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SOME NEW CLASSES OF GRACEFUL LOBSTERS OBTAINED
FROM DIAMETER FOUR TREES
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Abstract. We observe that a lobster with diameter at least five has a unique path H =
o, x1,...,Tm With the property that besides the adjacencies in H both xg and z,, are
adjacent to the centers of at least one K7 s, where s > 0, and each z;, 1 <i¢<m —1, is
adjacent at most to the centers of some K1 s, where s > 0. This path H is called the central
path of the lobster. We call K1 ; an even branch if s is nonzero even, an odd branch if s
is odd and a pendant branch if s = 0. In the existing literature only some specific classes
of lobsters have been found to have graceful labelings. Lobsters to which we give graceful
labelings in this paper share one common property with the graceful lobsters (in our earlier
works) that each vertex z;, 0 < ¢ < m — 1, is even, the degree of z, may be odd or even.
However, we are able to attach any combination of all three types of branches to a vertex
z;, 1 < i < m, with total number of branches even. Furthermore, in the lobsters here the
vertices x;, 1 <7 < m, on the central path are attached up to six different combinations of
branches, which is at least one more than what we find in graceful lobsters in the earlier
works.

Keywords: graceful labeling, lobster, odd branch, even branch, inverse transformation,
component moving transformation

MSC 2010: 05C78

1. INTRODUCTION

Recall that a graceful labeling of a tree T with ¢ edges is a bijection f: V(T) —
{0,1,2,...,q} such that {|f(v) — f(v)|: {u,v} isanedge of T} = {1,2,...,q}. A
tree which has a graceful labeling is called a graceful tree. A lobster is a tree having
a path from which every vertex has distance at most two. If L is a lobster with
diameter at least five and P is a path of maximum length in L then we obtain the
path H = xg,x1,...,Zy from P by deleting two vertices from both the ends. H is
independent of P, i.e. H is unique, and it is called the central path of L. Throughout
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the paper we use H to denote the central path of a lobster with diameter at least
five. It follows directly from the definition of a lobster that besides the adjacencies
in H each z; is adjacent at most to the centers of some stars K ; where s > 0. For
x; € V(H), if z; is adjacent to the center of K s where s > 0 then we call K; s an
even branch if s is nonzero even, an odd branch if s is odd, and a pendant branch if
s = 0. Furthermore, whenever we say x;, for some 0 < i < m, is attached to an even
number of branches we mean a “non zero” even number of branches unless otherwise
stated.

In 1979, Bermond [1] conjectured that all lobsters are graceful, which is a special
case of the famous and unsolved “graceful tree conjecture” of Ringel and Kotzig
(1964) [11], [12], which states that all trees are graceful. Bermond’s conjecture is
also open and very few classes of lobsters are known to be graceful. Ng [9], Wang et
al. [13], Chen et al. [2], Morgan [8] (see [3]), and Mishra and Panigrahi [5], [6], [7],
[10] have given graceful labeling to some classes of lobsters. In the graceful lobsters
due to Ng [9] and Chen et al. [2], the vertices of the central path are attached to the
isomorphic copies of at most two non isomorphic branches. Morgan [8] has proved
that all lobsters with perfect matching are graceful. The graceful lobsters of this
paper share one common feature with the graceful lobsters in [5], [6], [7], [10], [13]
that the degree of each x;, 0 < i < m — 1, is even and the degree of x,, is odd.
However, the graceful lobsters of this paper possess simultaneously the following
features, which we do not find in the graceful lobsters appearing in the earlier works
mentioned above.

1. The vertices x;, 1 < i < m, on the central path are attached up to six different
combinations of branches, which is at least one more than what we find in graceful
lobsters in the earlier works [5], [6], [7], [10], [13].

2. The central path contains a vertex that may be attached to only one type, any
combination of two types, or any combination of all three types, of branches with
total number of branches even.

3. In this paper we find graceful lobsters with vertices on the central path attached
to combination(s) containing all three types of branches preceded by the vertices
attached to combination(s) containing two types of branches. Only in [10], some
lobsters satisfy this property with some restrictions on the number of odd, even, and
pendant branches. The graceful lobsters appearing in [7], [10], [13] are particular
cases of the graceful lobsters of this paper in which one or more combinations are
absent.

The lobsters of this paper have one of the following properties.

1. The vertex xz( is attached to (e,0,0). For some t1, 0 < t; < m, if 17 > 1
then each x;, 1 < ¢ < t1, is attached to (0,0, 0). For integers to, ts, t4, and t5 with
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1<t <to <tz <ty <ts <m,each x;, t1 +1 < i < to, is attached to (o,e,0) and
we have either (I) or (II) below.

(I) Each ;, t2 + 1 < i < ta, is attached to (e, 0,0) and we have (a) or (b) below.

(a) Each x;, t3 + 1 < i < 14, is attached to (0,0,0), each x;, t4 +1 < i < t5, is
attached to (0,¢e,e), and each of the rest of the x; is attached to (0, e, 0).

(b) Each z;, t3 + 1 < i < 14, is attached to (e, e, e) and we have either (i) or (ii)
below.

(i) Each x;, t5 + 1 < i < t4, is attached to (e, e,0) and each of the rest of the z; is
attached to (e,0,0) (or (0,e,0)).

(ii) Each x;, t4 + 1 < i < t5, is attached to (e,0,¢) ((0,e,e)) and each of the rest
of the z; is attached to (e, 0,0) (respectively, (0,e,0)).

(II) Each z;, to +1 < ¢ < t3, is attached to (0,0,e) and we have one of the
following.

(a) Each z;, t3 + 1 < i < t4, is attached to (0,0,0), each z;, t4 +1 < i < ¢35, is
attached to (e, e,0), and each of the rest of the z; is attached to (e, 0,0) or (0,¢,0).

(b) Same as (I)(b).

