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Abstract. The eccentricity of a vertex v of a connected graph G is the distance from v

to a vertex farthest from v in G. The center of G is the subgraph of G induced by the
vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G, the
edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in G − e over
all edges e of G. The edge-deleted center of G is the subgraph induced by those vertices of
G having minimum edge-deleted eccentricity. The edge-deleted central appendage number
of a graph G is the minimum difference |V (H)| − |V (G)| over all graphs H where the edge-
deleted center of H is isomorphic to G. In this paper, we determine the edge-deleted central
appendage number of all trees.
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1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the

length of a shortest u-v path in G. The eccentricity e(v) of a vertex v in a connected

graph G is the distance between v and a vertex farthest from v in G. The minimum

eccentricity among the vertices of G is called the radius rad(G) of G, while the

maximum eccentricity is the diameter diam(G) of G. A vertex v is called a central

vertex if e(v) = rad(G) and called a peripheral vertex if e(v) = diam(G). The center

C(G) of G is the subgraph induced by the central vertices of G while the periphery

P (G) of G is the subgraph induced by the peripheral vertices of G.

A graph G is 2-edge-connected if the removal of any edge of G never results in

a disconnected graph. For a vertex v in a 2-edge-connected graph G, the edge-

deleted eccentricity g(v) of v is defined to be the maximum eccentricity of v in G− e
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over all edges e of G. The vertices of G with minimum edge-deleted eccentricity

are called edge-deleted central vertices while the vertices of maximum edge-deleted

eccentricity are called edge-deleted peripheral vertices. The subgraph induced by the

edge-deleted central vertices of G is called the edge-deleted center EDC(G) of G and

the subgraph induced by the edge-deleted peripheral vertices EDP(G) is called the

edge-deleted periphery. Properties about the edge-deleted eccentricity of vertices and

the edge-deleted center of 2-edge-connected graphs were given in [3].

The central appendage number of a graph G is the minimum difference |V (H)| −

|V (G)| over all graphs H with C(H) ∼= G. Buckley, Miller, and Slater [2] charac-

terized trees with central appendage number 2 and showed that there are no trees

with central appendage number 3. The papers [1] and [5] also study this question.

The edge-deleted central appendage number A(G) of a graph G is the minimum dif-

ference |V (H)| − |V (G)| over all graphs H with EDC(H) ∼= G. The edge-deleted

central appendage number of several classes of graphs was studied in [4]. In partic-

ular, the edge-deleted central appendage number of trees was shown to be 2 or 3. In

this paper, we give necessary and sufficient conditions for a tree to have edge-deleted

central appendage number 2.

2. Results

Throughout the paper, let T be a tree with A(T ) = 2 and let H be a graph

with V (H) = V (T ) ∪ {x, y} and EDC(H) = T . Since x and y are the only edge-

deleted peripheral vertices in H , let g(x) = g(y) = k with e ∈ E(H) such that

dH−e(x, y) = k. Let D be the set of peripheral vertices of T and define a branch of

T as a component of T − V (C(T )).

Lemma 1. Suppose that T is a tree with A(T ) = 2. Then gH(u) = k − 1 for all

u ∈ V (T ).

P r o o f. We know that gH(x) = gH(y) = k and that there exists a fixed n,

2 6 n 6 k − 1, such that gH(u) = n for every u ∈ V (T ). Thus it will suffice to show

that gH(u) = k − 1 for some u ∈ V (T ).

Let x, u1, u2, . . . , uk−1, y be a shortest x-y path in H − e. Clearly ui ∈ V (T ) for

each i, 1 6 i 6 k − 1. Since the distance between u1 and y is at least k − 1 in H − e,

gH(u1) = k − 1. Therefore g(u1) = k − 1. �

Lemma 2. Suppose that T is a tree with A(T ) = 2. If e is an edge of H with

dH−e(x, y) = k, then e /∈ E(T ).
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P r o o f. If xy ∈ H , then the result is obvious. Suppose that xy /∈ E(H) and

that e = uu′ ∈ E(T ). Let x, u1, u2, . . . , um, u be a shortest x-u path in H − e and

y, u′

1, u
′

2, . . . , u
′

r, u
′ be a shortest y − u′ path in H − e.

