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Abstract. Several mean value theorems for higher order divided differences and approxi-
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1. Introduction

The mean value theorems involving derivative are well known. But mean value

theorems for divided differences of a function are useful particularly when the deriva-

tive of the function does not exist. We prove a mean value theorem for higher order

divided differences in a general setting independent of the concept of derivative. We

also prove a result which can reduce an nth order divided difference of a function f to

an (n− r)th order divided difference of the rth order approximate Peano derivative

f(r) ap of f , 0 6 r 6 n, if f(r) ap exists. Some consequences are studied.

Let a function f be defined in a neighbourhood of a point x0. If there exist

numbers α1, α2, . . . , αr depending on x0 but not on h such that

lim
h→0

ap
r!

hr

{

f(x0 + h) − f(x0) −

r
∑

k=1

hk

k!
αk

}

= 0

where ‘lim ap’ denotes the approximate limit then αr is called the approximate

Peano derivative of f at x0 of order r and is denoted by f(r) ap(x0). We shall

write f(0) ap(x0) = f(x0). The kth divided difference of f at k + 1 distinct points
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x0, x1, . . . , xk is defined by

Qk(f ;x0, x1, . . . , xk) =

k
∑

i=0

f(xi)

ω′(xi)

where

ω(x) =

k
∏

i=0

(x− xi).

So, the divided difference Qk(f ;x0, x1, . . . , xk) does not depend on the order of the

points x0, x1, . . . , xk.

Note that if Qn(f ;x0, x1, . . . , xn) > 0 for all choices of n + 1 distinct points

x0, x1, . . . , xn in [a, b], then f is called n-convex in [a, b]. Clearly 1-convex is just

nondecreasing. If −f is n-convex in [a, b] then f is called n-concave in [a, b].

Unless otherwise stated we consider functions from R to R. If a function f has

the Darboux property we write f ∈ D and if f is in Baire class 1, we write f ∈ B1.

2. Auxiliary lemmas and theorems

Theorem 2.1. If f ∈ D ∩ B1 and g is continuous then f + g ∈ D ∩ B1 and

fg ∈ D ∩ B1.

For a proof see [1; p. 14, Theorem 3.2].

Theorem 2.2. If f ∈ D ∩ B1 and if x1 < x2 < . . . < xm then ϕ ∈ D ∩ B1 in

every closed subinterval of each of the intervals (−∞, x1); (x1, x2); . . . ; (xm−1, xm);

(xm,∞), where ϕ(x) = Qm(f ;x, x1, . . . , xm).

P r o o f. Let [ξ1, ξ2] be any interval which does not contain any of the points

x1, x2, . . . , xm Then since

ϕ(x) =
f(x)

m
∏

i=1

(x− xi)
+

m
∑

i=1

f(xi)

(xi − x)
m
∏

k=1
k 6=i

(xi − xk)

and since
( m

∏

i=1

(x − xi)
)−1

and (xi − x)−1, 1 6 i 6 m, are all continuous in [ξ1, ξ2],

the result follows from Theorem 2.1. �

Theorem 2.3. If f is n-convex in [a, b] and for some n + 1 distinct points xi,

0 6 i 6 n, a 6 x0 < x1 < . . . < xn 6 b we have Qn(f ;x0, x1, . . . , xn) = 0 then f is a

polynomial of degree at most (n− 1) on [x0, xn].

Proof is in [3; Theorem 5].
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Lemma 2.4. If ϕ(x) = f(ax + b) and f(n) ap exists then ϕ(n) ap exists and

ϕ(n) ap(x) = anf(n) ap(ax+ b).

This can be proved by induction.

Lemma 2.5. If f and g are defined at the points x0, x1, . . . , xn, then

Qn(fg;x0, x1, . . . , xn) =
n

∑

i=0

Qi(g;x0, . . . , xi)Qn−i(f ;xi, . . . , xn)

where Q0(g;x0) = g(x0).

This is known as the Leibniz rule for divided difference and can be proved using

induction.

3. Mean value theorems for divided differences

Theorem 3.1. Let f ∈ D ∩ B1. If Qn(f ;x0, x1, . . . , xn) and Qn(f ; y0, y1, . . . , yn)

are of opposite signs for two sets of points {x0, x1, . . . , xn} and {y0, y1, . . . , yn}, then

there is a set of points {ξ0, ξ1, . . . , ξn} such that min[x0, . . . , xn, y0, . . . , yn] 6 ξi 6

max[x0, . . . , xn, y0, . . . , yn] for all i and Qn(f ; ξ0, ξ1, . . . , ξn) = 0.