2. Lobsters obtained from those in (1) above by putting ¢; = 0.

3. The vertex z( is attached to one of the combinations of (0,0,0), (e,o0,0),
(0,0,€), (0,e,0), (e,0,€), and (e, e,0). For integers t1,t2 with 1 < t; < t2 < m, each
x;, 1 <1 < ty, is attached to (o, 0,0), each z;, t1 + 1 < @ < to, is attached to (e, e,0),
and each of the rest of the z;, if any, is attached to (e, 0,0) or (0,¢,0).

4. The vertex xo is attached to one of the combinations of (0,e,0), (e,e,0), and
(0,0,0). For integers t1,ts with 1 < 1 < t2 < m, each x;, 1 < i < t1, is attached to
(0,0,0), each x;, t1 + 1 < i < 1o, is attached to (0,e,e), and each of the rest of the
x;, if any, is attached to (0, e, 0).

2. PRELIMINARIES

To prove our results we need some definitions, terminology and existing results
which are described below.

Lemma 2.1 [4], [13]. If f is a graceful labeling of a tree T with n edges then the
inverse transformation of f, defined as f,(v) =n — f(v) for all v € V(T), is also a
graceful labeling of T.

Definition 2.2. For an edge e = {u,v} of a tree T, we define u(T) as that
connected component of 7' — e which contains the vertex u. Here we say u(T) is a
component incident on the vertex v. If @ and b are vertices of a tree T, u(T) is a
component incident on @ and the component u(7") does not contain the vertex b, then
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deleting the edge {a,u} from T and making b and u adjacent is called the component
moving transformation. Here we say the component u(7") has been moved from a
to b.

Throughout the paper we write “the component u” instead of writing “the com-
ponent u(T)”. Therefore, whenever we wish to refer to u as a vertex, we write “the
vertex u”. By the label of the component “u(7)” we mean the label of the vertex u.
Moreover, we will not distinguish between a vertex and its label.

Lemma 2.3 [4]. Let f be a graceful labeling of a tree T'; let a and b be two vertices
of T; let w(T) and v(T) be two components incident on a where u(T) U v(T) # b.
Then the following assertions hold:

(i) if f(u) 4+ f(v) = f(a) + f(b) then the tree T* obtained from T by moving the
components u(T) and v(T') from a to b is also graceful.

(ii) if 2f(u) = f(a) + f(b) then the tree T** obtained from T by moving the com-
ponent u(T) from a to b is also graceful.

Lemma 2.4 [4]. Let T be a diameter four tree with q edges. If ay is the center
vertex and the degree of ag is 2k + 1 then there exists a graceful labeling f of T' such
that

(a) f(ap) =0 and the labelings of the neighbours of ag are 1,2,....k,q,qg—1,...,
q—k;

(b) from the sequence S = (¢,1,q—1,2,q—2,3,...,q—k+1,k, g—k) of vertex labels,
the centers of the odd branches get labels consecutively from the beginning, then
the centers of the even branches get labels consecutively and finally the centers

of the pendant branches get labels.

3. RESuULTS

We begin this section with a theorem (Theorem 3.3) which describes a technique
by which one can generate graceful trees from a given graceful tree of a certain type.
Subsequently, we apply this technique to a diameter four tree whose center has odd
degree to construct graceful lobsters. The lemma given below is used in proving
Theorem 3.3.

Lemma 3.1. Let Sy = (t1,t2,...,t2y) be a finite sequence of natural numbers
in which the sums of consecutive terms are alternately | + 1 and [, beginning (and
ending) with the sum [ 4+ 1. For an integer r > 1, let S, = ¢;4.(S.), where S,
is the sequence obtained from S,_1 by deleting any odd number of terms from the
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beginning as well as from the end and ¢;,(S,) = (I +7 — )zecs;. Then the sums of
consecutive terms in the sequence S, are alternately | +r + 1 and [ + r, beginning
(and ending) with the sum | +r + 1.

Proof. We first consider the case when r = 1. Let the sequence S} be obtained
from Sy by deleting 2k + 1 terms from the beginning and 2k; + 1 terms from the
end. For 2k +2 < i < 2p — 2k; — 1 we have

V141 () + @rp1(tipr) =200+ 1) — (L + tig1)
{2(l+1)—(1+1) if (t; +ti) =1+1

2(0+1) -1 if (t; +tig1) =1
{l+1 if (t; +tip1) =1+ 1.

I+2 if(t;+tiy1) =1L

Therefore, the sums of consecutive terms of the sequence S; are [ + 1 and [ + 2
alternately. Moreover, the sum of the first two terms, i.e. ;41 (tor+2) + Vit1(t2k+3),
is I + 2 as topto + togts = [. Since the total number of terms in S; is even the sum
of the last two terms is [ + 2. Thus, the lemma holds if we take » = 1. For r > 1 the
proof follows if we repeat the above procedure r times. O

Construction 3.2. Let T be a graceful tree with ¢ edges. Let ag be a non
pendant vertex of T" with degree 2k + 1. Suppose there exists a graceful labeling
f of T in which ag gets the label 0 and the labels of the neighbours of ay are
1,2,...,k,q,g—1,9g—2,...,q — k (see Figure 1).

)
Figure 1. The tree T with vertex ag and its neighbours. The circles around the neighbouring
vertices of represent the respective components incident on ag.

