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Abstract. The notion of ℓ̃-stability is defined using the lower Dini directional derivatives
and was introduced by the authors in their previous papers. In this paper we prove that
the class of ℓ̃-stable functions coincides with the class of C1,1 functions. This also solves
the question posed by the authors in SIAM J. Control Optim. 45 (1) (2006), pp. 383–387.
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1. Introduction

The notion of ℓ̃-stability was introduced by the authors in [2]. Mainly, we are

concerned in the problem whether the class of C1,1 functions can be characterized

in terms of ℓ̃-stability.

Throughout the paper, we will work with functions f : R
N → R defined on an open

subset of the N -dimensional Euclidean space RN . By SRN we denote the unit sphere

{x ∈ R
N ; ‖x‖ = 1}. The (first-order) lower Dini right hand directional derivative of

f at x ∈ R
N in a direction h ∈ R

N is defined by

f ℓ(x;h) = lim inf
t→0+

f(x+ th) − f(x)

t
.

The classical bilateral directional derivative of f at x ∈ R
N in the direction h ∈ R

N is

then denoted by f ′(x;h). Recall that f is said to belong to the class of C1,1 functions

on an open subset U of RN provided that f has the Fréchet derivative (which we
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denote by Df(x)) at each point x ∈ U and the mapping x 7→ Df(x) is locally

Lipschitz on U.

Definition 1.1. LetA be a nonempty open subset ofRN , f a real valued function

defined on A, x0 ∈ A. We say that f is ℓ̃-stable at x0 if there are a neighborhood U

of x0 and a constant L > 0 such that for every y, z ∈ U :

(1.1) |f ℓ(z; z − y) − f ℓ(y; z − y)| 6 L‖z − y‖2.

It follows immediately from the definitions that each function of the class C1,1 on

a neighbourhood of x0 must be also ℓ̃-stable at x0.The goal of the article is then to

prove the reverse implication, which is done in Theorem 2.1. To this end we have

used the notion of semiconcavity.

Definition 1.2. Assume that U ⊂ R
N is an open and convex set, and let C > 0.

We say f is semiconcave on U (with linear modulus of semiconcavity C) provided

that the function x 7→ f(x)−C‖x‖2 is concave on U, and f is said to be semiconvex

on U provided that −f is semiconcave on U.

For more details the reader should consult e.g. [4]. We will need the following

lemma.

Lemma 1.1 [4, Corollary 3.3.8]. Let U be an open convex subset of RN and let

f : U → R be a function which is both semiconcave and semiconvex with a linear

modulus C. Then f is a C1,1 function.

2. Differentiability properties of ℓ̃-stable functions

At first, we will work with functions of one variable. Consider a function f : I → R

defined on an open subinterval I of R. Recall the definitions of two of the well known

unilateral Dini derivatives:

D−f(x) = lim sup
t→0−

f(x+ t) − f(x)

t
,

D+f(x) = lim inf
t→0+

f(x+ t) − f(x)

t
.

Note that then we have f ℓ(x; 1) = D+f(x) and f ℓ(x;−1) = −D−f(x).

Let us now state some useful auxiliary results.
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Lemma 2.1 [6, page 134]. Suppose that f satisfies the following conditions:

(i) lim inf
t→0+

f(x− t) 6 f(x), ∀x ∈ I,

(ii) D+f(x) > 0 for almost all x ∈ I,

(iii) D+f(x) > −∞, ∀x ∈ I.

Then f is a nondecreasing function on I.

Lemma 2.2. Suppose that the following conditions hold:

(i) −∞ < D−f(x) <∞, ∀x ∈ I,

(ii) x 7→ D+f(x) is finite and continuous on I.

Then f is a continuous function on I.

P r o o f. Let us choose x ∈ I arbitrarily. The condition (ii) then implies the

existence of δ > 0, K > 0 such that (x− δ, x+ δ) ⊂ I, and |D+f(y)| 6 K whenever

y ∈ (x− δ, x+ δ). Next we put

g(y) = f(y) +K(y − x), y ∈ (x− δ, x+ δ).

Now it easily follows that g(x) = f(x), and D+g(y) = D+f(y) + K > 0 for every

y ∈ (x−δ, x+δ). It also follows that for every y ∈ (x−δ, x+δ)we have lim inf
t→0+

g(y−t) 6

g(y). Otherwise we would have D−g(y) = D−f(y)+K = −∞ which contradicts the

assumption (i). Thus due to Lemma 2.1, g is nondecreasing on (x − δ, x + δ) and

hence

(2.1) lim
t→0+

g(x− t) 6 g(x) 6 lim
t→0+

g(x+ t).

