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FROM DIAMETER FOUR TREES
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Abstract. We observe that a lobster with diameter at least five has a unique path H =
x0, x1, . . . , xm with the property that besides the adjacencies in H both x0 and xm are
adjacent to the centers of at least one K1,s, where s > 0, and each xi, 1 6 i 6 m − 1, is
adjacent at most to the centers of some K1,s, where s > 0. This path H is called the central
path of the lobster. We call K1,s an even branch if s is nonzero even, an odd branch if s

is odd and a pendant branch if s = 0. In the existing literature only some specific classes
of lobsters have been found to have graceful labelings. Lobsters to which we give graceful
labelings in this paper share one common property with the graceful lobsters (in our earlier
works) that each vertex xi, 0 6 i 6 m − 1, is even, the degree of xm may be odd or even.
However, we are able to attach any combination of all three types of branches to a vertex
xi, 1 6 i 6 m, with total number of branches even. Furthermore, in the lobsters here the
vertices xi, 1 6 i 6 m, on the central path are attached up to six different combinations of
branches, which is at least one more than what we find in graceful lobsters in the earlier
works.

Keywords: graceful labeling, lobster, odd branch, even branch, inverse transformation,
component moving transformation

MSC 2010 : 05C78

1. Introduction

Recall that a graceful labeling of a tree T with q edges is a bijection f : V (T ) →

{0, 1, 2, . . . , q} such that {|f(u) − f(v)| : {u, v} is an edge of T } = {1, 2, . . . , q}. A

tree which has a graceful labeling is called a graceful tree. A lobster is a tree having

a path from which every vertex has distance at most two. If L is a lobster with

diameter at least five and P is a path of maximum length in L then we obtain the

path H = x0, x1, . . . , xm from P by deleting two vertices from both the ends. H is

independent of P , i.e. H is unique, and it is called the central path of L. Throughout
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the paper we use H to denote the central path of a lobster with diameter at least

five. It follows directly from the definition of a lobster that besides the adjacencies

in H each xi is adjacent at most to the centers of some stars K1,s where s > 0. For

xi ∈ V (H), if xi is adjacent to the center of K1,s where s > 0 then we call K1,s an

even branch if s is nonzero even, an odd branch if s is odd, and a pendant branch if

s = 0. Furthermore, whenever we say xi, for some 0 6 i 6 m, is attached to an even

number of branches we mean a “non zero” even number of branches unless otherwise

stated.

In 1979, Bermond [1] conjectured that all lobsters are graceful, which is a special

case of the famous and unsolved “graceful tree conjecture” of Ringel and Kotzig

(1964) [11], [12], which states that all trees are graceful. Bermond’s conjecture is

also open and very few classes of lobsters are known to be graceful. Ng [9], Wang et

al. [13], Chen et al. [2], Morgan [8] (see [3]), and Mishra and Panigrahi [5], [6], [7],

[10] have given graceful labeling to some classes of lobsters. In the graceful lobsters

due to Ng [9] and Chen et al. [2], the vertices of the central path are attached to the

isomorphic copies of at most two non isomorphic branches. Morgan [8] has proved

that all lobsters with perfect matching are graceful. The graceful lobsters of this

paper share one common feature with the graceful lobsters in [5], [6], [7], [10], [13]

that the degree of each xi, 0 6 i 6 m − 1, is even and the degree of xm is odd.

However, the graceful lobsters of this paper possess simultaneously the following

features, which we do not find in the graceful lobsters appearing in the earlier works

mentioned above.

1. The vertices xi, 1 6 i 6 m, on the central path are attached up to six different

combinations of branches, which is at least one more than what we find in graceful

lobsters in the earlier works [5], [6], [7], [10], [13].

2. The central path contains a vertex that may be attached to only one type, any

combination of two types, or any combination of all three types, of branches with

total number of branches even.

3. In this paper we find graceful lobsters with vertices on the central path attached

to combination(s) containing all three types of branches preceded by the vertices

attached to combination(s) containing two types of branches. Only in [10], some

lobsters satisfy this property with some restrictions on the number of odd, even, and

pendant branches. The graceful lobsters appearing in [7], [10], [13] are particular

cases of the graceful lobsters of this paper in which one or more combinations are

absent.

The lobsters of this paper have one of the following properties.

1. The vertex x0 is attached to (e, 0, o). For some t1, 0 6 t1 < m, if t1 > 1

then each xi, 1 6 i 6 t1, is attached to (o, 0, o). For integers t2, t3, t4, and t5 with
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1 6 t1 < t2 < t3 < t4 6 t5 6 m, each xi, t1 + 1 6 i 6 t2, is attached to (o, e, o) and

we have either (I) or (II) below.

(I) Each xi, t2 + 1 6 i 6 t3, is attached to (e, o, o) and we have (a) or (b) below.

(a) Each xi, t3 + 1 6 i 6 t4, is attached to (0, o, o), each xi, t4 + 1 6 i 6 t5, is

attached to (0, e, e), and each of the rest of the xi is attached to (0, e, 0).

(b) Each xi, t3 + 1 6 i 6 t4, is attached to (e, e, e) and we have either (i) or (ii)

below.

(i) Each xi, t3 + 1 6 i 6 t4, is attached to (e, e, 0) and each of the rest of the xi is

attached to (e, 0, 0) (or (0, e, 0)).

(ii) Each xi, t4 + 1 6 i 6 t5, is attached to (e, 0, e) ((0, e, e)) and each of the rest

of the xi is attached to (e, 0, 0) (respectively, (0, e, 0)).

(II) Each xi, t2 + 1 6 i 6 t3, is attached to (o, o, e) and we have one of the

following.

(a) Each xi, t3 + 1 6 i 6 t4, is attached to (o, o, 0), each xi, t4 + 1 6 i 6 t5, is

attached to (e, e, 0), and each of the rest of the xi is attached to (e, 0, 0) or (0, e, 0).

(b) Same as (I)(b).

2. Lobsters obtained from those in (1) above by putting t1 = 0.

3. The vertex x0 is attached to one of the combinations of (0, o, 0), (e, o, 0),

(0, o, e), (0, e, o), (e, o, e), and (e, e, o). For integers t1, t2 with 1 6 t1 < t2 6 m, each

xi, 1 6 i 6 t1, is attached to (o, o, 0), each xi, t1 + 1 6 i 6 t2, is attached to (e, e, 0),

and each of the rest of the xi, if any, is attached to (e, 0, 0) or (0, e, 0).

