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A note on propagation of singularities

of semiconcave functions of two variables

Luděk Zaj́ıček

Abstract. P. Albano and P. Cannarsa proved in 1999 that, under some applicable
conditions, singularities of semiconcave functions in R

n propagate along Lipschitz
arcs. Further regularity properties of these arcs were proved by P. Cannarsa and
Y. Yu in 2009. We prove that, for n = 2, these arcs are very regular: they
can be found in the form (in a suitable Cartesian coordinate system) ψ(x) =
(x, y1(x) − y2(x)), x ∈ [0, α], where y1, y2 are convex and Lipschitz on [0, α]. In
other words: singularities propagate along arcs with finite turn.
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1. Introduction

Let u be a function defined on an open set Ω ⊂ R
n which is locally (linearly)

semiconcave; i.e., u is locally representable in the form u(x) = g(x) + K‖x‖2,
where g is concave (cf. [3]).

Let Σ(u) be the singular set of u, i.e.

Σ(u) = {x ∈ Ω : u is not differentiable at x}.

It is clear that in many questions concerning Σ(u) we can suppose that u is concave
(or convex), since the results for semiconcave functions then easily follow. But it is
reasonable to formulate theorems for semiconcave functions, since these functions
are important in a number of applications (see [3]).

It is well-known that Σ(u) is a rather small set: it can be covered by countably
many Lipschitz DC hypersurfaces ([12]). (Note that for A ⊂ R

n there exists a
convex (resp. semiconcave) function u on R

n such that A = Σ(u), if and only if A
is an Fσ set which can be covered by countably many Lipschitz DC hypersurfaces,
see [8].)

The set Σ(u) can have isolated points, but P. Albano and P. Cannarsa [1] found
applicable conditions ensuring that Σ(u) is in a sense big in each neighbourhood
of a given x0 ∈ Σ(u). (The results of [1] can be found also in the book [3].) In
particular, they proved that if ∂D+u(x0)\D∗u(x0) 6= ∅ (see Preliminaries for the
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definitions), then a Lipschitz arc ξ : [0, τ ] → Ω emanating from x0 is a subset
of the singular set Σ(u). The results of [1] were refined in [5]; in particular it is
proved in [5, Corollary 4.3] that ξ has nonzero (right continuous) right derivative
at all points.

The purpose of the present note is to show that in R
2 the results of [5] and

methods from [12] and [10] easily imply that the restriction of ξ to an interval [0, τ ′]
has an equivalent parametrization of the form (in a suitable Cartesian coordinate
system) ψ(x) = (x, y1(x)−y2(x)), x ∈ [0, α], where y1, y2 are convex and Lipschitz
on [0, α]. (This result is equivalent to the assertion that the restriction of ξ to
an interval [0, τ∗] has finite turn, cf. Remark 3.3). In particular, ξ has (left
continuous) left halftangents at all points.

The question whether the results can be generalized to the case n > 2 remains
open.

2. Preliminaries

By B(x, r) we denote the open ball with center x and radius r. The scalar
product of v, w ∈ R

n is denoted by 〈v, w〉. If A ⊂ R
n, c ∈ R and v ∈ R

n, then we
define the sets A+ v and cA by the usual way and similarly set 〈v,A〉 := {〈v, a〉 :
a ∈ A}. The boundary and the convex hull of a set A ⊂ R

n are denoted by ∂A
and convA, respectively. The (Fréchet) derivative Df(a) of a function f on R

n

at a ∈ R
n is considered as an element of R

n. The one-sided derivatives of a real
or vector function ξ of one variable at x ∈ R are denoted by ξ′+(x) and ξ′

−
(x).

If f is a function defined on a subset of R
n, x ∈ R

n and v ∈ R
n, then we define

the one-sided directional derivative as

f ′

+(x, v) := lim
h→0+

f(x+ hv) − f(x)

h
.