P r o o f. Since the divided difference does not depend on the ordering of the

points we may suppose that x0 < x1 < . . . < xn and y0 < y1 < . . . < yn. We

may further suppose that x0 < y0, for otherwise the procedure that follows would

start from xs < ys such that xi = yi for i = 0, 1, . . . , s − 1 (if necessary, by in-

terchanging and renaming the sets {xi ; 0 6 i 6 n} and {yi ; 0 6 i 6 n}). Suppose

that the theorem is not true. Then for every set of points {z0, z1, . . . , zn} with

min {x0, y0} 6 zi 6 max {xn, yn} for 0 6 i 6 n, Qn(f ; z0, z1, . . . , zn) is not zero. In

our argument we will repeatedly use the following observation which follows from

Theorem 2.2.

For any fixed set of points a0 < a1 < . . . < an the function F (t) = Qn(f ; a0,

a1, . . . , as, t, as+2, . . . , an) has the Darboux property on (as, as+2) for 0 6 s < n− 1

and the functions F1(t) = Qn(f ; a0, a1, . . . , an−1, t) and F2(t) = Qn(f ; t, a1, . . . , an)

have the Darboux property in (an−1,∞) and in (−∞, a1), respectively.

Since the function ϕ1(t) = Qn(f ;x0, t, x2, . . . , xn) has the Darboux property

in (x0, x2), ϕ1(t) has the same sign in (x0, x2) as ϕ1(x1), for otherwise the

theorem would be true. Choose x̄1 such that x0 < x̄1 < min {x1, y0}. Since

x̄1 ∈ (x0, x2), ϕ1(x1) and ϕ1(x̄1) have the same sign and so Qn(f ;x0, x1, x2, . . . , xn)

and Qn(f ;x0, x̄1, x2, . . . , xn) have the same sign on this interval. Applying the

above argument and choosing x̄2, x̄1 < x̄2 < min {x2, y0} we conclude that
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Qn(f ;x0, x1, . . . , xn) and Qn(f ;x0, x̄1, x̄2, x3, . . . , xn) have the same sign. Con-

tinuing this process we get points x̄1, x̄2, . . . , x̄n−1, x0 < x̄1 < x̄2 < . . . < x̄n−1 <

min {xn−1, y0} such that Qn(f ;x0, x1, . . . , xn) and Qn(f ;x0, x̄1, . . . , x̄n−1, xn) have

the same sign. Consider ϕn(t) = Qn(f ;x0, x̄1, . . . , x̄n−1, t). Since ϕn(t) has the

Darboux property in (x̄n−1,∞), ϕn(xn) and ϕn(yn) have the same sign and

so Qn(f ;x0, x̄1, . . . , x̄n−1, yn) and Qn(f ;x0, x1, . . . , xn) have the same sign. Let

ψn−1(t) = Qn(f ;x0, x̄1, . . . , x̄n−2, t, yn). Since ψn−1(yn−1) and ψn−1(x̄n−1) have

the same sign, Qn(f ;x0, x̄1, . . . , x̄n−2, yn−1, yn) and Qn(f ;x0, x1, x2, . . . , xn) have

the same sign. Continuing this process we conclude that Qn(f ;x0, y1, . . . , yn)

and Qn(f ;x0, x1, . . . , xn) have the same sign. Finally we apply the argument

to the function Qn(f ; t, y1, . . . , yn) over the interval (−∞, y1) to deduce that

Qn(f ; y0, y1, . . . , yn) has the same sign as Qn(f ;x0, x1, . . . , xn), which is a con-

tradiction. This completes the proof. �

Corollary 3.2. Let f ∈ D ∩ B1. If Qm(f ; z0, z1, . . . , zm) < α < Qm (f ; y0,

y1, . . . , ym) for any two sets of points {z0, z1, . . . , zm} and {y0, y1, . . . , ym} then

there is a set of points {ξ0, ξ1, . . . , ξm} such that min[z0, . . . , zm, y0, . . . , ym] 6 ξi 6

max[z0, . . . , zm, y0, . . . , ym] for all i, and Qm(f ; ξ0, ξ1, . . . , ξm) = α.