We claim that the above inequalities (2.1) are actually equalities. Indeed, other-

wise D−g(x) = ∞ or D+g(x) = ∞ which contradicts (i) or (ii).

Thus, we infer that

lim
t→0+

g(x− t) = g(x) = lim
t→0+

g(x+ t).

This proves the continuity of g and consequently the continuity of f at x. Since x

was chosen arbitrarily in I, we completed the proof. �

It is worth noting that in the above proof we have used only local boundedness of

the function x 7→ D+f(x) on I.
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Lemma 2.3. Let f satisfy the same assumptions as in Lemma 2.2. Then f is

continuously differentiable on I.

P r o o f. It suffices to use the previous lemma together with the classical Dini

theorem, see [3, Ch. 4, Theorem 1.3] �

Now we are ready to state and prove the main result of this note.

Theorem 2.1. Let f : R
N → R be a function which is ℓ̃-stable at x0. Then f is

C1,1 on a neighborhood of x0.

P r o o f. First we will show that there exists a constant L > 0 such that the

functions ±f + L‖ · ‖2 are convex on an open convex neighborhood of x0.

Suppose that (1.1) is satisfied on an open convex neighbourhood U of x0. Let us

fix x ∈ U, h ∈ SRN . Then there exists an open interval I ⊂ R such that

x+ th ∈ U ⇐⇒ t ∈ I,

i.e. x + Ih = U ∩ {x + th : t ∈ R}. Consider a function ϕx,h : I → R defined as

follows:

ϕx,h(t) = f(x+ th), t ∈ I.

Then for every t ∈ I we have

D+(ϕx,h)(t) = lim inf
s↓o

ϕx,h(t+ s) − ϕx,h(t)

s
= f ℓ(x+ th;h).

Fix t′, t′′ ∈ I. Then, if we plug z = x+ t′h, y = x+ t′′h into (1.1), we get

L|t′ − t′′|2 = L‖z − y‖2 > |f ℓ(z; z − y) − f ℓ(y; z − y)|

= |t′ − t′′||f ℓ(x+ t′h;h) − f ℓ(x+ t′′h;h)|

= |t′ − t′′||D+(ϕx,h)(t′) −D+(ϕx,h)(t′′)|.

Consequently,

(2.2) |D+(ϕx,h)(t′) −D+(ϕx,h)(t′′)| 6 L|t′ − t′′|

for every t′, t′′ ∈ I. Next we will show that D−(ϕx,h)(t) ∈ R for every t ∈ I. Now for

an arbitrary fixed t ∈ I, due to (1.1) we have that

−D−(ϕx,h)(t) = f ℓ(x+ th;−h) = f ℓ(x+ (−t)(−h);−h)

= D+ϕx,−h(−t) ∈ R.

Hence D−(ϕx,h)(t) ∈ R whenever t ∈ I.
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By Lemma 2.3, ϕx,h is continuously differentiable on I and due to (2.2) it has

L-Lipchitzian derivative on I. Consequently, there is γ > 0 such that for all t ∈ I we

have D+(±ϕ′
x,h)(t) > −γ. Let us assume that L > γ/2 and consider two functions

F = f +L‖ · ‖2, G = −f +L‖ · ‖2 defined on U. If we put ψ(t) = F (x+ th) for each

t ∈ I, then we have

ψ(t) = ϕx,h(t) + L(〈x, x〉 + 2t〈x, h〉 + t2).

Hence we have for each t ∈ I that ψ′(t) = ϕ′
x,h(t) + L(2〈x, h〉+ 2t). This implies for

each t ∈ I

D+(ψ′)(t) = D+(ϕ′
x,h)(t) + 2L > −γ + 2L > 0,

and ψ′ is a continuous function on I. As a consequence of the classical Dini theorem

(see [3, Ch. 4, Theorem 1.2]), we get that ψ′ is increasing on I and thus ψ is convex

on I. This verifies the convexity of F on the set U. In a similar way it can be shown

that G is also convex on U. Consequently, the functions ±f−L‖·‖2 are concave. Now

it follows that the functions ±f are semiconcave on U with the linear modulus of

semiconcavity C = L. Finally, the assertion is now a consequence of Lemma 1.1. �

R em a r k 1. We note that due to Theorem 2.1, the recent optimality result

published by the authors (see [1, Theorem 7]) is now just an easy consequence of a

previous result by I.Ginchev, A.Guerraggio and M.Rocca, see [5, Theorem 2].

A c k n ow l e d gm e n t. The authors wish to thank the referees for their valuable

remarks and suggestions which helped to improve the paper.
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