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Abstract. A vertex coloring of a graph G is a multiset coloring if the multisets of colors
of the neighbors of every two adjacent vertices are different. The minimum k for which G

has a multiset k-coloring is the multiset chromatic number χm(G) of G. For every graph G,
χm(G) is bounded above by its chromatic number χ(G). The multiset chromatic number
is determined for every complete multipartite graph as well as for cycles and their squares,
cubes, and fourth powers. It is conjectured that for each k > 3, there exist sufficiently large
integers n such that χm(C

k
n) = 3. It is determined for which pairs k, n of integers with

1 6 k 6 n and n > 3, there exists a connected graph G of order n with χm(G) = k. For
k = n − 2, all such graphs G are determined.

Keywords: vertex coloring, multiset coloring, neighbor-distinguishing coloring
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1. Introduction

In a proper coloring of a graph G, a color is assigned to each vertex of G so that

adjacent vertices are assigned distinct colors. Thus a coloring that is not necessarily

proper permits adjacent vertices to be assigned the same color. Hence a proper

coloring distinguishes the two vertices in every pair of adjacent vertices. In general,

a vertex coloring of a graph in which every two adjacent vertices are assigned distinct

colors is referred to as a neighbor-distinguishing coloring. Therefore, every proper

coloring is neighbor-distinguishing. The minimum number of colors in a proper

coloring of G is, of course, the chromatic number χ(G). Neighbor-distinguishing

vertex colorings can be defined in other ways however and possibly use fewer than

χ(G) colors.

Edge colorings of graphs, whether proper or not, have been introduced that use the

multisets of colors of the incident edges of each vertex in a graph G for the purpose of
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distinguishing all vertices of G or of distinguishing every two adjacent vertices of G.

The papers by Burris [3] and Chartrand, Escuadro, Okamoto, and Zhang [4] deal with

the former (vertex-distinguishing edge colorings), while the papers by Addario-Berry,

Aldred, Dalal, and Reed [1], Karoński,  Luczak, and Thomason [8], and Escuadro,

Okamoto, and Zhang [7] deal with the latter. Furthermore, vertex colorings (proper

or not) of a graph G have been introduced that use the multisets of colors of the

neighboring vertices of each vertex for the purpose of distinguishing all vertices of G.

These concepts have been studied by Chartrand, Lesniak, VanderJagt, and Zhang [5],

Radcliffe and Zhang [9], and Anderson, Barrientos, Brigham, Carrington, Kronman,

Vitray, and Yellen [2]. In this paper we use multisets of colors to introduce and study

a neighbor-distinguishing vertex coloring. We refer to the book [6] for graph theory

notation and terminology not described in this paper.

For a connected graph G, let c : V (G) → {1, 2, . . . , k} be a not necessarily proper

k-coloring of the vertices of G for some positive integer k (where then adjacent

vertices may be colored the same). The coloring c is called a multiset coloring if

for every pair u, v of adjacent vertices of G, the multisets M(u) and M(v) of the

colors of the neighbors of u and v differ, that is, there exists a color i such that the

number of neighbors of u colored i and the number of neighbors of v colored i are

not the same. Each multiset M(v) of colors of the neighbors of a vertex v of G can

be represented by a k-vector. The color code of a vertex v of G is the k-vector

code(v) = (a1, a2, . . . , ak) = a1a2 . . . ak,

where ai is the number of occurrences of i in M(v), that is, the number of vertices

adjacent to v that are colored i for 1 6 i 6 k. Therefore,

k
∑

i=1

ai = deg v.

Thus a vertex coloring (not necessarily proper) of a graph G is a multiset coloring if

every two adjacent vertices have distinct color codes. Hence every multiset coloring

of a graph G is neighbor-distinguishing. The multiset chromatic number χm(G) of

G is the minimum positive integer k for which G has a multiset k-coloring.

Suppose that c is a proper vertex k-coloring of a graph G. If u is a vertex of G

and c(u) = i for some integer i (1 6 i 6 k), then the i-th coordinate of the color code

of u is 0. On the other hand, if v is a neighbor of u, then the i-th coordinate of the

color code of v is at least 1, implying that code(u) 6= code(v) for every two adjacent

vertices u and v in G. Hence every proper coloring of G is a multiset coloring.

Therefore, for every graph G,

(1) χm(G) 6 χ(G).
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Suppose that a coloring c of a graph G is given (where adjacent vertices may be

assigned the same color). If u and v are vertices (adjacent or nonadjacent) of a graph

G such that deg u 6= deg v, then necessarily code(u) 6= code(v). On the other hand,

if G contains two adjacent vertices u and v with deg u = deg v, then in order for c

to be a multiset coloring, c must assign at least two distinct colors to the vertices of

G. Thus we have the following observation.

O b s e r v a t i o n 1.1. Let G be a graph. Then χm(G) = 1 if and only if every two

adjacent vertices of G have distinct degrees.

Since every nonempty bipartite graph has chromatic number 2, the following is an

immediate consequence of (1) and Observation 1.1.

Proposition 1.2. If G is a bipartite graph, then

χm(G) =

{

1 if every two adjacent vertices of G have distinct degrees,

2 otherwise.