Now, y 6= ui for 1 6 i 6 m because if so, then dH−e(x, u) > dH−e(x, y) = k, which

is a contradiction. Similarly, x 6= u′

i for 1 6 i 6 r. Consider a shortest u1 − u′

1

path in H − e. This path must contain either x or y. If not, this path, u1 − u path,

u′ − u′

1 path, along with the edge uu′ would produce a cycle in T . Suppose that the

path contains x. Then k − 1 >dH−e(u1, u
′

1) >dH−e(x, u′

1) + 1 >k, a contradiction.

Switching the roles of x and y in the previous sentence completes the proof. �

Lemma 3. Suppose that T is a tree with A(T ) = 2. If u, v ∈ V (T ) such that ux

and vy are edges in H − e, then

(1) a shortest u − v path in H − e lies entirely in T

(2) dH−e(u, v) = k − 1 or k − 2

(3) eH−e(u) = eH−e(v) = k − 1.

P r o o f. If (1) is false, then a shortest u − v path contains x or y. Without loss

of generality, assume that it contains x. Then k = dH−e(x, y) = dH−e(x, v) + 1 =

dH−e(u, v) = k − 1, a contradiction.

Now Lemma 1 implies that dH−e(u, v) 6 k − 1, and dH−e(x, y) = k implies that

dH−e(u, v) > k − 2; which proves (2).

Finally, dH−e(x, v) = k − 1 = dH−e(y, u) gives eH−e(u) > k − 1 and eH−e(v) >

k − 1. But gH−e(u) = gH−e(v) = k − 1 implies eH−e(u) = eH−e(v) 6 k − 1. Thus,

(3) holds. �

Lemma 4. Let T be a tree with A(T ) = 2. Let u and v be peripheral vertices

with ux, vy ∈ E(H − e). Then dH−e(u, v) = k − 2 = diam(T ).

P r o o f. Let if possible dH−e(u, v) < diam(T ). If C(T ) = 〈{w}〉, then u and v

must be end-vertices on the same branch of w. If C(T ) = 〈{w, w′}〉, then without loss

of generality, u and v must be end-vertices on the branches of w (either on the same

branch or two separate branches of w). Let u′ ∈ D, with dT (u, u′) = diam(T ) (note

that in the case where C(T ) = 〈{w, w′}〉, u′ must be an end-vertex on the branch

of w′, if u is on the branch of w). If C(T ) = 〈{w}〉, or if C(T ) = 〈{w, w′}〉 and u

and v are on the same branch of w or dH−e(u, v) = k − 1, then either dH−e(u, u′) or

dH−e(u
′, v) is greater than k − 1.

We may assume that C(T ) = 〈{w, w′}〉 and u and v are on two separate branches

of w. If there is no vertex on a branch of w′ which is adjacent to x, then dH−e(u
′, x)

is at least k, which contradicts g(u′) < k. Similarly, if there is no vertex on a branch

of w′ adjacent to y, then dH−e(u
′, y) > k. We may assume that there are vertices
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z and z′ on branches of w′ with zx and z′y ∈ E(H − e). Notice that one of these

vertices may be u′. Since dH−e(x, y) = k, we must have dH−e(z, z′) > k − 2, and

necessarily z and z′ are both end-vertices.

If u′ is not adjacent to either x or y in H − e, then e = u′x or u′y. But then

dH−ww′(w, w′) = k. We may assume without loss of generality that u′ = z.

The edge e is incident with at least one of x and y. If e = xy or if e joins either x or

y to an end-vertex of T , then dH−ww′(w, w′) = k. We may assume that e joins x or

y to a vertex of T that is not an end-vertex of T . Without loss of generality, suppose

e joins x to a vertex on a branch of w. Then dH−yz′ (y, z′) > k which contradicts

g(z′) = k − 1.

Therefore dH−e(u, v) = diam(T ).