P r o o f. Consider g(x) = f(x) − αxm and apply Theorem 2.1 and Theorem 3.1

to g. �

Theorem 3.3. If f(m) ap exists then for any set of n + 1 distinct points xi with

x0 < x1 < . . . < xn, n > m, there is δ, 0 < δ < 1, such that

m!Qn(f ;x0, . . . , xn)

= δn−m

n−1
∑

i=0

Qi((x − xn)m−1; y0, . . . , yi)Qn−1−i(f(m) ap; yi, . . . , yn−1)

where yk = xn + (xk − xn)δ, 0 6 k 6 n.

P r o o f. Let a < x0 < x1 < . . . < xn < b be fixed. Let

ψ(t) =
n

∑

i=0

f(xn + (xi − xn)t)
n
∏

j=0
j 6=i

(xi − xj)
=

n−1
∑

i=0

f(xn + (xi − xn)t)
n
∏

j=0
j 6=i

(xi − xj)
+

f(xn)
n−1
∏

j=0

(xn − xj)

.

Then by Lemma 2.4

ψ(r) ap(t) =

n−1
∑

i=0

(xi − xn)rf(r) ap(xn + (xi − xn)t)

/ n
∏

j=0
j 6=i

(xi − xj)
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=

n−1
∑

i=0

(xi − xn)r−1f(r) ap(xn + (xi − xn)t)

/ n−1
∏

j=0
j 6=i

(xi − xj).

Hence

ψ(r) ap(0) = f(r) ap(xn)
n−1
∑

i=0

(xi − xn)r−1

/ n−1
∏

j=0
j 6=i

(xi − xj)

= f(r) ap(xn)Qn−1((x− xn)r−1;x0, x1, . . . , xn−1).

So ψ(r) ap(0) = 0 if r < m. Hence by the mean value theorem [5; Theorem 1] there

is δ, 0 < δ < 1, such that

Qn(f ;x0, . . . , xn) = ψ(1) = ψ(1) − ψ(0) − . . .−
1

(m− 1)!
ψ(m−1) ap(0)

=
1

m!
ψ(m) ap(δ) =

1

m!

n−1
∑

i=0

(xi − xn)m−1f(m) ap(xn + (xi − xn)δ)

/ n−1
∏

j=0
j 6=i

(xi − xj)

=
1

m!

n−1
∑

i=0

δn−m(yi − yn)m−1f(m) ap(yi)

/ n−1
∏

j=0
j 6=i

(yi − yj)

=
δn−m

m!
Qn−1((x− yn)m−1f(m) ap(x); y0, y1, . . . , yn−1).

Hence by Lemma 2.5

m!Qn(f ;x0, . . . , xn)

= δn−m

n−1
∑

i=0

Qi((x− yn)m−1; y0, . . . , yi)Qn−1−i(f(m) ap; yi, . . . , yn−1)

= δn−m

n−1
∑

i=0

Qi((x− xn)m−1; y0, . . . , yi)Qn−1−i(f(m) ap; yi, . . . , yn−1),

completing the proof. �

Corollary 3.4. If f ′
ap exists then for every set of points xi, x0 < x1 < . . . < xn,

there is δ, 0 < δ < 1, such that

Qn(f ;x0, . . . , xn) = δn−1Qn−1(f
′
ap; y0, . . . , yn−1) where yk = xn + (xk − xn)δ.

P r o o f. Putting m = 1 in Theorem 3.3 the result follows. �

169



Corollary 3.5. If f ′
ap exists and is k-convex in (a, b) then f is (k + 1)-convex in

(a, b).

P r o o f. The result follows from Corollary 3.4. �

Corollary 3.6. If f is k-convex in (a, b) and if for a fixed c ∈ (a, b),

F (x) =

∫ x

c

f(t) dt, x ∈ (a, b),

then F is (k + 1)-convex in (a, b).

P r o o f. The result follows from Corollary 3.5. �

Theorem 3.7. Let f(r) ap exist in (a, b) where r > 1. Then for any n > r and for

any (n+ 1) distinct points xi, a < x0 < x1 < . . . < xn < b, there are distinct points

ξ0, ξ1, . . . , ξn−r in (x0, xn) such that

n!Qn(f ;x0, . . . , xn) = (n− r)!Qn−r(f(r) ap; ξ0, . . . , ξn−r).