As an illustration, we determine the multiset chromatic number of the Petersen

graph P . Since the Petersen graph has chromatic number 3, it follows that χm(P ) 6

3. However, Figure 1 shows a multiset 2-coloring of P . By Observation 1.1 then,

χm(P ) = 2.

1

1

2 1

1
1

1

1 2

2

(3,0)

(2,1)

(3,0) (1,2)

(2,1)(2,1)

(1,2)

(1,2) (3,0)

(3,0)

Figure 1: A multiset 2-coloring of the Petersen graph

For a vertex v in a graph G, let N(v) be the neighborhood of v (the set of all

vertices adjacent to v in G). The following observation is often useful.

O b s e r v a t i o n 1.3. If u and v are two adjacent vertices in a graph G such that

N(u) − {v} = N(v) − {u}, then c(u) 6= c(v) for every multiset coloring c of G.
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2. The multiset chromatic number of complete multipartite graphs

We have noted that for each vertex coloring of a graph G, every two vertices with

different degrees have distinct color codes. From this, it follows that determining

the multiset chromatic number of G is most interesting and most challenging when

G has many vertices of the same degree. We now initiate a study of graphs having

this property, especially regular graphs. It is a consequence of Observation 1.3 that

χm(Kn) = n. By (1) a graph G of order n has multiset chromatic number n if and

only if G = Kn.

By Proposition 1.2, for the complete bipartite graph Ks,t,

χm(Ks,t) =

{

1 if s 6= t,

2 if s = t.

We now determine the multiset chromatic numbers of all complete multipartite

graphs, beginning with the regular complete multipartite graphs, that is, those com-

plete multipartite graphs all of whose partite sets are of the same cardinality. If every

partite set of a complete k-partite graph G has n vertices, then we write G = Kk(n),

where then Kn(1) = Kn and K1(n) = Kn.

For positive integers l and n,

f(l, n) =

(

n + l − 1

l − 1

)

is the number of n-element multisubsets of an l-element set. We now determine the

multiset chromatic number of all regular complete multipartite graphs.

Theorem 2.1. For positive integers k and n, the multiset chromatic number of

the regular complete k-partite graph Kk(n) is the unique positive integer l for which

f(l − 1, n) < k 6 f(l, n).

P r o o f. Denote the partite sets of G = Kk(n) by U1, U2, . . . , Uk, where then

|Ui| = n for each i with 1 6 i 6 k. We first claim that χm(G) > l. Assume, to the

contrary, that χm(G) 6 l − 1. Then there exists a multiset (l − 1)-coloring c of G.

Let A = {1, 2, . . . , l − 1} denote the set of colors used by c and let S be the set of

all n-element multisubsets of the set A. Thus |S| = f(l − 1, n). For 1 6 i 6 k, let

Si be the n-element multisubset of A that is used to color the vertices of Ui. Since

k > f(l − 1, n), it follows that Si = Sj for some pair i, j of distinct integers with
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1 6 i, j 6 k. However then for u ∈ Ui and v ∈ Uj , it follows that code(u) = code(v),

which is impossible. Thus, as claimed, χm(G) > l.

Next, we show that χm(G) 6 l. Let B = {1, 2, . . . , l}. Since k 6 f(l, n), there

exist k distinct multisubsets B1, B2, . . . , Bk of B. For each i (1 6 i 6 k), assign the

colors in the multiset Bi to the vertices of Ui. Let u and v be two adjacent vertices

of G. Then u ∈ Ui and v ∈ Uj for distinct integers i and j with 1 6 i, j 6 k. Let B′

be the multiset of colors of the vertices in V (G)− (Ui ∪Uj). Since M(u) = Bj ∪B′,

M(v) = Bi ∪ B′, and Bi 6= Bj , it follows that M(u) 6= M(v). Hence this l-coloring

is a multiset coloring and so χ(G) 6 l. �

We now consider more general complete multipartite graphs. We denote a com-

plete multipartite graph containing ki partite sets of cardinality ni by

Kk1(n1),k2(n2),...,kt(nt).

Theorem 2.2. Let G = Kk1(n1),k2(n2),...,kt(nt), where n1, n2, . . . , nt are t distinct

positive integers. Then

χm(G) = max{χm(Kki(ni)) : 1 6 i 6 t}.

P r o o f. Let li = χm(Kki(ni)) for 1 6 i 6 t. Assume, without loss of generality,

that

l1 = max{χm(Kki(ni)) : 1 6 i 6 t}.

We first show that χm(G) 6 l1. For each integer i with 1 6 i 6 t, let ci be a multiset

li-coloring of the subgraph Kki(ni) in G using the colors in {1, 2, . . . , li}. We can now

define a multiset l1-coloring c of G by

c(x) = ci(x) if x ∈ V (Kki(ni)) for 1 6 i 6 t.

Thus χm(G) 6 l1. Next, we show that χm(G) > l1. Assume, to the contrary, that

χm(G) = l 6 l1 − 1. Let c′ be a multiset l-coloring of G. Then c′ induces a coloring

c′1 of the subgraph Kk1(n1) in G such that c′1(x) = c′(x) for all x ∈ V (Kk1(n1)). Since

c′1 uses at most l colors and χm(Kk1(n1)) = l1 > l, it follows that c′1 is not a multiset

coloring of Kk1(n1) and so there exist two adjacent vertices u and v in Kk1(n1) having

the same code with respect to c′1. Since u and v are both adjacent to every vertex

in V (G)− V (Kk1(n1)), it follows that u and v have the same code in G with respect

to c′, which is a contradiction. �
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In particular, if k1 = k2 = . . . = kt = 1, then Kki(ni) = K1(ni) = Kni
for

1 6 i 6 t. Since χm(Kni
) = 1 for 1 6 i 6 t, it follows that χm(Kn1,n2,...,nt

) = 1,

where n1, n2, . . . , nt are t distinct positive integers.