4. The vertex x0 is attached to one of the combinations of (0, e, o), (e, e, o), and

(o, o, o). For integers t1, t2 with 1 6 t1 < t2 6 m, each xi, 1 6 i 6 t1, is attached to

(0, o, o), each xi, t1 + 1 6 i 6 t2, is attached to (0, e, e), and each of the rest of the

xi, if any, is attached to (0, e, 0).

2. Preliminaries

To prove our results we need some definitions, terminology and existing results

which are described below.

Lemma 2.1 [4], [13]. If f is a graceful labeling of a tree T with n edges then the

inverse transformation of f , defined as fn(v) = n − f(v) for all v ∈ V (T ), is also a

graceful labeling of T .

Definition 2.2. For an edge e = {u, v} of a tree T , we define u(T ) as that

connected component of T − e which contains the vertex u. Here we say u(T ) is a

component incident on the vertex v. If a and b are vertices of a tree T , u(T ) is a

component incident on a and the component u(T ) does not contain the vertex b, then
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deleting the edge {a, u} from T and making b and u adjacent is called the component

moving transformation. Here we say the component u(T ) has been moved from a

to b.

Throughout the paper we write “the component u” instead of writing “the com-

ponent u(T )”. Therefore, whenever we wish to refer to u as a vertex, we write “the

vertex u”. By the label of the component “u(T )” we mean the label of the vertex u.

Moreover, we will not distinguish between a vertex and its label.

Lemma 2.3 [4]. Let f be a graceful labeling of a tree T ; let a and b be two vertices

of T ; let u(T ) and v(T ) be two components incident on a where u(T ) ∪ v(T ) 6∋ b.

Then the following assertions hold:

(i) if f(u) + f(v) = f(a) + f(b) then the tree T ∗ obtained from T by moving the

components u(T ) and v(T ) from a to b is also graceful.

(ii) if 2f(u) = f(a) + f(b) then the tree T ∗∗ obtained from T by moving the com-

ponent u(T ) from a to b is also graceful.

Lemma 2.4 [4]. Let T be a diameter four tree with q edges. If a0 is the center

vertex and the degree of a0 is 2k +1 then there exists a graceful labeling f of T such

that

(a) f(a0) = 0 and the labelings of the neighbours of a0 are 1, 2, . . . , k, q, q − 1, . . . ,

q − k;

(b) from the sequence S = (q, 1, q−1, 2, q−2, 3, . . . , q−k+1, k, q−k) of vertex labels,

the centers of the odd branches get labels consecutively from the beginning, then

the centers of the even branches get labels consecutively and finally the centers

of the pendant branches get labels.

3. Results

We begin this section with a theorem (Theorem 3.3) which describes a technique

by which one can generate graceful trees from a given graceful tree of a certain type.

Subsequently, we apply this technique to a diameter four tree whose center has odd

degree to construct graceful lobsters. The lemma given below is used in proving

Theorem 3.3.

Lemma 3.1. Let S0 = (t1, t2, . . . , t2p) be a finite sequence of natural numbers

in which the sums of consecutive terms are alternately l + 1 and l, beginning (and

ending) with the sum l + 1. For an integer r > 1, let Sr = ϕl+r(S
′

r), where S′

r

is the sequence obtained from Sr−1 by deleting any odd number of terms from the
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beginning as well as from the end and ϕl+r(S
′

r) = (l + r− x)x∈S′

r
. Then the sums of

consecutive terms in the sequence Sr are alternately l + r + 1 and l + r, beginning

(and ending) with the sum l + r + 1.

P r o o f. We first consider the case when r = 1. Let the sequence S′

1 be obtained

from S0 by deleting 2k + 1 terms from the beginning and 2k1 + 1 terms from the

end. For 2k + 2 6 i 6 2p − 2k1 − 1 we have

ϕl+1(ti) + ϕl+1(ti+1) = 2(l + 1) − (ti + ti+1)

=

{

2(l + 1) − (l + 1) if (ti + ti+1) = l + 1

2(l + 1) − l if (ti + ti+1) = l

=

{

l + 1 if (ti + ti+1) = l + 1.

l + 2 if (ti + ti+1) = l.

Therefore, the sums of consecutive terms of the sequence S1 are l + 1 and l + 2

alternately. Moreover, the sum of the first two terms, i.e. ϕl+1(t2k+2) + ϕl+1(t2k+3),

is l + 2 as t2k+2 + t2k+3 = l. Since the total number of terms in S1 is even the sum

of the last two terms is l + 2. Thus, the lemma holds if we take r = 1. For r > 1 the

proof follows if we repeat the above procedure r times. �

C o n s t r u c t i o n 3.2. Let T be a graceful tree with q edges. Let a0 be a non

pendant vertex of T with degree 2k + 1. Suppose there exists a graceful labeling

f of T in which a0 gets the label 0 and the labels of the neighbours of a0 are

1, 2, . . . , k, q, q − 1, q − 2, . . . , q − k (see Figure 1).

a0

1

2
q−1

k

q−k

q

Figure 1. The tree T with vertex a0 and its neighbours. The circles around the neighbouring
vertices of represent the respective components incident on a0.

We consider the sequence A = (q, 1, q−1, 2, q−2, 3, . . . , k, q−k) of vertices adjacent

to a0 (as we do not distinguish between a vertex and its label). We construct a tree

T1 (see Figure 2) from T by identifying the vertex y0 of a path H ′ = y0, y1, . . . , ym

with a0 and moving the components (incident on the vertex a0) in A to yi in the

following way:
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(1) At y0 we retain 2λ0 + 1 components, where λ0 > 0. In particular, we retain

2p0 components, 0 6 p0 6 λ0, whose labels are from the beginning of A, namely

q, 1, q−1, 2, q−2, 3, . . . , q−p0 +1, p0, and 2λ0 +1−2p0 components whose labels are

from the end of A, namely q−k, k, q−k+1, k−1, . . . , k−λ0 +p0 +1, q−k+λ0−p0.