We consider the sequence A = (¢,1,9—1,2,9—2,3,..., k, g—k) of vertices adjacent
to ao (as we do not distinguish between a vertex and its label). We construct a tree
T (see Figure 2) from T by identifying the vertex yo of a path H' = yo,y1,-..,Ym
with ag and moving the components (incident on the vertex ag) in A to y; in the

following way:
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(1) At yo we retain 2A\g + 1 components, where Ao > 0. In particular, we retain
2pg components, 0 < pg < Ag, whose labels are from the beginning of A, namely
q,1,g—1,2,g—2,3,...,g—po+1,pg, and 2o+ 1 — 2py components whose labels are
from the end of A, namely g—k, k,q—k+1,k—1,....k—Xo+po+1,q—k+ Xo— po-
Then we delete the components from A retained at yg and denote the sequence of
the remaining terms of A by A,

first 2py and last
20— 2po+1
from A

first 2p;+1 and last
2A1 —2])0—1
from A

first 2p;+1 and last
20 —2pg—1
from A®

first 2qlJ1rl and last
20" —2¢{", +1

first 2qlz1 and last
20\, — 24 +1

I+1 Qi
from B, from B;
first ZqZ_Tf2 and last first 2ql +2 and last
n n a® (l)
2al(+)2 2q ( )2"'1 Q) Lo—2q o +1
from B,(lH_Q) from Bgl“)

first 2q7(,}) and last
2a(}) —2q}) +1
from B§m)

first 2q,(q? ) and last
207 —245 +1
from Bflm)

Figure 2. The tree T} obtained from T'. Here we take s1 = so = m

(2) Let I, 1 < 1 < m, be a fixed integer. Fori = 1,2,...,l, we move 2)\; components
from A® to y;, where \; > 1. In particular, we move 2p;+1, 0 < p; < \;, components
whose labels are from the beginning of A®) and 2\; —2p; — 1 components whose labels
are from the end of A®) where, for i > 2, A® is obtained from A~ by deleting
the components Wthh are moved to y;_1.

(3) Let 2po+ Z (2p;+1) = kg and 2(A\g—po) +1+ E (2X\i —2p; — 1) = ko. Here we

notice that if [ is odd (even) then k; is odd (even) and k;g is even (respectlvely, odd).
Let AUtD be the sequence obtained from A®) by deleting the components which are
moved to y;. Then one finds that AU = (J(k; — 1)+ 1, — 2(ky — 1) — 1,...,
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k— %ko,q—k+ ko) if lis odd and AUHY = (¢ — Lky, 3ke,...,q—k+ 3(ka — 1) +
2,k — 3(ko — 1) — 1) if [ is even.

(4) For any n € N, if possible, partition AU*+1) into n parts, say AUTD = By U
BsU...UB,, where |B;| = 2r; (say), in such a way that the first 2r; terms of AU+D
are in By, the next 2ry terms of AUt are in B, and so on.

Now the components in B;, 1 < j < n, are distributed to the vertices y;, { +1 <
i<sj,l+1<s;<m,of H in tl(le) following way:

J

)

components from Bj(-i) to y;, where o >1.In

i

For I +1 < i < s;, we move 2«
particular, we move 2q§j )+ 1,0< qéj ) < an ), components whose labels are from the
beginning of B§i), Ej ) 2qu )1 components whose labels are from the end
of Bj(-i), where for i > 1+ 2 (if s; > [ + 2), B](»i) is obtained from Bj(-ifl) by deleting
the components which are moved to y;_1 and BJ(-H_D = B;.

@)

and 2«

The positive integers «;”’, i =1+ 1,1+ 2,...,s;, are chosen in such a way that
Sj . n
> ozgj) =rj. Therefore, 2k +1 =k +ka +2 > rj. O
i=l+1 j=1

In the following theorem, for a graceful tree R with n edges and a graceful labeling
g of R we use the notation “g(R)” to denote the tree R with the graceful labeling g.
Also, for any sequence F = (ai,as,...,a,), go(F) is the sequence (n — a;,n —
ag,...,n — a).

Theorem 3.3. The tree Ty in Construction 3.2 is graceful.

Proof. Recall that we denote an edge with end points = and y by {z,y}. We
first consider the tree T'U {yo, y1}, where the vertices ag and yo are identified. We
give the label ¢ + 1 to y;. Clearly T'U {yo,y1} is graceful with the graceful labeling
fO where f() is the same as f on T and gives the label ¢+ 1 to y;. Then we move
all the components in A to 3; and let the resulting tree be T, One can notice
that A®) can be partitioned into pairs of labels whose sum is ¢ + 1 (consecutive
terms). By Lemma 2.3(i), T} is a graceful tree with the graceful labeling f(1).

Next, we consider the inverse transformation féi)l of fM) of T, By Lemma 2.1,
fé_li_)l is a graceful labeling of ") and the label of y; in féi)l (T™M) is 0. Next, we make
1o adjacent to y; and give the label ¢+ 2 to y. Obviously, the tree T} U {y1,92} is
graceful with the graceful labeling f(?), where f(?) is the same as fé}r)l on TM and
gives the label ¢ + 2 to y2. We move all the components in féi)l (A®) from y; to
y2 and let the resulting tree be T(2). Observe that the sums of consecutive terms in
AWM are alternately ¢ + 1 and ¢ beginning and ending with ¢ 4+ 1 so by Lemma 3.1
the sums of consecutive terms in féi)l (A®) are alternately ¢+ 2 and ¢+ 1 beginning
and ending with the sum g+ 2, i.e. féi)l (A(Q)) can be partitioned into pairs of labels
whose sum is g + 2. Therefore, by Lemma 2.3(i), T? is graceful.
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Repeating the above procedure for [ + 1 times we find that the tree 70+t1) with
the vertex set V(T) U {yo,y1,---,41,Yi+1}, is graceful with the graceful labeling
fU+D in which the vertex ;41 gets the label ¢ + 1 + 1 and the components of

f;?zf(izl)1 f(l) (A AU+D ) are incident on z;41. By Lemma 3.1, we find that the

sums of consecutive terms in fé?lféi_li)l . ..fé}r)l (AD)Y) are ¢ + 1+ 1 and g + 1

beginning and ending with the sum ¢4+ 1. Since B; contains the first 2r; terms of
S and for 2 < j < n, B; contains the first 2r; terms of SU+1) \B1UByU...UB,_q,

the sums of consecutive terms in f(l) f(l+zl)1 . féi)l (B(Hl)) 1<j<n,areq+1+1

and ¢q + [ beginning and ending with the sum ¢ + [ + 1.

Next, we take the inverse transformation f(}ji of fU+1) of TU+D) | By Lemma 2.1,

f;fﬁgl is a graceful labeling of T4V and the label of 3,1 in f;:;i)l( +1) is 0.