By (1), if G is a graph with χm(G) = a and χ(G) = b, then a 6 b. In fact, each

pair a, b of positive integers with a 6 b is realizable as the multiset chromatic number

and chromatic number, respectively, for some connected graph.

Proposition 2.3. For each pair a, b of positive integers with a 6 b, there exists

a connected graph G such that χm(G) = a and χ(G) = b.

P r o o f. If a = b, let G = Ka and then χm(G) = χ(G) = a. Thus, we

may assume that a < b. Let G be a complete b-partite graph with partite sets

V1, V2, . . . , Vb, where |Vi| = 1 for 1 6 i 6 a and 2 6 |Va+1| < |Va+2| < . . . < |Vb|.
Then χ(G) = b. It remains to show that χm(G) = a. Let U = V1 ∪ V2 ∪ . . . ∪ Va.

By Observation 1.3, if c is a multiset coloring of G, then c(x) 6= c(y) for every two

distinct vertices x and y in U , which implies that χm(G) > a. On the other hand,

the coloring that assigns color i to the vertex in Vi for 1 6 i 6 a and color 1 to the

remaining vertices of G is a multiset a-coloring of G. Therefore, χm(G) = a. �

3. The multiset chromatic numbers of powers of cycles

In addition to regular complete multipartite graphs, another well-known and large

class of regular (and vertex-transitive) graphs are the powers of cycles. For a con-

nected graph G of order n and an integer k with 1 6 k < n, the k-th power Gk of G is

that graph with V (Gk) = V (G) such that uv ∈ E(Gk) if and only if 1 6 dG(u, v) 6 k.

Thus G1 = G and Gk = Kn if k > diam(G). We begin with the cycles themselves

and show that their multiset chromatic number equals their chromatic number.

Proposition 3.1. For each integer n > 3, χm(Cn) = χ(Cn).

P r o o f. Since Cn is 2-regular, χm(Cn) > 2 by Observation 1.1. If n is even,

then χm(Cn) = 2 by Proposition 1.2. If n is odd, then χm(Cn) = 2 or χm(Cn) = 3.

We claim that χm(Cn) = 3. Assume, to the contrary, that there exists a multiset

2-coloring c : V (Cn) → {1, 2}. Let Cn : v1, v2, . . . , vn, v1 and consider the cyclic color

sequence

s : c(v1), c(v2), . . . , c(vn), c(v1).

Necessarily, the sequence s has an even number of maximal subsequences consisting

of terms of the same color. Observe that s cannot contain a maximal subsequence

of s consisting of exactly two terms or of four or more terms of the same color.
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Therefore, every maximal subsequence of s consisting of terms of the same color has

length 1 or 3 and so has odd length, which is impossible since n is odd. Thus, as

claimed, χm(Cn) = 3 if n is odd. �

Since Ck−1
2k = Kk(2), we have the following by Theorem 2.1.

Proposition 3.2. For each integer k > 2,

χm(Ck−1
2k ) =

⌈−1 +
√

8k + 1

2

⌉

.

We now determine the multiset chromatic numbers of the squares of cycles.

Proposition 3.3. For each integer n > 3,

χm(C2
n) =











n if 3 6 n 6 5,

2 if n ≡ 0 (mod 6),

3 otherwise.

P r o o f. For 3 6 n 6 5, observe that C2
n = Kn and so χm(C2

n) = n; while

χm(C2
6 ) = 2 by Proposition 3.2. For n > 7, let Cn : v1, v2, . . . , vn, v1. Since C2

n is

4-regular, χm(C2
n) > 2. Suppose first that 6 | n. Define the 2-coloring c : V (C2

n) →
{1, 2} by

c(vi) =

{

1 if i ≡ 1, 2, 4 (mod 6),

2 if i ≡ 3, 5, 0 (mod 6).

Since

code(vi) =











(1, 3) if i ≡ 1 (mod 3),

(2, 2) if i ≡ 2 (mod 3),

(3, 1) if i ≡ 0 (mod 3),

it follows that c is a multiset 2-coloring. Thus, χm(C2
n) = 2.

It now remains to show that if n > 7 and 6 ∤ n, then χm(C2
n) = 3. Suppose

that there exists a multiset 2-coloring c : V (C2
n) → {1, 2}. First, we claim that

no vertex of C2
n can have color code (4, 0), for suppose that code(v3) = (4, 0).

Then c(v1) = c(v2) = c(v4) = c(v5) = 1. Thus c(v3) = 2, for otherwise

{code(v2), code(v3), code(v4)} ∈ {(3, 1), (4, 0)}, which is impossible. Necessarily,

{code(v2), code(v4)} = {(2, 2), (3, 1)}, say code(v2) = (2, 2) and code(v4) = (3, 1).