Then we delete the components from A retained at y0 and denote the sequence of

the remaining terms of A by A(1).

first 2p0 and last

2λ0−2p0+1

from A

first 2p1+1 and last

2λ1−2p0−1

from A(1)

first 2pl+1 and last

2λl−2p0−1

from A(l)

first 2q
(1)
l+1 and last

2α
(l)
l+1−2q

(l)
l+1+1

from B1

first 2q
(1)
l+2 and last

2α
(l)
l+2−2q

(l)
l+2+1

from B
(l+2)
1

first 2q
(1)
m and last

2α
(l)
m −2q

(l)
m +1

from B
(m)
1

first 2q
(n)
l+1 and last

2α
(n)
l+1−2q

(n)
l+1+1

from Bn

first 2q
(n)
l+2 and last

2α
(n)
l+2−2q

(n)
l+2+1

from B
(l+2)
n

first 2q
(n)
m and last

2α
(n)
m −2q

(n)
m +1

from B
(m)
n

ym

yl+2

yl+1

yl

y1

y0

Figure 2. The tree T1 obtained from T . Here we take s1 = s2 = m.

(2) Let l, 1 6 l < m, be a fixed integer. For i = 1, 2, . . . , l, we move 2λi components

from A(i) to yi, where λi > 1. In particular, we move 2pi+1, 0 6 pi < λi, components

whose labels are from the beginning of A(i) and 2λi−2pi−1 components whose labels

are from the end of A(i), where, for i > 2, A(i) is obtained from A(i−1) by deleting

the components which are moved to yi−1.

(3) Let 2p0+
l

∑

i=1

(2pi +1) = k1 and 2(λ0−p0)+1+
l

∑

i=1

(2λi−2pi−1) = k2. Here we

notice that if l is odd (even) then k1 is odd (even) and k2 is even (respectively, odd).

Let A(l+1) be the sequence obtained from A(l) by deleting the components which are

moved to yl. Then one finds that A(l+1) = (1
2 (k1 − 1) + 1, q − 1

2 (k1 − 1) − 1, . . . ,
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k − 1
2k2, q − k + 1

2k2) if l is odd and A(l+1) = (q − 1
2k1,

1
2k1, . . . , q − k + 1

2 (k2 − 1) +

2, k − 1
2 (k2 − 1) − 1) if l is even.

(4) For any n ∈ N, if possible, partition A(l+1) into n parts, say A(l+1) = B1 ∪

B2 ∪ . . .∪Bn, where |Bi| = 2ri (say), in such a way that the first 2r1 terms of A
(l+1)

are in B1, the next 2r2 terms of A
(l+1) are in B2 and so on.

Now the components in Bj , 1 6 j 6 n, are distributed to the vertices yi, l + 1 6

i 6 sj , l + 1 6 sj 6 m, of H ′ in the following way:

For l + 1 6 i 6 sj , we move 2α
(j)
i components from B

(i)
j to yi, where α

(j)
i > 1. In

particular, we move 2q
(j)
i +1, 0 6 q

(j)
i < α

(j)
i , components whose labels are from the

beginning of B
(i)
j , and 2α

(j)
i − 2q

(j)
i − 1 components whose labels are from the end

of B
(i)
j , where for i > l + 2 (if sj > l + 2), B

(i)
j is obtained from B

(i−1)
j by deleting

the components which are moved to yi−1 and B
(l+1)
j = Bj .

The positive integers α
(j)
i , i = l + 1, l + 2, . . . , sj , are chosen in such a way that

sj
∑

i=l+1

α
(j)
i = rj . Therefore, 2k + 1 = k1 + k2 + 2

n
∑

j=1

rj . �

In the following theorem, for a graceful tree R with n edges and a graceful labeling

g of R we use the notation “g(R)” to denote the tree R with the graceful labeling g.

Also, for any sequence F = (a1, a2, . . . , ar), gn(F ) is the sequence (n − a1, n −

a2, . . . , n − ar).

Theorem 3.3. The tree T1 in Construction 3.2 is graceful.

P r o o f. Recall that we denote an edge with end points x and y by {x, y}. We

first consider the tree T ∪ {y0, y1}, where the vertices a0 and y0 are identified. We

give the label q + 1 to y1. Clearly T ∪ {y0, y1} is graceful with the graceful labeling

f (1), where f (1) is the same as f on T and gives the label q +1 to y1. Then we move

all the components in A(1) to y1 and let the resulting tree be T (1). One can notice

that A(1) can be partitioned into pairs of labels whose sum is q + 1 (consecutive

terms). By Lemma 2.3(i), T (1) is a graceful tree with the graceful labeling f (1).

Next, we consider the inverse transformation f
(1)
q+1 of f

(1) of T (1). By Lemma 2.1,

f
(1)
q+1 is a graceful labeling of T

(1) and the label of y1 in f
(1)
q+1(T

(1)) is 0. Next, we make

y2 adjacent to y1 and give the label q + 2 to y2. Obviously, the tree T (1) ∪{y1, y2} is

graceful with the graceful labeling f (2), where f (2) is the same as f
(1)
q+1 on T (1) and

gives the label q + 2 to y2. We move all the components in f
(1)
q+1(A

(2)) from y1 to

y2 and let the resulting tree be T (2). Observe that the sums of consecutive terms in

A(1) are alternately q + 1 and q beginning and ending with q + 1 so by Lemma 3.1

the sums of consecutive terms in f
(1)
q+1(A

(2)) are alternately q +2 and q +1 beginning

and ending with the sum q + 2, i.e. f
(1)
q+1(A

(2)) can be partitioned into pairs of labels

whose sum is q + 2. Therefore, by Lemma 2.3(i), T (2) is graceful.
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Repeating the above procedure for l + 1 times we find that the tree T (l+1) with

the vertex set V (T ) ∪ {y0, y1, . . . , yl, yl+1}, is graceful with the graceful labeling

f (l+1) in which the vertex yl+1 gets the label q + l + 1 and the components of

f
(l)
q+lf

(l−1)
q+l−1 . . . f

(1)
q+1(A

(l+1)) are incident on xl+1. By Lemma 3.1, we find that the

sums of consecutive terms in f
(l)
q+lf

(l−1)
q+l−1 . . . f

(1)
q+1(A

(l+1)) are q + l + 1 and q + l

beginning and ending with the sum q + l+1. Since B1 contains the first 2r1 terms of

S and for 2 6 j 6 n, Bj contains the first 2rj terms of S
(l+1) \B1 ∪B2 ∪ . . .∪Bj−1,

the sums of consecutive terms in f
(l)
q+lf

(l−1)
q+l−1 . . . f

(1)
q+1(B

(l+1)
j ), 1 6 j 6 n, are q + l + 1

and q + l beginning and ending with the sum q + l + 1.