Next, we make y;42 adjacent to y;1 and give the label ¢ + 1+ 2 to y;42. Obviously,
T U {yi1,yi2} is graceful with the graceful labeling f(+2), where f(+2) is the

i:?}rl on T¢+1) and gives the label ¢ + 1 + 2 to y 2.

For those j with s; > [+ 2, 1 < j < n, we move all the components in

f;i_t_l‘_)lf(l) féi_ll)l f;}r)l(B(HQ)) from y;11 to y42 and let the resulting tree be

TU+2) By Lemma 3.1, the sums of consecutive terms in f(ﬁ}rlf(irlf(ﬂrll)l .. féi)l

(Bj(-l+2)) are alternately ¢ + 1+ 2 and ¢ + [ + 1 beginning and ending with ¢ + [ + 2.
One sees that each féf:;i)l fé?lféi_li)l f(l) (B(l+2)) can be partitioned into pairs of
labels whose sum is ¢ + [ + 2. By Lemma 2.3(i), T7(*2) is graceful.

Let s* = max{si, s2,...5,}. Repeating the above procedure s* — 1 — 1 times we

same as f (

get the graceful tree 77 with vertex set V(T)U{y1,...,ys } in which the vertex
ys+ gets the label ¢ + s*. If s* = m then we stop, otherwise we proceed as follows.
We apply inverse transformation to the graceful tree T(5") so that the vertex yq-
gets the label 0. Then make the vertex y.«y1 adjacent to ys» and give the label
g+ s*+1to yscp1. If s* +1 = m then we stop, otherwise we repeat this procedure
until the vertex y,, gets a label. The graceful tree that is obtained on the vertex set
V(T)UV(H') is easily seen to be the tree T7. O

In the following theorem we demonstrate how we give graceful labeling to certain
classes of lobsters by applying Theorem 3.3 to a graceful diameter four tree.

Theorem 3.4. The lobsters in Tables 3.1 and 3.2 below are graceful.

Description of Tables. In the column headings, the triple (z,y, z) repre-
sents the number of odd, even and pendant branches, respectively, where e means
any even number of branches (nonzero, unless otherwise stated), o means any odd
number of branches and 0 means no branch. For example, (e,0,0) means an even
number of odd branches, no even branch and an odd number of pendant branches. If
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in a triple e or o appear more than once then it does not mean that the corresponding
branches are equal in number. For example, (e, e,0) does not mean that the number
of odd branches is equal to the number of even branches.

Lob-| (e,0,0) | (0,0,0) | (o,e,0) |(e,0,0) |(0,0,0) |(0,0,0) |(e,e,0) ((3,0,0)1 (0,0,€)

sters or

! (0,¢,0)?

a 0 1—ty, |[t1+1— [to+1— —  |t3+1— — |tFT+1— —
t < ta, to < | t3, t*, m(2), if
m—2 m—1 ta<m t*<m t"<m

b 0 1—ty, |[t1+1—[te+l—| — —  |t3+1= [ +1— —
t1 < to, ta < | t3, v, m, if
m—2 m—1 ta<m t'<m t'<m

¢ 0 1—t1, |[t1+1— |ta+1— — — — tz3+1— |t3+1—
t1 < to, ta < |t3, m(1) s, s<m
m—2 m—1 ta<m

d |o 1—t, |[t1+1—[ta+l—]| — — — |[{+1- —
t1 < ta, t, m if
m—1 to<m |[t'<m t'<m

e 0 1—t1, [t1+1— —  |te+1— — — [t+1= [ta+1—
t1 < to, v, m, if s, s<m
m—1 to <m t'<m t'<m

f 0 1—t1, |[t1+1—| — — —  |tar1- [ +1> —
t1 < ta, t, m if
m—1 to<m t'<m |t'<m

g 0 1—t1, |[t1+1— — — — — to+1— [to+1—
t1 < to, m s, s<m
m—1 to <m

h 0 1—=t, |ti+1— — to+1— — — t'+1— —
t1 < ta, ', m, if
m—1 to <m t'<m t'<m

i 0 1—t, |[t1+1—] — —  |to+1—=| — |+1— —
t1 < ta, t, m (2) if
m—1 to<m t'<m t'<m

j 0 1—t, t+1— — — — — U+1— —
t<m—1|t, m if

t'<m t'<m
Table 3.1

1st column: 0 means that xg is attached to any one of the mentioned combinations
of branches. The notation 0(r), r = 1,2 (or r = 1,2,3,4,5,6,7), means that xg is
attached to the combination of branches mentioned in the column heading in which
r is the superscript.

Other columns: ¢ — j (or ¢ — j(r), r = 1,2) means that each z;, i <1 < j, is
attached to the mentioned combination or any one of the combinations of branches
(respectively, the branches mentioned in the triple with superscript r).

Further, when some vertex x; on the central path is attached to two combinations
(z,9,0) and (0,0, e), we mean that z; is attached to the combination (x,y,e). For
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example, in Table 3.1(c), x4, +1 is attached to the combinations (e, 0,0) and (0,0, e),
which means that z,41 is attached to the combination (e, 0, e).

Lob-] (e,0,0)! or (e,0,€)% or |(0,0,0)! or [(e,e,0) (e,0,0) or [(0,0,¢)

sters| (0, o, 0)3 or (0,0, 6)4 or | (0,0, o)2 (0, e, 0)2

l (e,e,o)5 or (O,e,o)6 or
(0,0,0)" or (e,0,0)8

a 0 (any one of the 1—1(1), t+1—t, t'+1—m if —
combinations from 1 t<m tlgm t'<m
to 6)

b 0 (any one of the 1—1t(2), — t+1—-m(2) [t+1—s,
combinations from 5 t<m s<m
to 8)

Table 3.2

Proof. For every lobster L we first construct a diameter four tree, say T'(L), by
successively merging the vertices x;, 1 = 1,2,...,m of H with xq. It is clear that xzq
is the center of T'(L) and its degree is odd. Let |E(T(L))| = q and deg(xo) = 2k + 1.
We give the label 0 to xg. We consider the sequence A in Construction 3.2. We use
the notation I, n, ky, kz, A® i >1, and Bj, j=1,2,...,n, of Construction 3.2 and
determine them for each lobster of this theorem.