Thus c(v6) = 1. This implies that code(v5) = (2, 2), c(v7) = 2, and code(v6) ∈
{(2, 2), (3, 1)}, which cannot occur. Therefore, as claimed, no vertex of C2

n can have

color code (4, 0). Similarly, no vertex of C2
n can have color code (0, 4).
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Since every vertex of C2
n has one of the three color codes (3, 1), (2, 2), and (1, 3),

these color codes must occur cyclically about the vertices of Cn. Thus 3 | n. Since

6 ∤ n, it follows that n is odd. Suppose that nj vertices (j = 1, 2) are colored j in

C2
n, where n = n1 +n2. By summing the number of occurrences of the color j in the

multiset M(vi) for 1 6 i 6 n, we obtain n = 2n1 = 2n2, which is impossible since n

is odd. Hence χm(C2
n) > 3.

We now show that χm(C2
n) 6 3 by defining a multiset 3-coloring of C2

n. For

7 6 n 6 11, construct C2
n from

Cn : u1, u2, . . . , un, u1

and let c∗n : V (C2
n) → {1, 2, 3} be the coloring such that if

s∗n : c∗n(u1), c
∗

n(u2), . . . , c
∗

n(un)

is a color sequence of the vertices of C2
n, then

s∗7 : 1, 1, 2, 3, 1, 2, 2,

s∗8 : 1, 1, 2, 3, 3, 1, 2, 2,

s∗9 : 1, 1, 2, 1, 2, 3, 1, 2, 2,

s∗10 : 1, 1, 2, 3, 3, 3, 3, 1, 2, 2,

s∗11 : 1, 1, 2, 3, 3, 3, 3, 3, 1, 2, 2.

(See Figure 2.) Observe that c∗n is a multiset 3-coloring. Hence χm(C2
n) 6 3 for

7 6 n 6 11.

C2
7

1

2

2

1 3

2

1

C2
8

1
2

2

1
3

3

2

1

C2
9

1
2

2

1

3 2

1

2

1

C2
10

1
2

2

1

3
3

3

3

2

1

C2
11

1
2

2

1

3

3 3

3

3

2

1

Figure 2: Multiset 3-colorings of C2n for 7 6 n 6 11

198



For n > 13 and 6 ∤ n, let q, r be the unique pair of positive integers such that

n = 6q + r, where 7 6 r 6 11. Let

Cn : v1, v2, . . . , vn, v1

and consider a coloring c : V (C2
n) → {1, 2, 3} given by

c(vi) =











1 if 1 6 i 6 6q and i ≡ 1, 2, 4 (mod 6),

2 if 1 6 i 6 6q and i ≡ 3, 5, 0 (mod 6),

c∗r(ui−6q) if 6q + 1 6 i 6 6q + r.

In other words, the color sequence

sn : c(v1), c(v2), . . . , c(vn)

of the vertices of C2
n for n = 6q + r > 13 is

sn : 1, 1, 2, 1, 2, 2, . . . , 1, 1, 2, 1, 2, 2, s∗r.

Then

code(vi) =























(1, 3, 0) if 1 6 i 6 6q and i ≡ 1 (mod 3),

(2, 2, 0) if 1 6 i 6 6q and i ≡ 2 (mod 3),

(3, 1, 0) if 1 6 i 6 6q and i ≡ 0 (mod 3),

codec∗
r
(ui−6q) if 6q + 1 6 i 6 6q + r.

Hence c is a multiset 3-coloring of C2
n, that is, χm(C2

n) 6 3 for n > 7 and 6 ∤ n. This

completes the proof. �

Observe that for n > 6,

χm(C2
n) =

{

χ(C2
n) if n ≡ 3 (mod 6),

χ(C2
n) − 1 otherwise.

We now determine the multiset chromatic numbers of the cubes of cycles.

Proposition 3.4. For each integer n > 3,

χm(C3
n) =

{

n if 3 6 n 6 7,

3 if n > 8.

P r o o f. For 3 6 n 6 7, observe that χm(C3
n) = χm(Kn) = n. Furthermore,

C3
8 = K4(2) and so χm(C3

8 ) = 3 by Proposition 3.2. We now show that χm(C3
n) > 3
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for n > 9. Assume, to the contrary, that there exists a multiset 2-coloring c of C3
n,

where Cn : v1, v2, . . . , vn, v1.

We claim that no vertex of C3
n can be labeled with the color code (6, 0), for suppose

that code(v4) = (6, 0). Then neither code(v3) nor code(v5) can be (6, 0). Necessarily,

{code(v3), code(v5)} = {(4, 2), (5, 1)}, say code(v3) = (4, 2) and code(v5) = (5, 1).

This implies that c(v4) = 2 and c(v8) = 1. Thus code(v6) ∈ {(4, 2), (5, 1)}, which is

impossible. Hence, as claimed, no vertex of C3
n can be labeled with the color code

(6, 0). Similarly, no vertex of C3
n can be labeled with the color code (0, 6).

