > 0 the following inequality

holds

(14) sup
w∈Dn

(1 − |w|)t

∫

Dn

|F (f)(z)|q
n∏

l=1

(1 − |zl|)
s

|1 − |w|ζlzl|2p
dm2n(z)

6 C sup
w∈D

(1 − |w|)t

∫

D

|f(z)|q
(1 − |z|)sn+2n−2

n∏
k=1

|1 − |w|ζkz|2p

dm2(z).

By changing the order of integration and using Lemma G, we obtain the inequality

(15) (1 − |w|)t

∫

Dn

|F (f)(z)|q
n∏

l=1

(1 − |zl|)
s

|1 − wlzl|2p
dm2n(z)

6 C(1 − |w|)t

∫

D

|f(z)|q
(1 − |z|)sn+2n−2

n∏
k=1

|1 − |w|ζkz|2p

dm2(z).

Hence, we obtain the following theorem:

Theorem 3. Assume that s > max{2p− 2,−1}, q 6 1, p > 0 and t > 0. Then

Diag Q̂t,q,p,s(D
n) = Q̂q

p,t,s,n(D).

Indeed, one direction follows from (13) and the reverse is a consequence of (14)

and (15).

From Theorem 3 we now easily obtain the following corollary:
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Corollary 1. Assume that s > max{2p− 2,−1}, q 6 1 and p > 0. Then

Diag Q̂np,q,s,p(D
n) = sup

w∈Dn

(1 − |w|)np

∫

D

|f(z)|q
(1 − |z|)ns+2n−2 dm2(z)

n∏
k=1

|1 − |w|ζkz|2p

. sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

D

|f(z)|q
(1 − |z|)ns+2n−2 dm2(z)

n∏
k=1

|1 − wkz|2p

= Diag Qp,q,s(D
n).

Case q > 1. Here we consider the case q > 1. We use some methods from

paper [8].

Theorem 4. Suppose that p < 1/2, q > 1 and s > −1. Then

Diag Qp,q,s(D
n) = Q̂q

p,s,n(D).

P r o o f. As we have already mentioned our aim is to prove the inequality

sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

Dn

|F (f)(z)|q
n∏

k=1

(1 − |zk|)
s dm2n(z)

n∏
k=1

|1 − wkzk|2p

(q > 1)

. sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

D

|f(z)|q(1 − |z|)ns+2n−2 dm2(z)
n∏

k=1

|1 − wkz|2p

,

where F (f)(z) is defined by (11) and α is large enough.

As in [8], when q > 1, then using Jensen’s inequality, we have

(16) Mq(ϕ̃α(f), τ) .

∫ 1

0

(1 − ̺)αMq(M1(̺, G̃), τ) d̺

where

G(z) = G =
f(z)

n∏
j=1

(1 − zzj)(α+2)/n

, τ = (τ1, . . . , τn),

τj = |zj |, ̺ = |z| ∈ I,

(17) (ϕ̃αf) :=

F (f)(z1, . . . , zn)
( n∏

k=1

(1 − |zk|)
)s/q

n∏
k=1

|1 − wkzk|2p/q

,
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and

G̃ := G

n∏
k=1

(1 − |zk|)
s/q

n∏
k=1

|1 − wkzk|2p/q

.

Now let us write G̃ as the product G̃ = G1G2, where

G1 = f(z)

n∏

j=1

(1 − wkzk)−2p/q
n∏

j=1

|1 − zzj|
−((α+2)/n)/q

n∏

k=1

(1 − |zk|)
s/q

and

G2 =

n∏

j=1

|1 − zzj|
−((α+2)/n)/q′

.

By Hölder’s inequality and [8, Lemma 4.2], it follows that

(18) [M1(̺, G̃)] . [Mq(̺, G1)][Mq′(̺, G2)]

. [Mq(̺, G1)]
n∏

j=1

(1 − |z‖zj|)
−((α+2)/n−δj1)/q′

,

where (δj1) = 0, j 6= k, (δj1) = 1, j = k, 1 6 k 6 n, z = ̺ξ and zk = τkϕk.

We have

(19) M q
q (τ, Mq(̺, G1))

=

∫

T n

∫

T

|f(z)|q dm(ξ)
n∏

j=1

|1 − zzj|(α+2)/n

( n∏

j=1

1

|1 − wjzj|2p

)
dm(ϕ)

n∏

k=1

(1 − |zk|)
s

.

∫

T

|f(z)|q
( n∏

k=1

∫

T

dm(ϕk)

|1 − zzk|(α+2)/n|1 − wkzk|2p

)
dm(ξ)

× [(1 − |zk|
s)]

n∏

k=1

(1 − |zk|)
s.