Next, we take the inverse transformation f
(1+1)
q+l+1 of f

(l+1) of T (l+1). By Lemma 2.1,

f
(l+1)
q+l+1 is a graceful labeling of T (l+1) and the label of yl+1 in f

(l+1)
q+l+1(T

(l+1)) is 0.

Next, we make yl+2 adjacent to yl+1 and give the label q + l + 2 to yl+2. Obviously,

T (l+1) ∪ {yl+1, yl+2} is graceful with the graceful labeling f (l+2), where f (l+2) is the

same as f
(l+1)
q+l+1 on T (l+1) and gives the label q + l + 2 to yl+2.

For those j with sj > l + 2, 1 6 j 6 n, we move all the components in

f
(l+1)
q+l+1f

(l)
q+lf

(l−1)
q+l−1 . . . f

(1)
q+1(B

(l+2)
j ) from yl+1 to yl+2 and let the resulting tree be

T (l+2). By Lemma 3.1, the sums of consecutive terms in f
(l+1)
q+l+1f

(l)
q+lf

(l−1)
q+l−1 . . . f

(1)
q+1

(B
(l+2)
j ) are alternately q + l + 2 and q + l + 1 beginning and ending with q + l + 2.

One sees that each f
(l+1)
q+l+1f

(l)
q+lf

(l−1)
q+l−1 . . . f

(1)
q+1(B

(l+2)
j ) can be partitioned into pairs of

labels whose sum is q + l + 2. By Lemma 2.3(i), T (l+2) is graceful.

Let s⋆ = max{s1, s2, . . . sn}. Repeating the above procedure s⋆ − l − 1 times we

get the graceful tree T (s⋆) with vertex set V (T ) ∪ {y1, . . . , ys⋆} in which the vertex

ys⋆ gets the label q + s⋆. If s⋆ = m then we stop, otherwise we proceed as follows.

We apply inverse transformation to the graceful tree T (s⋆) so that the vertex ys⋆

gets the label 0. Then make the vertex ys⋆+1 adjacent to ys⋆ and give the label

q + s⋆ + 1 to ys⋆+1. If s
⋆ + 1 = m then we stop, otherwise we repeat this procedure

until the vertex ym gets a label. The graceful tree that is obtained on the vertex set

V (T ) ∪ V (H ′) is easily seen to be the tree T1. �

In the following theorem we demonstrate how we give graceful labeling to certain

classes of lobsters by applying Theorem 3.3 to a graceful diameter four tree.

Theorem 3.4. The lobsters in Tables 3.1 and 3.2 below are graceful.

D e s c r i p t i o n o f Ta b l e s. In the column headings, the triple (x, y, z) repre-

sents the number of odd, even and pendant branches, respectively, where e means

any even number of branches (nonzero, unless otherwise stated), o means any odd

number of branches and 0 means no branch. For example, (e, 0, o) means an even

number of odd branches, no even branch and an odd number of pendant branches. If
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in a triple e or o appear more than once then it does not mean that the corresponding

branches are equal in number. For example, (e, e, o) does not mean that the number

of odd branches is equal to the number of even branches.

Lob-
sters
↓

(e, 0, o) (o, 0, o) (o, e, o) (e, o, o) (o, o, 0) (0, o, o) (e, e, 0) (e, 0, 0)1

or
(0, e, 0)2

(0, 0, e)

a 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<
m−1

t2+1→
t3,
t3<m

— t3+1→
t⋆,
t⋆6m

— t⋆+1→
m(2), if
t⋆ <m

—

b 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<
m−1

t2+1→
t3,
t3<m

— — t3+1→
t′,
t′6m

t′+1→
m, if
t′<m

—

c 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<
m−1

t2+1→
t3,
t3<m

— — — t3+1→
m(1)

t3+1→
s, s6m

d 0 1→ t1,
t1<

m−1

t1+1→
t2,
t2<m

t2+1→
t′,
t′6m

— — — t′+1→
m if
t′<m

—

e 0 1→ t1,
t1<

m−1

t1+1→
t2,
t2<m

— t2+1→
t′,
t′6m

— — t′+1→
m, if
t′<m

t2+1→
s, s6m

f 0 1→ t1,
t1<

m−1

t1+1→
t2,
t2<m

— — — t2+1→
t′,
t′6m

t′+1→
m if
t′<m

—

g 0 1→ t1,
t1<

m−1

t1+1→
t2,
t2<m

— — — — t2+1→
m

t2+1→
s, s6m

h 0 1→ t1,
t1<

m−1

t1+1→
t2,
t2<m

— t2+1→
t′,
t′6m

— — t′+1→
m, if
t′<m

—

i 0 1→ t1,
t1<

m−1

t1+1→
t2,
t2<m

— — t2+1→
t′,
t′6m

— t′+1→
m (2) if
t′<m

—

j 0 1→ t,
t<m−1

t+1→
t′,
t′6m,

— — — — t′+1→
m if
t′<m

—

Table 3.1

1st column: 0 means that x0 is attached to any one of the mentioned combinations

of branches. The notation 0(r), r = 1, 2 (or r = 1, 2, 3, 4, 5, 6, 7), means that x0 is

attached to the combination of branches mentioned in the column heading in which

r is the superscript.

Other columns: i → j (or i → j(r), r = 1, 2) means that each xl, i 6 l 6 j, is

attached to the mentioned combination or any one of the combinations of branches

(respectively, the branches mentioned in the triple with superscript r).

Further, when some vertex xi on the central path is attached to two combinations

(x, y, 0) and (0, 0, e), we mean that xi is attached to the combination (x, y, e). For
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example, in Table 3.1(c), xt3+1 is attached to the combinations (e, 0, 0) and (0, 0, e),

which means that xt3+1 is attached to the combination (e, 0, e).