Therefore, every four consecutive vertices of Cn must be labeled in C3
n with four

distinct color codes in the set {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. Thus some vertex

of C3
n has the color code (5, 1) or (1, 5), say code(v6) = (5, 1). We may therefore

assume that c(v3) = c(v4) = c(v5) = 1. Since code(v5) /∈ {(5, 1), (6, 0)} and at

least one of c(v7) and c(v8) is 1, it follows that code(v5) ∈ {(3, 3), (4, 2)}. Similarly,

since code(v7) /∈ {(5, 1), (6, 0)} and at least one of c(v8) and c(v9) is 1, it follows

that code(v7) ∈ {(3, 3), (4, 2)}. Therefore, {code(v5), code(v7)} = {(3, 3), (4, 2)}.

Then code(v4) /∈ {(3, 3), (4, 2), (5, 1), (6, 0)}, implying that code(v4) = (2, 4) and so

c(v1) = c(v2) = c(v6) = c(v7) = 2. However, this now implies that code(v5) = (3, 3)

and code(v3) ∈ {(2, 4), (3, 3)}, which is impossible.

Consequently, no vertex of C3
n can be labeled with the color code (5, 1) or, similarly,

with (1, 5) either. This is impossible. Therefore, χm(C3
n) > 3 for n > 9.

To verify that χm(C3
n) = 3, it remains to show that there is a multiset 3-coloring

of C3
n for every n > 9. For 8 6 n 6 13, construct C3

n from

Cn : u1, u2, . . . , un, u1

and let c∗n : V (C3
n) → {1, 2, 3} be the coloring such that if

s∗n : c∗n(u1), c
∗

n(u2), . . . , c
∗

n(un)

is a color sequence of the vertices of C3
n, then

s∗8 : 1, 1, 2, 1, 1, 2, 3, 3,

s∗9 : 1, 1, 2, 2, 3, 3, 2, 3, 3,

s∗10 : 1, 1, 2, 2, 3, 3, 1, 2, 3, 3,

s∗11 : 1, 1, 2, 2, 3, 3, 1, 1, 2, 3, 3,

s∗12 : 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3,

s∗13 : 1, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 3, 3.

(See Figure 3.) Observe that c∗n is a multiset 3-coloring and so χm(C3
n) 6 3 for

8 6 n 6 13.
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2

1
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3
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1

Figure 3: Multiset 3-colorings of C3n for 8 6 n 6 13

For n > 14, let q, r be the unique pair of positive integers such that n = 6q + r,

where 8 6 r 6 13. Let

Cn : v1, v2, . . . , vn, v1

and consider a coloring c : V (C3
n) → {1, 2, 3} given by

c(vi) =























1 if 1 6 i 6 6q and i ≡ 1, 2 (mod 6),

2 if 1 6 i 6 6q and i ≡ 3, 4 (mod 6),

3 if 1 6 i 6 6q and i ≡ 5, 0 (mod 6),

c∗r(ui−6q) if 6q + 1 6 i 6 6q + r.

In other words, the color sequence

sn : c(v1), c(v2), . . . , c(vn)

of the vertices of C3
n for n = 6q + r > 14 is

sn : 1, 1, 2, 2, 3, 3, . . . , 1, 1, 2, 2, 3, 3, s∗r.

Then

code(vi) =























































(1, 3, 2) if 1 6 i 6 6q and i ≡ 1 (mod 6),

(1, 2, 3) if 1 6 i 6 6q and i ≡ 2 (mod 6),

(2, 1, 3) if 1 6 i 6 6q and i ≡ 3 (mod 6),

(3, 1, 2) if 1 6 i 6 6q and i ≡ 4 (mod 6),

(3, 2, 1) if 1 6 i 6 6q and i ≡ 5 (mod 6),

(2, 3, 1) if 1 6 i 6 6q and i ≡ 0 (mod 6),

codec∗
r
(ui−6q) if 6q + 1 6 i 6 6q + r.
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Hence c is a multiset 3-coloring of C3
n, that is, χm(C3

n) 6 3 for n > 14. Therefore,

χm(C3
n) = 3 for n > 8. �

We next determine the multiset chromatic numbers of the fourth powers of cycles.

Proposition 3.5. For each integer n > 3,

χm(C4
n) =

{

n if 3 6 n 6 9,

3 if n > 10.

P r o o f. For 3 6 n 6 9, observe that χm(C4
n) = χm(Kn) = n. We now show

that χm(C4
n) > 3 for n > 10. Assume, to the contrary, that there exists a multiset

2-coloring c of C4
n, where Cn : v1, v2, . . . , vn, v1.

We first show that no vertex of C4
n can be labeled with the color code (8, 0), for sup-

pose that code(v5) = (8, 0). Then necessarily {code(v4), code(v6)} = {(6, 2), (7, 1)},

say code(v4) = (6, 2) and code(v6) = (7, 1). Then c(v5) = 2 and c(v10) = 1. However,

this implies that code(v7) ∈ {(6, 2), (7, 1), (8, 0)}, which is impossible. Therefore, as

claimed, no vertex of C4
n can be labeled with the color code (8, 0). Similarly, no

vertex of C4
n can be labeled with the color code (0, 8).

Next we show that no vertex of C4
n can be labeled with the color code (7, 1).

Assume, to the contrary, that code(v5) = (7, 1). Then without loss of generality, we

may assume that c(vi) = 1 for 1 6 i 6 4. Each of the vertices v4 and v6 is adjacent

to at least five vertices that are assigned the color 1 and so {code(v4), code(v6)} =

{(5, 3), (6, 2)}. Then since v3 is adjacent to at least four vertices that are assigned the

color 1, it follows that code(v3) = (4, 4), which in turn implies that code(v2) = (3, 5).