From (16) we obtain

sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

Dn

|F (f)(z)|q
n∏

k=1

(1 − |zk|)
s

n∏
k=1

|1 − w̄kzk|2p

dm2n(z)

. sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

In

n∏

k=1

(1 − |zk|)
s

(∫ 1

0

(1 − ̺)αMq(τ, M1(τ, G̃)) d̺

)q

d|z1| . . . d|zn|

where In = [0, 1)n.

363



Now we calculate the inner integral in the last expression using (18) and (19). We

have

∫ 1

0

(1 − ̺)αMq(τ, M1(τ, G̃)) d̺

.

∫ 1

0

(1 − ̺)α
n∏

j=1

(1 − ̺|zj|)
−((α+2)/n−δj1)/q′

×

(∫

T

|f(z)|q
( n∏

k=1

∫

T

dm(ϕk)

|1 − τkzϕk|(α+2)/n|1 − wkτkϕk|2p

)
dm(ξ)

)1/q

d̺

=

∫ 1

0

(1 − ̺)αS1(̺)S
1/q
2 (̺) d̺,

where z = ̺ξ. Note that S2(̺1) 6 S2(̺2), if ̺1 6 ̺2 and ̺1, ̺2 ∈ (0, 1].

Hence, we can use the following inequality from [8]:

∫

In

n∏

j=1

(1 − τj)
kaj−1

(∫ 1

0

(1 − ̺)δ−1

n∏
j=1

(1 − τj̺)bj

g(̺) d̺

)k

dτ1 . . . dτn

6 C(a, b, δ, k)

∫ 1

0

(1 − ̺)k(|a|−|b|+δ)−1gk(̺) d̺

when bj > aj > 0 for j = 1, . . . , n, δ > 0 and 1 6 k < ∞, where |a| =
n∑

j=1

aj ,

|b| =
n∑

l=1

bl, s = −1 + Kaj, j = 1, . . . , n. For sufficiently large α we have

‖F (f)‖q
Qp,q,s

. sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫

In

( n∏

j=1

(1 − |zj |)

)s

×

(∫ 1

0

(1 − ̺)αS2(̺)1/q

( n∏

j=1

(1 − ̺|zj |)
−((α+2)/n−δj1)/q′

)
d̺

)q

d|z1| . . . d|zn|

. sup
w∈Dn

n∏

k=1

(1 − |wk|)
p

∫ 1

0

S2(̺)(1 − ̺)−1+q(α+1+n(s+1)/q−(α+2)/q′+1/q′) d̺

. sup
w∈Dn

n∏

k=1

(1 − |wk|)
p ×

∫ 1

0

∫

T

|f(z)|q
( n∏

k=1

∫

T

dm(ϕk)

|1 − zϕ̄k|(α+2)/n|1 − wkϕk|2p

)

dm(ξ)(1 − ̺)−1+q(α+1+n(s+1)/q−(α+2)/q′+1/q′) d̺.
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Hence, finally we must show that under some restrictions on indices we have

(20)

(1 − ̺)−1+q(α+1+n(s+1)/q−(α+2)/q′+1/q′) ×
n∏

k=1

∫

T

dm(ϕk)

|1 − ̺ζϕ̄k|(α+2)/n|1 − wkϕk|2p

.
(1 − |z|)ns+2n−2

n∏
k=1

|1 − wkz|2p

,

where |z| = ̺ and α is large enough. This is true since it is not difficult to check

that

(21)

∫

T

dξ

|1 − ξ̄z|γ |1 − wξ|β
.

(1 − |z|)1−γ̃

|1 − zw|γ
; z, w ∈ D,

where γ < 1, β = q − γ, q ∈ (1 + 2γ,∞), γ̃ = q − γ.

The estimate (21) was proved in [10]. Using (21) we have

n∏

k=1

∫

T

dm(ϕk)

|1 − zϕ̄k|(α+2)/n|1 − wkϕk|2p
6 C

(1 − |z|)n−(α+2)

n∏
k=1

|1 − zwk|2p

when p < 1/2, since α is big enough. This completes the proof of the theorem.

A closer inspection of the proofs of Theorems 2–4 shows that the following corollary

holds.

Corollary 2. Suppose that s > max{2p − 2,−1}, q 6 1 and p > 0, or p < 1/2,

q > 1 and s > −1. Then

inf
ϕ∈M

‖ϕ(f)‖Qp,q,s(Dn) ≍ ‖f‖Q̂q
p,s,n

,

where ϕ(f)(z1, . . . , zn) is an arbitrary extension of f from the diagonal (z, . . . , z) to

the polydisk Dn.

R em a r k. Equivalence relation (8) which provides a completely new characteri-

zation of analytic Hardy classes in the unit disk can be called Fefferman-Stein type

characterization of Hp-Hardy classes, since apparently a very similar relationship for

Hardy spaces in R
n was found for the first time in a well-known classical paper of

Fefferman and Stein. The author obtained also Fefferman-Stein type characteriza-

tions of Bloch and Bergman spaces and not only in the unit disk, but also in higher

dimensions: unit ball and polydisk.
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