Lob-
sters
↓

(e, o, 0)1 or (e, o, e)2 or
(0, o, 0)3 or (0, o, e)4 or
(e, e, o)5 or (0, e, o)6 or
(o, o, o)7 or (e, 0, o)8

(o, o, 0)1 or
(0, o, o)2

(e, e, 0) (e, 0, 0)1 or
(0, e, 0)2

(0, 0, e)

a 0 (any one of the
combinations from 1
to 6)

1→ t(1),
t<m

t+1→ t′,
t′6m

t′+1→m if
t′<m

—

b 0 (any one of the
combinations from 5
to 8)

1→ t(2),
t<m

— t+1→m(2) t+1→s,
s6m

Table 3.2

P r o o f. For every lobster L we first construct a diameter four tree, say T (L), by

successively merging the vertices xi, i = 1, 2, . . . , m of H with x0. It is clear that x0

is the center of T (L) and its degree is odd. Let |E(T (L))| = q and deg(x0) = 2k + 1.

We give the label 0 to x0. We consider the sequence A in Construction 3.2. We use

the notation l, n, k1, k2, A
(i), i > 1, and Bj , j = 1, 2, . . . , n, of Construction 3.2 and

determine them for each lobster of this theorem.

Let L be a lobster of type (a) in Table 3.1. We follow the steps given below.

1. For i = 0, 1, . . . , t1, the centers of the odd (pendant) branches incident on xi

in L get labels consecutively from the beginning (end) of the sequence A(i), where

A(0) = A. We take k1 (k2) as the sum total of the number of odd (respectively,

pendant) branches incident on xi, 0 6 i 6 t1.

2. (i) Take l = t1, n = 2 and determine B1 and B2. For i = t1 + 1, . . . , t2, let

the number of odd branches incident on xi be 2λi + 1, where λi > 0. The centers of

these branches will get labels from B1. For i = t1 + 1, . . . , t2, let the number of even

branches incident on xi be 2αi, αi > 0, among which the centers of 2βi +1 branches

for arbitrary integers βi, 0 6 βi < αi, will get labels from B1, and the centers of the

rest of these branches will get labels from B2. Let
t2
∑

i=t1+1

(2λi +1)+
t2
∑

i=t1+1

(2βi +1) =

2p1.

(ii) Let the number of odd branches incident on xi, i = t2+1, . . . , t3, be 2λi, λi > 1.

The centers of these branches get labels from the sequence B1. Let
t3
∑

i=t2+1

2λi = 2p2.

Let |B1| = 2r1 = 2(p1 + p2).

3. We give labelings to the centers of the branches incident on xi, t1 + 1 6 i 6 m,

in the following manner.

(i) For i = t1+1, . . . , t2, the centers of 2λi+1 odd branches incident on xi get labels

consecutively from the beginning of B
(i)
1 , the centers of 2αi even branches incident

on xi get 2βi + 1 labels consecutively from the end of B
(i)
1 and 2αi − 2βi − 1 labels
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consecutively from the beginning of B
(i)
2 , and the centers of the pendant branches

incident on xi get labels consecutively from the end of B
(i)
2 .

(ii) For i = t2 + 1, . . . , t3, among the odd branches incident on xi, the centers of

any odd number of branches get labels consecutively from the beginning of B
(i)
1 and

the centers of the rest of these branches get labels consecutively from the end of B
(i)
1 .

(iii) For i = t2 + 1, . . . , t⋆, the centers of the even (pendant) branches incident on

xi get labels consecutively from the beginning (respectively, end) of B
(i)
2 .

If t⋆ < m we do the following additional step.

(iv) For i = t⋆ + 1, . . . , m, among the even branches incident on xi, the centers

of any odd number of branches get labels consecutively from the beginning of B
(i)
2

and the centers of the rest of these branches get labels consecutively from the end of

B
(i)
2 .

Here we notice that the above labeling of the centers of the branches incident on

the center x0 of T (L) follows Lemma 2.4. Therefore, by Lemma 2.4 there exists a

graceful labeling of T (L) with the above labels of the center x0 and the centers of the

branches incident on x0 (i.e. we give labeling to the remaining vertices of T (L) using

the techniques of [4]). Finally, we apply Theorem 3.3 for n = 2 to T (L) and the path

H = x0, x1, . . . , xm, so as to get a graceful labeling of L (see example below). This

approach will be the same for all the remaining cases of this theorem and hence we

will just indicate the modifications we do in steps 1 to 3.

E x am p l e 1. Consider the lobster L presented in Figure 3 which is of the type

(a) in Table 3.1. We construct the diameter four tree T (L) shown in Figure 4.

|E(T (L))| = q = 73 and k = 13. Therefore, A = (73, 1, 72, 2, . . . , 61, 13, 60). Here

x0 x1 x2 x3 x4

x5

Figure 3. A lobster L of type (a) in Table 3.1. Here m = 4, t1 = 1, t2 = 2 and t⋆ = 3.

m = 5, t1 = 1, t2 = 2, t3 = 3, t⋆ = 4, k1 = 3, k2 = 4. Therefore, A(t1+1) =

A(2) = (2, 71, 3, . . . , 61, 11, 62). Here λ2 = 0, λ3 = 1, α2 = 1, β2 = 0, so |B1| = 4,

i.e. B1 = (2, 71, 3, 70) and B2 = (4, 69, 5 . . . , 61, 11, 62). We give the label 0 to the

vertex x0 and give labelings to the centers of the branches incident on x0 as per the

steps 1 and 3. Using the techniques of [4] (Theorem 1 of [4]) we obtain a graceful

labeling of T (L) given in Figure 4. Then in Figure 5 we make x1 adjacent to x0, give

the label 74 to x1 and move all the components in A(1) to x1. The tree in Figure

6 is obtained by applying inverse transformation to the lobster found in Figure 5,
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making x2 adjacent to x1, giving the label 75 to x2 and moving all the components

in f
(1)
74 (A(2)) to x2. Then we proceed as per the technique described in Theorem 3.3

and get a graceful labeling of L. Figure 8 represents L with a graceful labeling.
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Figure 4. The diameter four tree T (L) corresponding to L with a graceful labeling.
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Figure 5. The graceful lobster with the graceful labeling f(1) obtained by making x1 ad-

jacent to x0, giving the label 74 to x1, and moving all the branches in A(1)

to x1.
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Figure 6. The graceful lobster with the graceful labeling f(2) obtained by applying inverse
transformation to the lobster in Figure 5, making x2 adjacent to x1, giving the

label 75 to x2, and moving all the components in f
(1)
74 (A

(2)) to x2.
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Figure 7. The graceful lobster with the graceful labeling f(3) obtained by applying inverse
transformation to the lobster in Figure 6, making x3 adjacent to x2, giving the

label 76 to x3, and moving all the components in f
(2)
75 f

(1)
74 (A

(2)) to x3.
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Figure 8. The graceful lobster with the graceful labeling f(4) obtained by applying inverse
transformation to the lobster in Figure 7, making x4 adjacent to x3, giving the

label 77 to x4, and moving all the components in f
(2)
76 f

(2)
75 f

(1)
74 (A

(3)) to x4.
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Figure 9. The lobster L with a graceful labeling.