Therefore, we have c(v5) = c(v6) = 2 and c(v7) = c(v8) = c(v9) = 1. However, this

implies that code(v7) ∈ {(4, 4), (5, 3), (6, 2)}, which cannot occur. Therefore, there

is no vertex in C4
n that is labeled with (7, 1) or, similarly, with (1, 7) either.

Hence every vertex of C4
n has one of the five color codes (2, 6), (3, 5), (4, 4), (5, 2),

and (6, 2). Furthermore, since ω(C4
n) = 5, these five color codes must occur cyclically

about the vertices of Cn. Thus 5 | n.

If n = 10, then observe that χm(C4
10) = χm(K5(2)) = 3 by Proposition 3.2, a

contradiction. Hence suppose that n > 15. Without loss of generality, assume

that code(v5) = code(v10) = (6, 2). If c(vi) = 1 for 1 6 i 6 4, then observe that

code(vi) 6= (2, 6) for 1 6 i 6 5, which is impossible. Similarly, it is impossible that

c(vi) = 1 for 6 6 i 6 9 and for 11 6 i 6 14. Therefore,

{c(vi) : 1 6 i 6 4} = {c(vi) : 6 6 i 6 9} = {c(vi) : 11 6 i 6 14} = {1, 1, 1, 2}
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as multisets. However, this implies that each of the four vertices vi (6 6 i 6 9) is

adjacent to at least three vertices that are colored 1, implying that code(vi) 6= (2, 6)

for 5 6 i 6 10. This is a contradiction. Therefore, χm(C4
n) > 3 for n > 10.

To verify that χm(C4
n) = 3, it remains to show that there is a multiset 3-coloring

of C4
n for each n > 10. For 10 6 n 6 15, construct C4

n from

Cn : u1, u2, . . . , un, u1

and let c∗n : V (C4
n) → {1, 2, 3} be the coloring so that if

s∗n : c∗n(u1), c
∗

n(u2), . . . , c
∗

n(un)

is a color sequence of the vertices of C4
n, then

s∗10 : 1, 1, 2, 2, 3, 3, 2, 2, 3, 3,

s∗11 : 1, 1, 2, 2, 3, 3, 1, 2, 2, 3, 3,

s∗12 : 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3,

s∗13 : 1, 1, 2, 2, 3, 3, 1, 1, 1, 2, 2, 3, 3,

s∗14 : 1, 1, 2, 2, 3, 3, 3, 1, 1, 2, 2, 2, 3, 3,

s∗15 : 1, 1, 2, 2, 2, 3, 3, 2, 1, 1, 2, 2, 2, 3, 3.

(See Figure 4.) Observe that c∗n is a multiset 3-coloring and so χm(C4
n) 6 3 for

10 6 n 6 15.

C4
10

1
3

3

2

2
3

3

2

2

1

C4
11

1
3

3

2

2

1 3

3

2

2

1

C4
12

1
3

3

2

2

1
1

3

3

2

2

1

C4
13

13

3

2

2

1
1 1

3

3

2

2

1

C4
14

13
3

2

2

2
1 1 3

3

3

2

2
1

C4
15

13
3

2

2

2

1
1 2

3

3

2

2

2
1

Figure 4: Multiset 3-colorings of C4n for 10 6 n 6 15

For n > 16, let q, r be the unique pair of positive integers such that n = 6q + r,

where 10 6 r 6 15. Let

Cn : v1, v2, . . . , vn, v1
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and consider a coloring c : V (C4
n) → {1, 2, 3} given by

c(vi) =























1 if 1 6 i 6 6q and i ≡ 1, 2 (mod 6),

2 if 1 6 i 6 6q and i ≡ 3, 4 (mod 6),

3 if 1 6 i 6 6q and i ≡ 5, 0 (mod 6),

c∗r(ui−6q) if 6q + 1 6 i 6 6q + r.

In other words, the color sequence

sn : c(v1), c(v2), . . . , c(vn)

of the vertices of C4
n for n = 6q + r > 16 is

sn : 1, 1, 2, 2, 3, 3, . . . , 1, 1, 2, 2, 3, 3, s∗r.

Then

code(vi) =























































(1, 4, 3) if 1 6 i 6 6q and i ≡ 1 (mod 6),

(1, 3, 4) if 1 6 i 6 6q and i ≡ 2 (mod 6),

(3, 1, 4) if 1 6 i 6 6q and i ≡ 3 (mod 6),

(4, 1, 3) if 1 6 i 6 6q and i ≡ 4 (mod 6),

(4, 3, 1) if 1 6 i 6 6q and i ≡ 5 (mod 6),

(3, 4, 1) if 1 6 i 6 6q and i ≡ 0 (mod 6),

codec∗
r
(ui−6q) if 6q + 1 6 i 6 6q + r.

Hence c is a multiset 3-coloring of C4
n, that is, χm(C4

n) 6 3 for n > 16. This completes

the proof. �

An upper bound for a more general class of powers of cycles is presented next.

Proposition 3.6. Let p > 2 be an integer. If (3p) | n and n > 6p, then

χm(Ck
n) 6 3

for 2p − 1 6 k 6
⌊

1
2 (5p − 1)

⌋

.