Let L be a lobster of type (a) in Table 3.1. We follow the steps given below.

1. For ¢ = 0,1,...,t1, the centers of the odd (pendant) branches incident on z;
in L get labels consecutively from the beginning (end) of the sequence A where
A® = A. We take k; (ko) as the sum total of the number of odd (respectively,
pendant) branches incident on x;, 0 < i < ;.

2. (i) Take I = t1, n = 2 and determine By and By. For i = t; + 1,...,ta, let
the number of odd branches incident on x; be 2\; + 1, where A; > 0. The centers of
these branches will get labels from B;. For i =t; +1,..., 2, let the number of even
branches incident on z; be 2a;, a; > 0, among which the centers of 23; + 1 branches
for arbitrary integers 3;, 0 < ; < «;, will get labels from Bj, and the centers of the

to to
rest of these branches will get labels from Bs. Let Y, (2\;+1)+ > (26;+1) =
i=t1+1 i=t1+1

2p1.

(ii) Let the number of odd branches incident on x;, i = to+1,...,t3, be 2A;, A; > 1.

t3
The centers of these branches get labels from the sequence By. Let > 2\; = 2po.
i=to+1

Let |Bl| = 27“1 = 2(p1 —|—p2)

3. We give labelings to the centers of the branches incident on z;, t; + 1 < i < m,
in the following manner.

(i) For i = t;+1,...,t2, the centers of 2);+1 odd branches incident on z; get labels
consecutively from the beginning of BY)
on z; get 23; + 1 labels consecutively from the end of BY) and 2a; — 203; — 1 labels

, the centers of 2a; even branches incident
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consecutively from the beginning of B , and the centers of the pendant branches
incident on z; get labels consecutively from the end of B(z)

(ii) For ¢ = ta + 1,...,t3, among the odd branches incident on z;, the centers of
any odd number of branches get labels consecutively from the beginning of B%i) and
the centers of the rest of these branches get labels consecutively from the end of Bgi).

(iii) For ¢ = t3 + 1,...,t*, the centers of the even (pendant) branches incident on
x; get labels consecutively from the beginning (respectively, end) of Béi).

If t* < m we do the following additional step.

(iv) For i = t* + 1,...,m, among the even branches incident on z;, the centers
of any odd number of branches get labels consecutively from the beginning of Béi)
and the centers of the rest of these branches get labels consecutively from the end of
B,

Here we notice that the above labeling of the centers of the branches incident on
the center xg of T(L) follows Lemma 2.4. Therefore, by Lemma 2.4 there exists a
graceful labeling of T'(L) with the above labels of the center zy and the centers of the
branches incident on zq (i.e. we give labeling to the remaining vertices of T'(L) using
the techniques of [4]). Finally, we apply Theorem 3.3 for n = 2 to T (L) and the path
H = x9,21,...,%m, S0 as to get a graceful labeling of L (see example below). This
approach will be the same for all the remaining cases of this theorem and hence we
will just indicate the modifications we do in steps 1 to 3.

Example 1. Consider the lobster L presented in Figure 3 which is of the type
(a) in Table 3.1. We construct the diameter four tree T'(L) shown in Figure 4.
|[E(T(L))| = ¢ = 73 and k = 13. Therefore, A = (73,1,72,2,...,61,13,60). Here

SERARAC TN 7

Figure 3. A lobster L of type (a) in Table 3.1. Here m =4, t; = 1, t3 = 2 and t* = 3.

m=>5,t =1,ty =2, t3 =3, t* =4, ky = 3, ky = 4. Therefore, A1+ =
AR = (2,71,3,...,61,11,62). Here \y =0, A3 = 1, ap = 1, B2 = 0, s0 | By| = 4,
ie. By = (2,71,3,70) and B2 = (4,69,5...,61,11,62). We give the label 0 to the
vertex xo and give labelings to the centers of the branches incident on xg as per the
steps 1 and 3. Using the techniques of [4] (Theorem 1 of [4]) we obtain a graceful
labeling of T(L) given in Figure 4. Then in Figure 5 we make z; adjacent to g, give
the label 74 to x; and move all the components in AM to z,. The tree in Figure
6 is obtained by applying inverse transformation to the lobster found in Figure 5,
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making zs adjacent to x1, giving the label 75 to x5 and moving all the components
in f;i)(A(Q)) to x2. Then we proceed as per the technique described in Theorem 3.3
and get a graceful labeling of L. Figure 8 represents L with a graceful labeling.

53 21 52 22 37

20 36
51
54 N 3
3
4

32 28
43
31 44 30 41 29

Figure 4. The diameter four tree T'(L) corresponding to L with a graceful labeling.

21 52 22
20 53 37

36
51
4 23
38
35
50
24
34
49
— 25
67 48
\\Qi::::‘ 26

43 45
31 44 30 41 29

Figure 5. The graceful lobster with the graceful labeling f (1) obtained by making z; ad-
jacent to xq, giving the label 74 to x1, and moving all the branches in AM
to x1.
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23738 23 51 36 39

24
V 50

3242 g1 433044

Figure 6. The graceful lobster with the graceful labeling f 2) obtained by applying inverse

transformation to the lobster in Figure 5, making x2 adjacent to x1, giving the
label 75 to x2, and moving all the components in féi) (A(Q)) to xa.

2253 24 39
2154 3651

57
18
58
17
59
16
60

433344324531

Figure 7. The graceful lobster with the graceful labeling f () obtained by applying inverse
transformation to the lobster in Figure 6, making x3 adjacent to x2, giving the

label 76 to x3, and moving all the components in f%)j}(i)(A@)) to x3.