P r o o f. Since f is approximately continuous in (a, b), we have f ∈ D ∩ B1 in

(a, b). Let g(x) = f(x) − xnQn(f ;x0, . . . , xn). Then g(r) ap exists in (a, b) and by

Theorem 2.1, g ∈ D ∩ B1 in (a, b). Also

(1) g(r) ap(x) = f(r) ap(x) −
xn−r

(n− r)!
n!Qn(f ;x0, . . . , xn).

Suppose n > r. Let Qn−r(g(r) ap; y0, . . . , yn−r) > 0 for every set of n− r + 1 points

y0, y1, . . . , yn−r in (x0, xn). Then g(r) ap is (n − r)-convex in (x0, xn). Also g(r) ap

is continuous in (x0, xn). In fact, if n − r = 1, then g(r) ap is non decreasing and

therefore, since g(r) ap ∈ D, g(r) ap is continuous in (x0, xn). If n− r = 2, then g(r) ap

is convex in (x0, xn) and so it is continuous in (x0, xn) and if n− r > 2 then g(r) ap

has finite derivative in (x0, xn) [2, Theorem 7(a)] and the assertion follows.

Hence g(r) ap is the continuous rth derivative of g in every closed subinterval of

(x0, xn) [5], and since g(r) ap is (n−r) convex, by repeated application of Corollary 3.6

we obtain that g is n-convex in (x0, xn). Hence lim
t→x0

g(t) and lim
t→xn

g(t) exist and so

by property D, g is continuous in [x0, xn] and therefore g is n-convex in [x0, xn].

Since

Qn(g;x0, x1 . . . , xn) = Qn(f ;x0, x1, . . . , xn) −Qn(f ;x0, x1, . . . , xn) = 0

Theorem 2.3 implies that g is a polynomial of degree at most n− 1 and so g(r) ap is

a polynomial of degree at most n− r − 1. Hence Qn−r(g(r) ap; y0, . . . , yn−r) = 0 for

170



any set of n− r + 1 points y0, . . . , yn−r, which gives by (1)

n!

(n− r)!
Qn(f ;x0, . . . , xn) = Qn−r(f(r) ap; y0, . . . , yn−r),

proving the theorem. Similarly, if Qn−r(g(r) ap; y0, . . . , yn−r) 6 0 for every set of

n− r + 1 points y0, . . . , yn−r in (x0, xn) then the proof follows. So we suppose that

there is a set of points y0, . . . , yn−r and a set of points z0, . . . , zn−r in (x0, xn) such

that

Qn−r(g(r) ap; y0, . . . , yn−r) > 0 > Qn−r(g(r) ap; z0, . . . , zn−r).

Since g(r) ap ∈ B1, [4] and g(r) ap ∈ D, [5], by Theorem 3.1 there is a set of points

ξ0, . . . , ξn−r in (x0, xn) such that Qn−r(g(r) ap; ξ0, . . . , ξn−r) = 0, which by (1) proves

the result in this case.

Finally, we consider n = r. Then writing g as above we have

g(n) ap(x) = f(n) ap(x) − n!Qn(f ;x0, . . . , xn).

If g(n) ap(x) > 0 for every x ∈ (x0, xn) then g(n−1) ap is non decreasing [5] and

so g is n-convex in [x0, xn] and so as above g is a polynomial of degree at

most n − 1 in [x0, xn] and hence g(n) ap(x) = 0 for all x ∈ [x0, xn], that is

f(n) ap(x) = n!Qn(f ;x0, x1, . . . , xn) for all x ∈ [x0, xn], proving the result. Sim-

ilarly, if g(n) ap(x) 6 0 for all x ∈ (x0, xn) the result follows. So suppose that

there are ξ1, ξ2 ∈ (x0, xn) such that g(n) ap(ξ1) > 0 > g(n) ap(ξ2). Then by the

property D of g(n) ap, [5], there is ξ ∈ (x0, xn) such that g(n) ap(ξ) = 0, that is

f(n) ap(ξ) = n!Qn(f ;x0, . . . , xn). This completes the proof. �

A c k n ow l e d g em e n t. The authors wish to thank the referee for shortening

the proof of Theorem 3.1 which was originally very long.
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