For lobsters of type (x), x = b, . . . , j, in Table 3.1, the proof follows if we proceed

as in the proof involving the lobsters of type (a) in Table 3.1 by modifying steps 1, 2

and 3. For lobsters of type (b) we first define an integer p as p = m if either t′ = m

or t′ < m with each xi, i = t′ + 1, . . . , m, being attached to an even number of odd

branches and p = t′ if t′ < m with each xi, i = t′ + 1, . . . , m, being attached to an

even number of even branches; and this definition of p will hold henceforth in the

text. Next, we set t3 = p, t⋆ = t3 andm = m+t′−p in steps 1, 2, and 3. For lobsters

of type (c), we set t3 = m, t⋆ = t3 and m = s in steps 1, 2 and 3, and replace even

branches by pendant branches in step 3(iv). For lobsters of type (d), we set t3 = p

and t⋆ = t′ in steps 1, 2, 3(i), 3(ii), and 3(iii), and furthermore, if p = t′ then we set

t⋆ = t′ in step 3(iv).

For lobsters L of type (e), we repeat steps 1 and 2(i), set t3 = m, and replace the

number of odd branches by the sum total of the number of odd and even branches in

step 2(ii), repeat step 3(i), and modify steps 3(ii) to 3(iv) in the following manner.

3(ii) For i = t2 + 1, . . . , t′, the centers of the odd (even) branches incident on xi

get labels consecutively from the beginning (respectively, end) of B
(i)
1 .

3(iii) Set t⋆ = t2 and m = s, and replace B1 by B2 and even branches by pendant

branches in step 3(iv).

If t′ < m then we do the following additional step.

3(iv) For i = t′ + 1, . . . , m, among the odd (or even) branches incident on xi,

the centers of any odd number of these branches get labels consecutively from the

beginning of B
(i)
1 and the centers of the rest of these branches get labels consecutively

from the end of B
(i)
1 .

For lobsters L of type (f), we repeat steps 1 and 2(i), set t3 = p in step 2(ii),

repeat step 3(i), set t3 = p in step 3(ii), and set t⋆ = t2 and m = m + t′ − p in step

3(iv). For lobsters L of type (g), we repeat steps 1 and 2(i), set t3 = m and replace

odd branches by odd (or even) branches in step 2(ii), repeat step 3(i), set t3 = m

and replace odd branches by odd (or even) branches in step 3(ii), and set t⋆ = t2 and

m = s and replace even branches with pendant branches in step 3(iv). For lobsters

L of type (h), we repeat steps 1, 2, and 3 excluding step 3(iii) in the proof involving

the lobsters of type (e). For lobsters L of type (i), we repeat steps 1 and 2(i) and let
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|B1| = 2r1 = 2p1, repeat step 3(i), set t3 = t2 and t⋆ = t′ in step 3(iii). Furthermore,

if t′ < m then we set t⋆ = t′ in step 3(iv). For lobsters L of type (j), we set t1 = t

and t2 = t′ in steps 1 and 2(i). If t′ < m then we set t2 = t′ and t3 = m and replace

odd branches with odd (or even) branches in step 2(ii). Here |B1| = 2r1 = 2p1 if

t′ = m and 2p1 + 2p2 if t
′ < m. Set t1 = t and t2 = t′ in step 3(i). Furthermore, if

t′ < m then we set t2 = t′ and t3 = m and replace odd branches with odd (or even)

branches in step 3(ii).

For lobsters L of type (a) in Table 3.2, the proof follows if we proceed as in the

proof involving the lobsters of type (a) in Table 3.1 with the changes in steps 1 to 3

as per the following.

1. The centers of odd (pendant branches followed by even branches) incident on

x0 get labels from the beginning (respectively, end) of A. For i = 1, 2, . . . , t, the

centers of the odd (even) branches incident on xi get labels consecutively from the

beginning (respectively, end) of the sequence A(i). We take k1 (k2) as the sum total

of the number of odd (respectively, sum total of even and pendant) branches incident

on xi, 0 6 i 6 t.

2. Take n = 2 and l = t and determine B1 and B2. Take |B1| = 2r1 as the total

number of odd branches incident on the vertices xi, i = t + 1, t + 2, . . . , p.

3. Omit step 3(i). Set t1 = t and t2 = p in step 3(ii). Omit step 3(iii). Set t⋆ = t

and m = m + t′ − p in step 3(iv).

For lobsters L of type (b) in Table 3.2, the proof follows if we proceed as in the

proof involving the lobsters of type (a) in Table 3.1 with the changes in steps 1 to 3

as per the following.

1. The centers of odd branches followed by even branches (pendant branches)

incident on x0, get labels from the beginning (end) of A. For i = 1, 2, . . . , t, the

centers of the even (pendant) branches incident on xi get labels consecutively from

the beginning (end) of the sequence A(i). We take k1 (k2) as the sum of the total

number of odd and even branches (respectively, number of pendent) branches incident

on xi, 0 6 i 6 t.

2. Take n = 2 and l = t and determine B1 and B2. Take |B1| = 2r1 as the sum

total of number of even branches incident on the vertices xi, i = t + 1, t + 2, . . . , m.