56
17 74 3¢ 20 5 4972
60 2 75|20 171 TN T2 0\/T3

AN L ahERN
13 871
16 15 62 14 63

51 -
61 5
39 24 25 40 37

Figure 8. The graceful lobster with the graceful labeling f ) obtained by applying inverse
transformation to the lobster in Figure 7, making x4 adjacent to x3, giving the

label 77 to x4, and moving all the components in f%)j}(?féi)(flw)) to xy4.
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19 20,24 _ 57 55 517 50 35

18 59y 58 39 %" 21 22 23 20 4%
60 74 56 54 9 28 9 31,
3 N 73% 5 36 49 69 30
- 75 2]Zo 76| T1 L2 Z3 0]T4 78476 ® 68)/ 32
1 77 3 T
] T B £
6 12 gpll 45 46

15 14 64 41 o5
16 44 34
38 26 5 37 40

w

Figure 9. The lobster L with a graceful labeling.

For lobsters of type (z), z =b,...,j, in Table 3.1, the proof follows if we proceed
as in the proof involving the lobsters of type (a) in Table 3.1 by modifying steps 1, 2
and 3. For lobsters of type (b) we first define an integer p as p = m if either ¢’ =m
or t' < m with each x;, s =t' +1,...,m, being attached to an even number of odd
branches and p = t/ if ¢ < m with each z;, i = t' + 1,...,m, being attached to an
even number of even branches; and this definition of p will hold henceforth in the
text. Next, we set t3 = p, t* = t3 and m = m+t'—p in steps 1, 2, and 3. For lobsters
of type (c), we set t3 = m, t* = t3 and m = s in steps 1, 2 and 3, and replace even
branches by pendant branches in step 3(iv). For lobsters of type (d), we set t3 = p
and t* = ¢’ in steps 1, 2, 3(i), 3(ii), and 3(iii), and furthermore, if p = ¢’ then we set
t* =t in step 3(iv).

For lobsters L of type (e), we repeat steps 1 and 2(i), set t3 = m, and replace the
number of odd branches by the sum total of the number of odd and even branches in
step 2(ii), repeat step 3(i), and modify steps 3(ii) to 3(iv) in the following manner.

3(ii) For ¢ = t2 +1,...,t, the centers of the odd (even) branches incident on z;
get labels consecutively from the beginning (respectively, end) of Bgi).

3(iii) Set t* = t3 and m = s, and replace B; by B and even branches by pendant
branches in step 3(iv).

If t < m then we do the following additional step.

3(iv) For i = ¢/ +1,...,m, among the odd (or even) branches incident on z;,
the centers of any odd number of these branches get labels consecutively from the
beginning of BY) and the centers of the rest of these branches get labels consecutively
from the end of By).

For lobsters L of type (f), we repeat steps 1 and 2(i), set t3 = p in step 2(ii),
repeat step 3(i), set t3 = p in step 3(ii), and set t* = ¢ and m = m + ' — p in step
3(iv). For lobsters L of type (g), we repeat steps 1 and 2(i), set t3 = m and replace
odd branches by odd (or even) branches in step 2(ii), repeat step 3(i), set t3 = m
and replace odd branches by odd (or even) branches in step 3(ii), and set t* = t5 and
m = s and replace even branches with pendant branches in step 3(iv). For lobsters
L of type (h), we repeat steps 1, 2, and 3 excluding step 3(iii) in the proof involving
the lobsters of type (e). For lobsters L of type (i), we repeat steps 1 and 2(i) and let
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|B1| = 2r1 = 2p1, repeat step 3(i), set t3 = to and t* = t’ in step 3(iii). Furthermore,
if # < m then we set t* = ¢’ in step 3(iv). For lobsters L of type (j), we set t; = ¢
and t2 = t' in steps 1 and 2(i). If ¢ < m then we set to = t' and t3 = m and replace
odd branches with odd (or even) branches in step 2(ii). Here |B1| = 2r1 = 2p; if
t' = m and 2p; +2ps if ' < m. Set t; =t and to =t/ in step 3(i). Furthermore, if
t' < m then we set to =t and t3 = m and replace odd branches with odd (or even)
branches in step 3(ii).

For lobsters L of type (a) in Table 3.2, the proof follows if we proceed as in the
proof involving the lobsters of type (a) in Table 3.1 with the changes in steps 1 to 3
as per the following.

1. The centers of odd (pendant branches followed by even branches) incident on
xo get labels from the beginning (respectively, end) of A. For i = 1,2,...,t, the
centers of the odd (even) branches incident on x; get labels consecutively from the
beginning (respectively, end) of the sequence A®). We take k; (ko) as the sum total
of the number of odd (respectively, sum total of even and pendant) branches incident
onx;, 0<e <t

2. Take n = 2 and | = t and determine B; and Bs. Take |By| = 2r; as the total
number of odd branches incident on the vertices z;, i =t+ 1,t +2,...,p.

3. Omit step 3(i). Set t; =t and t3 = p in step 3(ii). Omit step 3(iii). Set t* =t
and m = m +t' — p in step 3(iv).

For lobsters L of type (b) in Table 3.2, the proof follows if we proceed as in the
proof involving the lobsters of type (a) in Table 3.1 with the changes in steps 1 to 3
as per the following.

1. The centers of odd branches followed by even branches (pendant branches)
incident on x, get labels from the beginning (end) of A. For ¢ = 1,2,...,t, the
centers of the even (pendant) branches incident on x; get labels consecutively from
the beginning (end) of the sequence A). We take k; (ko) as the sum of the total
number of odd and even branches (respectively, number of pendent) branches incident
onx;, 0<e <t

2. Take n =2 and | = t and determine By and By. Take |B;| = 2r; as the sum
total of number of even branches incident on the vertices x;, i =t + 1,t +2,...,m.