Let if possible now dH−e(u, v) = diam(T ) = k − 1. Note that dH−e(x, y) = k and

g(s) = k − 1 for all s ∈ V (T ). Therefore for all s ∈ V (T ) with sx ∈ E(H − e), we

must have dH−e(s, y) > k − 1 and in particular dH−e(u, y) = k − 1. Therefore there

exists an s ∈ V (T )−D such that sy ∈ E(H − e). Using Lemma 3 and the fact that

s /∈ D, we get dH−e(u, s) = k − 2. Note that s must be an end-vertex. Otherwise

consider an end-vertex on the branch of s, say s′, then dH−e(s
′, x) > k − 1 which is

a contradiction to the fact that eH−e(s
′) 6 k−1. By a similar argument we can find

an end-vertex z /∈ D with dH−e(v, z) = k − 2 and zx ∈ E(H − e).

C l a i m: dH−e(s, z) = diam(T ).

In H −e, let a shortest u−v path be u, u1, u2, . . . , ur, ur+1, . . . , ur+m, . . . , uk−2, v,

shortest u − s path be u, u1, u2, . . . , ur, u
′

r+1, . . . , u
′

r+m, . . . , u′

k−3
, s, shortest v − z

path be v, uk−2, uk−3, . . . , ur+m, vr+m−1, . . . , v2, z. See Figure 1.

r
x










D
D
D

r
z r

u

B
B
BB

L
L
L

rv2

r
u2

B
B
BB

L
L
L

r

r

r

r

r

r

r

r

r

vr

r

ur

r

vr+1

r

ur+1

r

u′

r+1

,
,

,,

r

r

r

r

r

r

r

vr+m−1

r

r r

u′

r+m

r

ur+m

,
,

,,

r

r

r

r

r

r

r

u′

k−3

r

uk−3

r
s

r

uk−2

r

v
�
�

�
�

�
��

r
y

�
��

C
CC

Figure 1

102



Let d(ur, s) = a, d(ur+m, z) = b, d(ur+m, v) = c. Then r + m + c = k − 1,

r + a = k − 2, c + b = k − 2 and b + m + a = dH−e(s, z) = k − 2 as s, z /∈ D and by

Lemma 3. Solving these equations we would get 2m = 1 which is not possible since

m is a whole number. Therefore our assumption is false. �

Lemma 5. Let T be a tree with A(T ) = 2. Then D must contain two vertices u

and v ∈ V (H − e), such that ux, vy ∈ E(H − e).

P r o o f. Since all end-vertices of T must be adjacent to x or y in H , in H − e all

but possibly one of the end-vertices must be adjacent to either x or y. Let if possible

D not contain two vertices u and v in V (H − e), such that ux, vy ∈ E(H − e). Then

without loss of generality, we can assume that in H − e all vertices in D are adjacent

to x only (except possibly one). Consider a vertex u ∈ D with ux ∈ E(H − e). Note

that in H − e, dH−e(x, y) = k and therefore all x-y paths must be of length greater

than or equal to k. Since g(u) = k − 1, there must exist a s ∈ V (T ) − D, with

sy ∈ E(H − e) and dH−e(u, s) = k − 2.

C a s e 1. Let if possible u and s be on the same branch of T .

Consider a vertex u′ ∈ D with dT (u, u′) = diam(T ). Now, dT (u′, s) > dT (u, s) +

2 = k. Since g(u′) = k− 1, there must be a shorter u′− s path in H − e. If this path

goes through x, then dH−e(u
′, s) > dH−e(x, s) + 1 = k which is not possible. The

shortest u′ − s path must go through y, so dH−e(u
′, y) 6 k − 2. Thus, u′ cannot be

adjacent to x. Thus u′ is the unique vertex at distance diam(T ) from u in T. Since

g(u′) = k − 1, we have dH−e(u
′, x) 6 k − 1. On a shortest u′ − x path, let x′ be

the vertex adjacent to x. On a shortest u′ − y path, let y′ be the vertex adjacent

to y. We may assume without loss of generality that y′ /∈ D. The portion of the

u′ − x′ and u′ − y′ paths moving towards C(T ) must be the same. This common

portion is more than half of the u′ − y′ path and at least half of the u′ − x′ path,

so dH−e(x
′, y′) =

⌈

k−3

2

⌉

− 1 +
⌈

k−2

2

⌉

= k − 3. But then dH−e(x, y) 6 k − 1, a

contradiction.