3. Omit step 3(i). Set t1 = t and t2 = m and replace odd branches with even

branches in step 3(ii). Omit step 3(iii). Set t⋆ = t and m = s and replace even

branches by pendant branches in step 3(iv). �

Next, we show that for the case n = 2 in Construction 3.2 by distributing the

branches in Bj , j = 1, 2, to the vertices yi, 0 6 i 6 m of H ′ in a slightly different

manner we get a graceful tree T2 (may be different from T1). By applying this result

to diameter four trees we obtain some more graceful lobsters.
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C o n s t r u c t i o n 3.5. Let the tree T , the path H ′, the graceful labeling f (of T )

and the sequence A be the same as in Construction 3.2 (see Figure 1). We construct

a tree T2 (see Figure 10) from T by identifying the vertex y0 of H ′ with a0 and

distributing the components (incident on the vertex a0) in A to yi, i = 0, 1, 2, . . . , m,

in the following manner.

(1) The components in A are distributed to the vertices y0, y1, . . . , yl in the same

manner as described in Construction 3.2. The integers k1 and k2 are defined as in

Construction 3.2.

(2) We take n = 2 in Construction 3.2, i.e. we partition the sequence A(l+1) into

two parts: A(l+1) = B1 ∪ B2. Let {l1, l2} = {1, 2}. For l + 1 6 i 6 slj , we move

2α
(lj)
i components from B

(i)
lj
to yi, where α

(lj)
i > 1.

The components in Bl1 are distributed to the vertices yl+1, yl+2, . . . , ysl1
, in the

same manner as described in Construction 3.2. The components in Bl2 are dis-

tributed to the vertices yl+1, yl+2, . . . , ysl2
, in the following way:

(i) For some integer s′, l + 1 6 s′ < sl2 , the components of Bl2 are distributed to

yi, l + 1 6 i 6 s′, in the same manner as described in Construction 3.2.

(ii) For i = s′ + 1, . . . , sl2 , the components of Bl2 are distributed to yi in the

following manner. Suppose |B
(s′+1)
l2

| = 2k3. We first partition B
(s′+1)
l2

as B
(s′+1)
l2

=

C1 ∪ C2, where for some integer k4, 1 6 k4 < k3, C1 consists of 2k4 terms from

the beginning of B
(s′+1)
l2

and C2 = B
(s′+1)
l2

\ C1. Let s
(1)
l2
and s

(2)
l2
be integers,

where s
(1)
l2

, s
(2)
l2

> s′ + 1 and max(s
(1)
l2

, s
(2)
l2

) = sl2 . For l′ = 1, 2 and i = s′ + 1, . . . ,

s
(l′)
l2
, we move 2β

(l′)
i , β

(l′)
i > 1, components from Cl′ to yi. In particular, we move

2γ
(l′)
i + 1 components for arbitrary integers γ

(l′)
i , 0 6 γ

(l′)
i < βl′ , whose labels

appear consecutively from the beginning of C
(i)
l′ and 2β

(l′)
i − 2γ

(l′)
i − 1 components

whose labels appear consecutively from the end of C
(i)
l′ , where C

(s′+1)
l′ = Cl′ and

for i > s′ + 2, C
(i)
l′ is obtained from C

(i−1)
l′ by deleting the components which are

retained at yi−1. The numbers β
(l′)
i , i = s′ + 1, . . . , s

(l′)
l2
, l′ = 1, 2, are chosen in such

a way that
s
(l)
l2

∑

i=s′+1

β
(l)
i = k4 and

s
(2)
l2

∑

i=s′+1

β
(2)
i = k3 − k4.

The numbers α
(l1)
i , i = l + 1, . . . , sl1 , and α

(l2)
i , i = l + 1, . . . , s′, j = 1, 2, are chosen

in such a way that

sl1
∑

i=l+1

α
(l1)
i = rl1 and

s′

∑

i=l+1

α
(l2)
i = rl2 − k3.
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parts are Bl1 , C1, C2 (or C1, C2, Bl1) if sl1 > s′ (n = 2, i.e. the parts are C
(i)
1 and

C
(i)
2 if sl1 6 s′). �

Theorem 3.7. The lobsters in Table 3.3 below are graceful.

Lob-
sters
↓

(e, 0, o) (o, 0, o) (o, e, o) (e, o, o) (o, o, 0) (0, o, o) (e, e, 0) (e, 0, 0)1

or
(0, e, 0)2

(0, 0, e)

a 0 1→ t1,
t1<

m−3

t1+1→
t2, t2<

m−2

t2+1→
t3, t3<
m−1

— t3+1→
t4,
t4<m

— t4+1→
m(2)

t4+1→
s, s6m

b 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<

m−1

t2+1→
t3,
t3<m

— — t3+1→
t′ t′6m

t′+1→
m, if
t′<m

t3+1→
s, s6m

c 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<

m−1

t2+1→
t3,
t3<m

— — — t3+1→
m (2)

t3+1→
s, s6m

d 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<

m−1

— — t2+1→
t3,
t3<m

— t3+1→
m (2)

t3+1→
s, s6m

e 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<

m−1

— t2+1→
t3,
t3<m

— t3+1→
t′,
t′6m

t′+1→
m, if
t′<m

t2+1→
s, s6m

f 0 1→ t1,
t1<

m−2

t1+1→
t2, t2<

m−1

— t2+1→
t3,
t2<m

— t3+1→
t′,
t′6m

t′+1→
m, if
t′<m

—

g 0 1→ t1, ;
t1<

m−1

t1+1→
t2,
t2<m

— — — t2+1→
t′,
t′6m

t′+1→
m if
t′<m

t2+1→
s, s6m

Table 3.3

D e s c r i p t i o n of Table 3.3. Same as Table 3.1.

P r o o f. As in the proof of Theorem 3.4, for every lobster L of this theorem we

first construct the diameter four tree T (L). Let |E(T (L))| = q and deg(x0) = 2k+1.

We give the label 0 to the center x0. Here we use the notation A, l, k1, k2, k3, k4, l1,

l2, A
(i), i > 1, Bj , j = 1, 2, and Cj , j = 1, 2, sl1 , s

(1)
l2
, and s

(2)
l1
of Construction 3.5

and determine them for each lobster of this theorem.

Let L be a lobster of type (a) in Table 3.3. We proceed as per the steps given

below.

Set t⋆ = t4 and repeat steps 1, 2, 3(i), 3(ii), and 3(iii) in the proof involving the

lobsters of type (a) in Table 3.1. Set l1 = 1, l2 = 2, and sl1 = s1 = t3.