3. Omit step 3(i). Set ¢t; = t and t2 = m and replace odd branches with even
branches in step 3(ii). Omit step 3(iii). Set t* = ¢ and m = s and replace even
branches by pendant branches in step 3(iv). O

Next, we show that for the case n = 2 in Construction 3.2 by distributing the
branches in Bj, j = 1,2, to the vertices y;,0 < ¢ < m of H' in a slightly different
manner we get a graceful tree T» (may be different from 73). By applying this result
to diameter four trees we obtain some more graceful lobsters.
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Construction 3.5. Let the tree T, the path H’, the graceful labeling f (of T')
and the sequence A be the same as in Construction 3.2 (see Figure 1). We construct
a tree Ty (see Figure 10) from T by identifying the vertex yo of H' with ag and
distributing the components (incident on the vertex ag) in A to y;, ¢ =0,1,2,...,m,
in the following manner.

(1) The components in A are distributed to the vertices yo,y1, ...,y in the same
manner as described in Construction 3.2. The integers k1 and ko are defined as in
Construction 3.2.

(2) We take n = 2 in Construction 3.2, i.e. we partition the sequence AUHD into
two parts: AUt = B, U B,. Let {l1, la} = {1,2}. For I +1 <i < s;;, we move

2a§lj) components from Bl(ji) to y;, where aglj) > 1.

The components in Bj, are distributed to the vertices yi+1,y142,...,Ys, , in the
same manner as described in Construction 3.2. The components in B;, are dis-
tributed to the vertices yi+1, yi+2,. .., Ys,, in the following way:

(i) For some integer s', [ +1 < s’ < s;,, the components of By, are distributed to
yi, | +1 < i < ¢, in the same manner as described in Construction 3.2.

(ii) For ¢ = s’ + 1,...,s;,, the components of B;, are distributed to y; in the
following manner. Suppose |Bl(;/+1)| = 2ks. We first partition Bl(:/'H) as Bl(;/‘H) =
C1 U Cy, where for some integer k4, 1 < kg4 < k3, C7 consists of 2k4 terms from
the beginning of Bl(jurl) and Cy = Bl(:’+1) \ Cy. Let sl(j) and 51(22) be integers,
where sl(j),sg) > s’ +1 and max(sl(;),sg)) =s,. Forl!=1,2and i=3s"+1,...,
sl(i/), we move Zﬁfll), Bi(l/) > 1, components from Cy to y;. In particular, we move

2%(1’) + 1 components for arbitrary integers 'y(l/), 0 < 'Yi(l/) < fBr, whose labels

7’ ’ ’
appear consecutively from the beginning of C’l(,z) and Zﬁi(l ) 2%([ )1 components
whose labels appear consecutively from the end of C’l(f), where Cl(,s ) Cy and
fori > s’ + 2, " is obtained from C’l(,%l) by deleting the components which are

retained at y;_1. The numbers ﬂi(l,), 1=s54+1,..., sg), I’ =1, 2, are chosen in such
a way that
5D 52
S8 =k and > B = ks ka.
i=s'+1 i=s'+1
The numbers agll), i=1+4+1,...,s,, and agb), 1=1+1,...,5,7=1,2, are chosen

in such a way that

Sty s’
l l
g al(.l) =1, and g al(.z) =1y, — k3.
i=l+1 i=l+1
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parts are By, C1, G2 (or C1, Co, By,) if s, > s’ (n = 2, i.e. the parts are C{i) and
iV if s, < 8. 0

Theorem 3.7. The lobsters in Table 3.3 below are graceful.

Lob-|(e,0,0) |(0,0,0) |(0,e,0) |(e,0,0) |(0,0,0) |(0,0,0) |(e,e,0) (6,0,0)1 (0,0,€)

sters or

! (0,¢,0)?

a 0 1—ty, |t1+1— |to+1— — ts+1— — ta+1l— |tg+1—
t1 < to, toa < |t3, t3< tq, m(2) s,s<m
m—3 m—2 m—1 ta<m

b 0 1—t1, [t14+1—[to+1— — —  |tg+1—=[t/+1— [tz+1—
t1 < ta, ta < |t3, tt'<m|m,if |s,s<m
m—2 m—1 ta3<m t'<m

(¢ 0 1—t1, |t1+1— |[ta+1— — — — t3+1— |t3+1—
t1 < to, ta < |t3, m (2) s, s<m
m—2 m—1 ta<m

d 0 1—t1, |t1+1— — — to+1— — t3+1— [t3+1—
t1 < to, to < t3, m (2) s, s<m
m—2 m—1 ta3<m

e 0 1—t1, |t1+1— — to+1— — ts+1— t'+1— [ta+1—
t1 < ta, ta < t3, t, m, if |s, s<m
m—2 m—1 ta<m t'<m t'<m

f 0 1—ty, |[t1+1— —  |tatl— —  |tz3+1—= [ +1— —
t1 < ta, to < ts, v, m, if
m—2 m—1 to<m t'<m t'<m

g 0 1—ty,;|t1+1— — — — to+l— [t/ +1— |[to+1—
t1 < ta, v, m if s, s<m
m—1 to <m t'<m t'<m

Table 3.3

Description of Table 3.3. Same as Table 3.1.

Proof. Asin the proof of Theorem 3.4, for every lobster L of this theorem we
first construct the diameter four tree T'(L). Let |E(T(L))| = q and deg(zg) = 2k + 1.
We give the label 0 to the center xy. Here we use the notation A, I, k1, ks, k3, k4, 1,
ly, AD i >1, Bj,j=1,2,and Cj, j = 1,2, 51, sl(j), and 51(12) of Construction 3.5
and determine them for each lobster of this theorem.

Let L be a lobster of type (a) in Table 3.3. We proceed as per the steps given
below.

Set t* = t4 and repeat steps 1, 2, 3(i), 3(ii), and 3(iii) in the proof involving the
lobsters of type (a) in Table 3.1. Set I; = 1, lo = 2, and s;, = 51 = t3.