P r o o f. Suppose that n = 3pl, where l > 2 is an integer. Construct Ck
n from

Cn : u1,1, u1,2, . . . , u1,p, v1,1, v1,2, . . . , v1,p, w1,1, w1,2, . . . , w1,p,

u2,1, u2,2, . . . , u2,p, v2,1, v2,2, . . . , v2,p, w2,1, w2,2, . . . , w2,p, . . .

ul,1, ul,2, . . . , ul,p, vl,1, vl,2, . . . , vl,p, wl,1, wl,2, . . . , wl,p, u1,1
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and consider a 3-coloring c : V (Ck
n) → {1, 2, 3} defined by

c(x) =











1 if x = uj,i (1 6 i 6 p, 1 6 j 6 l),

2 if x = vj,i (1 6 i 6 p, 1 6 j 6 l),

3 if x = wj,i (1 6 i 6 p, 1 6 j 6 l).

We show that c is a multiset coloring of Ck
n. By symmetry, observe that

code(uj1,i) = code(uj2,i),

code(vj1,i) = code(vj2,i),

code(wj1,i) = code(wj2,i)

for 1 6 i 6 p and 1 6 j1, j2 6 l. Hence we only consider the codes of u1,i, v1,i, and

w1,i for 1 6 i 6 p. Furthermore, since k < 3p, it suffices to show that each of the 3p

vertices u1,1, u1,2, . . . , u1,p, v1,1, v1,2, . . . , v1,p, w1,1, w1,2, . . . , w1,p has a distinct code.

If k = 2p − 1, 2p, then for 1 6 i 6 p,

code(u1,i) = (p − 1, k + 1 − i, k − p + i),

code(v1,i) = (k − p + i, p − 1, k + 1 − i),

code(w1,i) = (k + 1 − i, k − p + i, p − 1)

and observe that the 3p codes are different.

If 2p + 1 6 k 6
⌊

1
2 (5p − 1)

⌋

, then

code(u1,i) =











(k − p − i, 2p, k − p + i) if 1 6 i 6 k − 2p,

(p − 1, k + 1 − i, k − p + i) if k − 2p + 1 6 i 6 3p − k,

(k − 2p− 1 + i, k + 1 − i, 2p) if 3p − k + 1 6 i 6 p,

code(v1,i) =











(k − p + i, k − p − i, 2p) if 1 6 i 6 k − 2p,

(k − p + i, p − 1, k + 1 − i) if k − 2p + 1 6 i 6 3p − k,

(2p, k − 2p − 1 + i, k + 1 − i) if 3p − k + 1 6 i 6 p,

code(w1,i) =











(2p, k − p + i, k − p − i) if 1 6 i 6 k − 2p,

(k + 1 − i, k − p + i, p − 1) if k − 2p + 1 6 i 6 3p − k,

(k + 1 − i, 2p, k − 2p− 1 + i) if 3p − k + 1 6 i 6 p

and again the 3p codes are all different. Therefore, c is a multiset 3-coloring of Ck
n

and so χm(Ck
n) 6 3. �
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For example, for l > 2,

χm(Ck
6l) 6 3 for k = 3, 4,

χm(Ck
9l) 6 3 for k = 5, 6, 7,

χm(Ck
12l) 6 3 for k = 7, 8, 9,

χm(Ck
15l) 6 3 for k = 9, 10, 11, 12,

χm(Ck
18l) 6 3 for k = 11, 12, 13, 14,

χm(Ck
21l) 6 3 for k = 13, 14, 15, 16, 17.

Based on the information above, we have the following conjecture.

C o n j e c t u r e 3.7. For every integer k > 3, there exists an integer f(k) such

that χm(Ck
n) = 3 for all n > f(k).

From what we have seen, f(k) = 2k + 2 for k = 3, 4; however, we believe that

f(k) > 2k + 2 for sufficiently large k.

4. Graphs with prescribed order and multiset chromatic number

We have seen that if G is a connected graph of order n and χm(G) = k, then

1 6 k 6 n. Furthermore, χm(G) = n if and only if G = Kn. We now determine all

pairs k, n of positive integers that are realizable as the multiset chromatic number

and the order, respectively, for some connected graph.

Proposition 4.1. Let k and n be integers with 1 6 k 6 n. Then there exists a

connected graph G of order n with χm(G) = k if and only if k 6= n − 1.

P r o o f. For n = 1, 2, the result immediately follows. Hence suppose that n > 3.

For k = 1, let G be a connected graph of order n such that no two adjacent vertices

of G have the same degree. Then χm(G) = 1. For k = n, let G = Kn and so

χm(G) = n. For 2 6 k 6 n− 2, let G = K1,1,...,1,n−k be the complete (k + 1)-partite

graph such that k partite sets of G are singleton and one partite set of G consists of

n−k vertices. Since n−k > 2, it follows that χm(G) = k. For the converse, assume,

to the contrary, that there is a connected graph G of order n with χm(G) = n − 1.