4. Set s
(1)
l2

= s
(1)
2 = m and s

(2)
l2

= s
(2)
2 = s. Take s′ = t4; hence k3 is determined,

i.e. 2k3 = |B
(s′+1)
l2

| = |B
(t4+1)
2 |. Next, we determine k4 and hence C1 and C2.

The terms of C1 (C2) will be the labels given to the centers of the even (pendant)

branches incident on each xi, i = t4 + 1, t4 + 2, . . . , m (i = t4 + 1, t4 + 2, . . . , s),
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i.e. |C1| (|C2|) is the sum of the number of even (pendant) branches incident on xi,

i = t4 + 1, t4 + 2, . . . , m (respectively, i = t4 + 1, t4 + 2, . . . , s).

5. For i = t4 +1, t4 +2, . . . , m (i = t4 +1, t4 +2, . . . , s), among the even (pendant)

branches incident on xi, the centers of any odd number of branches get labels con-

secutively from the beginning of C
(i)
1 (C

(i)
2 ) and the centers of rest of these branches

get labels consecutively from the end of C
(i)
1 (respectively, C

(i)
2 ).

Here we notice that the above labeling of the centers of the branches incident on

the center x0 of T (L) follows Lemma 2.4. Therefore, by Lemma 2.4 there exists a

graceful labeling of T (L) with the above labels of the center x0 and the centers of

the branches incident on x0 (i.e. we can give labeling to the remaining vertices of

T (L) using the techniques of [4]). Finally, we apply Theorem 3.3 for n = 2 to T (L)

and the path H = x0, x1, . . . , xm, so as to get a graceful labeling of L (see example

below). This approach will be the same for all the remaining cases of this theorem

and hence we will just indicate the modification we do in steps 1 to 5. �

E x am p l e 2. Consider the lobster L presented in Figure 11 which is of the type

(a) in Table 3.3. We construct the diameter four tree T (L) shown in Figure 12.

|E(T (L))| = q = 83 and k = 14. Therefore, A = (83, 1, 87, 2, 81, 3, . . . , 13, 70, 14, 69).

Here m = 6, t1 = 1, t2 = 2, t3 = 3, t4 = 4, s = 5, l = t1 = 1, k1 = 3, k2 = 2.

Therefore, A(t1+1) = A(2) = (2, 81, 3, 80, . . . , 12, 71, 13, 70). Here λ2 = 0, α1 = 1,

β1 = 0, 2p1 = (2λ2 + 1) + (2β1 + 1) = 2, λ3 = 1, 2p2 = 2λ3 = 2. So |B1| =

2(p1 + p2) = 4, B1 = (2, 81, 3, 80) and B2 = (4, 79, 5, . . . , 12, 71, 13, 70). Here l1 = 1,

l2 = 2, s′ = t4 = 4, sl1 = s1 = t3 = 3, s
(1)
l2

= s
(1)
2 = m = 6, and s

(2)
l2

= s
(2)
2 = s = 5.

|B
(s′+1)
l2

| = |B
(5)
2 | = 2k3 = 8. |C1| = 2k4 = 4 is the sum of the number of even

branches incident on xi, i = 5, 6; and |C2| = 2(k3−k4) = 4 is the number of pendant

branches incident on x5. We give the label 0 to the vertex x0 and give labelings to

the centers of the branches incident on x0 as per steps 1 to 5. Using the techniques

of [4] (Theorem 1 of [4]) we obtain a graceful labeling of T (L) given in Figure 12.

Then we proceed as per the technique described in Theorem 3.6 and get a graceful

labeling of L. Figure 13 represents the lobster L with a graceful labeling.

x0

x1

x2 x3

x4

x5

x6

Figure 11. A lobster L of type (a) in Table 3.1. Here m = 6, t1 = 1, t2 = 2, t3 = 3, t4 = 4,
s = 5.
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Figure 12. The diameter four tree T (L) corresponding to L with a graceful labeling.
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Figure 13. The lobster L with a graceful labeling.

For lobsters of type (x), x = b, c, d, e, in Table 3.3, the proof follows if we proceed

as in the proof involving the lobsters of type (a) in Table 3.36 by modifying steps 1

to 5.

For lobsters of type (b) we do the following.

1. Repeat steps 1, 2, 3(i), 3(ii), and 3(iii) in the proof involving the lobsters of

type (b) in Table 3.1.

2. Set t4 = t3 and m = m + t′ − p in steps 4 and 5, where p is an integer defined

as in the proof for the lobsters of type (b) in Table 3.1.

For lobsters of type (c), we repeat steps 1, 2, and 3(i), (ii) and set t4 = t3 in steps

3(iii), 4, and 5. For lobsters of type (d), we repeat steps 1, 2, 3(i), omit step 3(ii),

set t4 = t3 in step 3(iii), and set t4 = t3 in steps 4 and 5.

For lobsters L of type (e) and (f) we do the following.

S t e p s 1–3: If L is of type (e) (respectively, (f)), then set t′ = t3 and repeat

steps 1, 2, 3(i), 3(ii), and 3(iii) (steps 1, 2, 3(i), and 3(ii)) in the proof involving the

lobsters of type (e) in Table 3.1. Set l1 = 2, l2 = 1, and sl1 = s2 = s.
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S t e p s 4–5: Set s
(1)
l2

= s
(1)
1 = p and s

(2)
l2

= s
(2)
1 = m + t′ − p. Set t4 = t3, m = p,

and s = m+t′−p, and replace even branches by odd branches and pendant branches

by even branches in steps 4 and 5 in the proof for the lobsters of type (a).

For lobsters L of type (g), the proof follows if we set t′ = t2 in steps 1, 2, 3(i),

and 3(iii); and set t3 = t2 in steps 4 and 5 in the proof for the lobsters of type (e) in

Table 3.3.

R em a r k 3.8. With some changes in steps 1 to 5, one can show that the lobsters

obtained from the lobsters in Theorems 3.4 and 3.7 by eliminating one or more

combinations of branches incident on the central path, are also graceful.

R em a r k 3.9. In all the lobsters to which we give graceful labelings in this paper,

the vertex xm gets the largest label and xm−1 gets the label 0. Therefore we get some

more graceful lobsters by attaching a caterpillar to the vertex xm or by attaching

a suitable caterpillar (any number of pendant branches or an odd (or even) branch

or the combination of both) to the vertex xm−1 in any of the lobsters discussed in

Theorem 3.4 and 3.7.
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