C a s e 2. Let if possible s belong to C(T ).

Note that if C(T ) has one vertex w, then rad(T ) = k− 2 and wy must be an edge

in H − e. If C(T ) has two central vertices w and w′, then both of them must be

adjacent to y and rad(T )− 1 = k− 2. Note that in both these cases, only vertices in

D can be adjacent to x in H−e, otherwise x-y paths of length less than k would exist

in H −e. To make the argument easier to understand we will show later that when s

is a central vertex, all end-vertices of T must belong to D. Using some of the similar

arguments we can also show that no other vertices of T besides the central vertices

of T can be adjacent to y in H − e. Therefore, if we assume that all end-vertices

of T are in D, e = xy or yz for some z in V (T ) in order for H to be 2-connected.

(Note that in the case when there are two central vertices we also have to consider
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e = xz for some z in V (T ).) We will now show that e cannot equal xy in the case

|C(T )| = 1. The case |C(T )| = 2 is similar.

C l a i m: e cannot equal xy.

P r o o f o f C l a i m: Let if possible e = xy. Let u1 be a vertex of T adjacent to

w in H − e. Then dH−wu1
(w, u1) > k − 1. See Figure 2.
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C l a i m: e cannot equal yz, for some vertex z of V (T ).

P r o o f o f C l a i m: If e = yz for some vertex z of V (T ), then consider a vertex

u1 of T adjacent to w in H − e and belonging to a branch of T not containing z.

Then dH−wu1
(w, u1) > k − 1. See Figure 3.
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Therefore it is clear that s does not belong to C(T ).

(Note that in the case when |C(T )| = 2, we would also have to consider that

e = xz for z in V (T ). The proof to show that e cannot equal xz for some vertex z

of V (T ) is identical to the proof when we show e cannot equal yz for some vertex z

of V (T ). Also remember to insert rad(T )− 1 in place of rad(T ) in the above proof.)
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After proving the fact that all the end-vertices are in D, then we will know that

s cannot be in C(T ).

Now we prove the fact that all end-vertices of T must belong to D. We will prove

the result for the case when C(T ) has only one vertex.

We know that u is a peripheral vertex and s is the central vertex, and dH−e(u, s) =

k − 2. Thus, any vertex in T that is adjacent to x in H − e must be a peripheral

vertex of T . Suppose there is a branch of T so that no vertex on that branch is

adjacent to x in H − e. Then for any vertex u′ on that branch, the shortest x-u′

path in H − e must go through either w or y, and so have length at least k. This

is a contradiction; we can assume without loss of generality that every branch of T

contains some peripheral vertex that is adjacent to x in H − e.

Let if possible there exist at least one end-vertex, say z, in V (T ) that is not in

D. Then z is an end-vertex on a branch of T containing at least one end-vertex in

D. Assume that at least one of the peripheral end-vertices on the branch containing

z is adjacent to x. If zy is an edge in H − e, then let u′ be the vertex on the

branch of z adjacent to x and belonging to D. Let u be an end-vertex in D with

dT (u, u′) = diam(T ). Then the shortest z − u path must be either a combination of

a shortest z−u′ path (which clearly must be of length k− 2 or more in H − e) along

with the edges u′x and xu, or a combination of a shortest z − w path (which must

be of length 2 or more) along with the shortest u − w path. This would imply that

d(z, u) > k − 1.

If zy is not an edge in H − e, without loss of generality we can assume that there

are no end-vertices on the branch containing z that are not in D and are adjacent to

y. Let u′ be one of the end-vertices on the branch of z, adjacent to x and in D. Let u

be a vertex in D with d(u, u′) = diam(T ) in T . Clearly u is on another branch of T .