Then G 6= Kn and χ(G) = n − 1. Thus G is obtained from Kn−1 by joining a new

vertex to some (but not all) vertices of Kn−1. Let V (G) = {v1, v2, . . . , vn}, where

the subgraph induced by V (G) − {vn} is Kn−1 and vn is adjacent to v1, v2, . . . , vt,
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where 1 6 t 6 n − 2. The (n − 2)-coloring c of G given by

c(vi) =











i if 1 6 i 6 t,

i − 1 if t + 1 6 i 6 n − 1,

n − 2 if i = n

is a multiset coloring and so χm(G) 6 n − 2, which is a contradiction. �

By Proposition 4.1, χm(G) 6 n − 2 if and only if G 6= Kn. Let Gn be the set of

connected graphs G of order n with χm(G) = n − 2. For 3 6 n 6 5,

G3 = {K3 − e (= (K1 ∪ K1) + K1)}
G4 = {K4 − e, (K2 ∪ K1) + K1, C4, P4}
G5 = {K5 − e, (K3 ∪ K1) + K1, C5}.

We next present a characterization of connected graphs G of order n with χm(G) =

n − 2 for all n > 6. In order to do this, we first prove a useful lemma.

Lemma 4.2. If G is a connected graph of order n > 6 and ∆(G) 6 n − 2, then

χm(G) 6 n − 3.

P r o o f. Since G is connected and ∆(G) 6 n − 2, the graph G contains 2K2 as

a subgraph. If G contains either K2 ∪ K3 or 3K2 as a subgraph, then χ(G) 6 n − 3

and so χm(G) 6 n− 3. Otherwise, let u1, u2, w1, and w2 be four distinct vertices in

G such that u1w1, u2w2 /∈ E(G) and

X = V (G) − {u1, u2, w1, w2} = {v1, v2, . . . , vn−4}.

Since G does not contain 3K2, it follows that the subgraph induced by the n − 4

vertices in X is Kn−4.

If there exists a vertex v ∈ X that is adjacent to both u1 and w1 or to both u2

and w2, say v1 is adjacent to both u1 and w1, then observe that the (n− 3)-coloring

c1 : V (G) → {1, 2, . . . , n − 3} given by

c1(x) =











i if x = vi (1 6 i 6 n − 4),

1 if x = u1, w1,

n − 3 if x = u2, w2

is neighbor-distinguishing. Therefore, χm(G) 6 n − 3.

There is only one case left to consider. For each i = 1, 2, suppose that one of ui

and wi is adjacent to every vertex in X and the other is adjacent to no vertex in X ,
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say u1 and u2 are adjacent to every vertex in X and w1 and w2 are adjacent to no

vertex in X . Therefore, deg v = n − 3 for every v ∈ X , while

deg ui ∈ {n− 4, n − 3, n − 2} and deg wi ∈ {1, 2}.

Also observe that deg ui > deg wj for 1 6 i, j 6 2 and |deg u1 − deg u2| 6 1.

If deg u1 = deg u2, then u1w2, u2w1 ∈ E(G). Consider the coloring c2 : V (G) →
{1, 2, . . . , n − 3} defined by

c2(x) =

{

i if x = vi (1 6 i 6 n − 4) or x = wi (i = 1, 2),

n − 3 if x = u1, u2.

If deg u1 6= deg u2, then let u ∈ {u1, u2} such that deg u = n − 3 and consider the

coloring c3 : V (G) → {1, 2, . . . , n − 3} defined by

c3(x) =











i if x = vi (1 6 i 6 n − 4),

n − 3 if x = u,

1 otherwise.

Observe that both c2 and c3 are multiset colorings and so χm(G) 6 n − 3 in each

case. �

Theorem 4.3. For a connected graph G of order n > 6, χm(G) = n − 2 if and

only if G ∈ {Kn − e, (Kn−2 ∪ K1) + K1}.

P r o o f. Let G be a connected graph of order n > 6. It is clear that if G ∈
{Kn − e, (Kn−2 ∪ K1) + K1}, then χm(G) = n − 2.

For the converse, suppose that χm(G) = n − 2 and let c be a multiset (n − 2)-

coloring of G. Then G 6= Kn and by Lemma 4.2, ∆(G) = n − 1. Let X =

{v1, v2, . . . , vn′} be the set of vertices in G of degree n − 1 and Y = V (G) − X .

(Hence 1 6 n′ 6 n− 2.) Observe that c must assign a unique color to each vertex in

X . Let H be the subgraph induced by the n − n′ vertices in Y and observe that

n − 2 = χm(G) 6 max{n′, χm(H)}.

Note that since G 6= Kn, it follows that H 6= Kn−n′ .

If n′ = n−2, then H = 2K1 and G = Kn−e. If n′ 6 n−3, then let H1, H2, . . . , Hs

be the components of H , where each Hi is a graph of order ni and n1 > n2 > . . . > ns.

Observe that

n − 2 6 χm(H) = max{χm(Hi) : 1 6 i 6 s} 6 n1 6 n − s,
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that is, s = 1 or s = 2. If s = 1, then H is a noncomplete connected graph of

order n − n′ and so χm(H) 6 (n − n′) − 2 < n − 2, which is impossible. If s = 2,

then χm(H) = n1 = n − 2. Hence H1 = Kn−2 and H2 = K1, implying that

G = (Kn−2 ∪ K1) + K1. �

A c k n o w l e d g m e n t s. We are grateful to the referee whose valuable sugges-

tions resulted in an improved paper.
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