4. Set 51(21) = 5(21) = m and 51(22) = 5(22) = 5. Take s’ = t4; hence k3 is determined,
ie. 2k3 = |Bl(j/+1)| = |B§t4+1)|. Next, we determine k4 and hence C; and Cb.
The terms of C; (C2) will be the labels given to the centers of the even (pendant)
branches incident on each x;, i = ¢4 + 1,t4 +2,...,m (i = t4 + 1,44 + 2,...,5),
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i.e. |C1] (|C2]) is the sum of the number of even (pendant) branches incident on x;,
t=ts+ 1ty +2,...,m (vespectively, i = t4 + 1,84 +2,...,5).

5.Fori=1ty+1,t4+2,....m (i =t4+1,t4+2,. ) among the even (pendant)
branches incident on x;, the centers of any odd number of branches get labels con-
secutively from the beginning of C{i) (Cz(i) ) and the centers of rest of these branches
get labels consecutively from the end of C’{i) (respectively, C’éi)).

Here we notice that the above labeling of the centers of the branches incident on
the center xy of T'(L) follows Lemma 2.4. Therefore, by Lemma 2.4 there exists a
graceful labeling of T'(L) with the above labels of the center xy and the centers of
the branches incident on zg (i.e. we can give labeling to the remaining vertices of
T(L) using the techniques of [4]). Finally, we apply Theorem 3.3 for n = 2 to T'(L)
and the path H = xg,x1,...,Tm, so as to get a graceful labeling of L (see example
below). This approach will be the same for all the remaining cases of this theorem
and hence we will just indicate the modification we do in steps 1 to 5. O

Example 2. Consider the lobster L presented in Figure 11 which is of the type
(a) in Table 3.3. We construct the diameter four tree T'(L) shown in Figure 12.
|[E(T(L))| = ¢ = 83 and k = 14. Therefore, A = (83,1,87,2,81,3,...,13,70,14,69).
Herem:6,t1:1,t2:2,t3:3,t4:4,s:5,l:t1:1,k1:3,k2:2.
Therefore, A1+D) = A = (2,81,3,80,...,12,71,13,70). Here Ay = 0, oy = 1,
B1=0,2p1 = 2+ 1)+(260+1) =2, A3 =1, 2ps = 2X3 = 2. So |By| =
2(p1 +p2) =4, By = (2,81,3,80) and By = (4,79,5,...,12,71,13,70). Here [; =1,
lo=2,8=ty=4,5s, =51 =13=3, s(l) sél):m:G, andsl(f)—s(;) s = 5.
|B(5 +1)| = |B§5 | = 2k3 = 8. |Ci| = 2k4 = 4 is the sum of the number of even
branches incident on z;, i = 5,6; and |Cy| = 2(k3 — k4) = 4 is the number of pendant
branches incident on x5. We give the label 0 to the vertex xy and give labelings to
the centers of the branches incident on xg as per steps 1 to 5. Using the techniques
of [4] (Theorem 1 of [4]) we obtain a graceful labeling of T'(L) given in Figure 12.
Then we proceed as per the technique described in Theorem 3.6 and get a graceful
labeling of L. Figure 13 represents the lobster L with a graceful labeling.

NN QZ N\
Figure 11. A lobster L of type (a) in Table 3.1. Here m =6, t1 =1, ta = 2, t3 = 3, t4 = 4,
s=25.
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264327
594108 57 40

Figure 12. The diameter four tree T'(L) corresponding to L with a graceful labeling.

19 33
56 41 48 55

68
642063

': 26 15 54
67 47 77 79 34 40

3\ 86 76 59 0]/
18 - 53

// 0 6 73 1:3 78 336 /I\
37 36 35

7117 72 51 38 52

60, 59 .
43 30 46 50 49 39

Figure 13. The lobster L with a graceful labeling.

For lobsters of type (z), = b, ¢, d, e, in Table 3.3, the proof follows if we proceed
as in the proof involving the lobsters of type (a) in Table 3.36 by modifying steps 1
to 5.

For lobsters of type (b) we do the following.

1. Repeat steps 1, 2, 3(i), 3(ii), and 3(iii) in the proof involving the lobsters of
type (b) in Table 3.1.

2. Set t4 =t3 and m = m +t — p in steps 4 and 5, where p is an integer defined
as in the proof for the lobsters of type (b) in Table 3.1.

For lobsters of type (c), we repeat steps 1, 2, and 3(i), (ii) and set t4 = 3 in steps
3(iii), 4, and 5. For lobsters of type (d), we repeat steps 1, 2, 3(i), omit step 3(ii),
set t4 = t3 in step 3(iii), and set t4 = t3 in steps 4 and 5.

For lobsters L of type (e) and (f) we do the following.

Steps 1-3: If L is of type (e) (respectively, (f)), then set ¢ = t3 and repeat
steps 1, 2, 3(i), 3(ii), and 3(iii) (steps 1, 2, 3(i), and 3(ii)) in the proof involving the
lobsters of type (e) in Table 3.1. Set I; =2, Iy =1, and s;, = s2 = s.
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Steps 4-5: Set 51(21) = s(ll) =p and 51(2) = 552) =m+1t —p. Set tg =t3, m=p,

2
and s = m+t' — p, and replace even branches by odd branches and pendant branches

by even branches in steps 4 and 5 in the proof for the lobsters of type (a).

For lobsters L of type (g), the proof follows if we set ¢’ = 5 in steps 1, 2, 3(i),
and 3(iii); and set t3 = t2 in steps 4 and 5 in the proof for the lobsters of type (e) in
Table 3.3.

Remark 3.8. With some changes in steps 1 to 5, one can show that the lobsters
obtained from the lobsters in Theorems 3.4 and 3.7 by eliminating one or more
combinations of branches incident on the central path, are also graceful.

Remark 3.9. In all the lobsters to which we give graceful labelings in this paper,
the vertex x,, gets the largest label and z,,_1 gets the label 0. Therefore we get some
more graceful lobsters by attaching a caterpillar to the vertex x,, or by attaching
a suitable caterpillar (any number of pendant branches or an odd (or even) branch
or the combination of both) to the vertex x,,—1 in any of the lobsters discussed in
Theorem 3.4 and 3.7.
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