Let the root of this branch be u1. Let the shortest u1−u path be u1, u2, u3, . . . , uk−2

where uk−2 = u. Let d(z, w) = n. Then d(z, uk−n) > k − 1.

When C(T ) has two vertices consider u1 be a vertex adjacent to the other central

vertex and replace k−n with k−1−n. Therefore all end-vertices must belong to D.

C a s e 3. Let u and s belong to different branches of T .

When there are two central vertices, note that u and s must belong to branches of

different central vertices. Let u′ be an end-vertex on the branch of s farthest away

from C(T ). Note that none of end-vertices on the branch of T containing s could be

adjacent to x, otherwise there would exist an x-y path of length less than k − 1 in

H − e. Therefore dH−e(u
′, x) > k − 1.

(In Case 3, if there are two central vertices w and w′ such that one of the branches

of w′ contains s, then none of the end-vertices of all the branches of w′ can be

adjacent to x in H − e.)
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Therefore d(u, s) = 2 rad(T ) when there is one central vertex, and d(u, w) =

2 rad(T ) − 1 when there are two central vertices. And hence there must be at least

two vertices u, s in D with ux and sy as edges in H − e. �

Theorem 1. Let T be a tree with A(T ) = 2. Then all the end-vertices are

equidistant from the center.

P r o o f. In order to show that all end-vertices are equidistant from the center

we will show that all end-vertices belong to D. Note that |D| > 2 for a tree. By

Lemma 5, there exist vertices u, v ∈ D with ux, vy ∈ E(H − e). By Lemma 4,

dH−e(u, v) = k − 2 = diam(T ). Therefore all end-vertices adjacent to x or y must

be in D (otherwise there will exist an x-y path of length less than k). Suppose

there exists an end-vertex z, such that z /∈ D. This would imply that e = xz or yz.

Without loss of generality assume that e = xz. In this case let z1 be a vertex of T

adjacent to z. Then dH−zz1
(z, y) > k − 1 and therefore g(z) 6= k − 1. Therefore all

end-vertices must belong to D. �

Lemma 6. Let T be a tree with A(T ) = 2. Let un and zn be end-vertices of the

same branch of T . If unx ∈ E(H − e), then zny /∈ E(H − e) (in other words the

end-vertices of the same branch of T cannot be adjacent to x and y in H − e).

P r o o f. Clearly from Lemma 4 if un and zn are end-vertices with unx, zny ∈

E(H − e), then dH−e(un, zn) = k − 2 = diam(T ). This implies that un and zn

cannot be the end-vertices of the same branch (otherwise dH−e(un, zn) < diam(T ) a

contradiction to Lemma 4). �

N o t e 1. In H − e only vertices in D can be adjacent to an x or y (by Lemma 4

and Lemma 5). Also note that it is clear that e 6= xz for any z in D, otherwise

dH−zz1
(z, y) > k − 1 where z1 is a vertex adjacent to z. A symmetric argument

shows that e 6= yz for any z in D.
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N o t e 2. By Lemma 4, Theorem 1 and Lemma 6, for a tree T with A(T ) = 2,

it follows that k = 2 rad(T ) + 2 when C(T ) = 〈{w}〉 and k = 2 rad(T ) + 1 when

C(T ) = 〈{w, w′}〉.

Lemma 7. If T is a tree with C(T ) = 〈{w, w′}〉, then A(T ) 6= 2.

P r o o f. Let if possible A(T ) = 2. By the note above we know that k =

2 rad(T ) + 1. Therefore all end-vertices of w are adjacent to x and that of w′ to y.

In order for H to be 2-connected, e = xy. Then dH−ww′(w, w′) > k − 1 which is a

contradiction to the fact that g(w) = k − 1. �

Lemma 8. Let T be a tree with A(T ) = 2 and C(T ) = 〈{w}〉. Then e = xy.

P r o o f. From Lemma 5 it is clear that dH−e(x, y) = k = diam(T ) + 2. Note 1

gives us that e 6= xz for any z ∈ D. Let if possible e = xz for z ∈ V (T ) − D. For

cases 1 through 3, let z ∈ V (T ) − (D ∪ {w}).

C a s e 1. Let z belong to a branch of w where all end-vertices are adjacent to x.

In this case in order for H to be 2-edge-connected, we must have deg(w) > 4, at

least two of the branches must have all their end-vertices adjacent to x, and at least

two of the branches must have all their end-vertices adjacent to y. Let u1 ∈ V (T ) be

a vertex on a branch whose end-vertices are adjacent to x, with u1w ∈ E(T ). Then

dH−u1w(u1, y) > k − 1 which is a contradiction to the fact that gH(u1) = k − 1.
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C a s e 2. Let z belong to a branch of w where all end-vertices are adjacent to

y and there is more than one branch of w whose end-vertices are adjacent to y.

Let u1 ∈ V (T ) be a vertex on a branch whose end-vertices are adjacent to x with

u1w ∈ E(T ). Consider a branch of w not containing z whose end-vertices are adjacent

to y. Let w1 be a vertex on this branch adjacent to w. Then dH−w1w(u1, w1) > k−1

which is a contradiction to the fact that gH(u1) = k − 1. See Figure 5.
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C a s e 3. Let z belong to a branch of w where all the end-vertices are adjacent

to y and there is only one branch of w whose end-vertices are adjacent to y. For H

to remain 2-edge-connected, the degree of y must be 2 or more and the degree of

at least one of the vertices z′ on the branch containing z with dT (z′, w) 6 dT (z, w)

must be at least 3. Notice that eH−e(z) < k − 1 for all edges e ∈ E(H). Therefore

g(z) < k − 1 which is a contradiction. See Figure 6.
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C a s e 4. Let z = w. Without loss of generality we can assume that e = xw.

Consider a vertex u1 on a branch of w where end-vertices are adjacent to x and

u1w ∈ E(T ). Then dH−u1w(u1, y) > k − 1 which is a contradiction. When e = yw a

similar proof can be given.

Therefore e = xy. �

Lemma 9. Let T be a tree with A(T ) = 2 and C(T ) = 〈{w}〉. Then deg(w) > 4.

P r o o f. Let if possible deg(w) < 4. Clearly deg(w) > 2, therefore without loss

of generality let us assume that only one branch of T has end-vertices adjacent to

x. Let u1 be a vertex on this branch with u1w ∈ E(T ). By Lemma 8, since e = xy,

dH−u1w(u1, w) > k − 1. This is a contradiction to the fact that g(u1) = k − 1. �

Theorem 2. Let T be a tree with C(T ) = 〈{w}〉. Then A(T ) = 2 if and only if

the following are satisfied:

(a) All end-vertices are equidistant from the center.

(b) deg(w) > 4, and

(c) for z ∈ V (T ), if 1 6 dT (z, w) < n−1, then degT (z) = 2, and if dT (w, z) = n−1,

then degT (z) > 2.
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Figure 7

P r o o f. From [4], we have that a), b) and c) imply A(T ) = 2. To see this,

construct a graph H from the tree T by adding two new vertices x and y to T ,

joining x to all end-vertices of T in two branches of w, joining y to the remaining

end-vertices of T , and adding the edge xy. In the graphH , we calculate g(z) = 2n+1

for z ∈ V (T ) and g(x) = g(y) = 2n + 2.

If A(T ) = 2, then there is a graph H with V (H) = V (T )∪{x, y} with EDC(H) =

T . It follows that all end-vertices are equidistant from the center by Theorem 1

and deg(w) > 4 by Lemma 9. Let ui ∈ V (T ) such that d(ui, w) < n − 1 and

deg(w) > 2. Let u1 be a vertex on this branch adjacent to w and without loss of

generality, assume that all end-vertices of this branch are adjacent to x. Also assume

that ui, ui+1, . . . , un and ui, u
′

i+1, . . . , u
′

n, are at least two of the sub-branches of this

vertex. If i 6= 1, then g(ui+1) < k − 1 and if i = 1, then g(u3) < k − 1, which are

both contradictions. See Figure 7. �
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