Let Ω ⊂ R
n be an open set and u a locally semiconcave function on Ω (see

Introduction). Then u is locally Lipschitz and so differentiable a.e. in Ω. For
x ∈ Ω, we define (see [1] or [3, p. 54]) the set

D∗u(x) = {p ∈ R
n : Ω ∋ xi → x, Du(xi) → p}

of all reachable gradients of u at x (note that D∗u(x) is also called limiting sub-
differential, cf. [1, p. 725]).

The superdifferential D+u(x) of u at x can be defined as the convex hull of
D∗u(x) (see [1, p. 723], cf. [3, Theorem 3.3.6]).

Always D∗u(x) ⊂ ∂D+u(x) (see [3, Proposition 3.3.4]). Note that the su-
perdifferential D+u(x) = convD∗u(x) coincides with the Clarke’s subdifferential
∂Cu(x) (since ∂Cu(x) = convD∗u(x), see, e.g., [4]).

Let u(x) = g(x)+K‖x‖2, where g is concave, on a ball B(x0, δ) ⊂ Ω. Set f :=
−g. Since D(K‖x‖2) = 2Kx, we easily obtain that D∗u(x0) = −D∗f(x0)+2Kx0,
and therefore

(2.1) D+u(x0) = −∂f(x0) + 2Kx0,
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where ∂f is the classical subdifferential of the convex function f .
Recall that a function defined on an open convex subset of R

n is a DC function

if it is a difference of two convex functions. We will need the following simple
lemma which is a special case of the “mixing lemma” [10, Lemma 4.8].

Lemma 2.1. Let ϕ1, . . . , ϕp be DC functions on R, and let h be a continuous
function on R such that

h(x) ∈ {ϕ1(x), . . . , ϕp(x)} for each x ∈ R.

Then h is DC on R.

We will need also the well-known fact that convex functions are semismooth
(see [7, Proposition 3], cf. also [9, Proposition 2.3]). In other words:

Lemma 2.2. Let f be a convex function on an open convex set C ⊂ R
n and

x0 ∈ C. Let 0 6= q ∈ R
n, qn → q, tn ց 0, and zn ∈ ∂f(xn), where xn := x0+tnqn,

be given. Then 〈q, zn〉 → f ′

+(x0, q). In particular,

(2.2) diam〈q, ∂f(xn)〉 → 0.

3. The result and its proof

The following result is an immediate consequence of [5, Corollary 4.3].

Theorem CY. Let u be a semiconcave function on an open set Ω ⊂ R
n, x0 ∈

Σ(u) be a singular point of u and

∂D+u(x0) \D
∗u(x0) 6= ∅.

Then there exist q ∈ R
n with ‖q‖ = 1, τ > 0, and a Lipschitz curve ξ : [0, τ ] →

Σ(u) such that

(i) ξ′+(0) = q,
(ii) lims→0+ ξ

′

+(s) = q, and
(iii) infs∈[0,τ ] diam D+u(ξ(s)) > 0.

Note that it is proved in [5] also that ξ′+(s) exists for each s ∈ [0, τ) and ξ′+ is
right continuous on [0, τ). Further note that the result without (ii) was proved
already in [1].

Using Theorem CY and the method of the proof of the implicit function theo-
rem for DC functions [10, Theorem 4.4], we easily prove the following result.

Theorem 3.1. Let u be a semiconcave function on an open set Ω ⊂ R
2, x0 ∈ Σ(u)

be a singular point of u and

∂D+u(x0) \D
∗u(x0) 6= ∅.

Then there exist a Cartesian coordinate system in R
2 given by an isometry A :

R
2 → R

2 such that A(x0) = (0, 0), and convex Lipschitz functions y1, y2 on some
[0, α] (α > 0) such that, denoting ψ(x) := (x, y1(x) − y2(x)), x ∈ [0, α], we have
ψ(0) = (0, 0) and A−1(ψ([0, α])) ⊂ Σ(u).
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Proof: Let ξ : [0, τ ] → Σ(u) and q ∈ R
2 have properties from Theorem CY. We

will proceed in four steps. In Steps 1–3 we will suppose that

(3.1) x0 = (0, 0) and q = (1, 0).

Step 1. Set e2 := (0, 1). Let u(x) = g(x) + K‖x‖2 for x ∈ B(x0, δ) ⊂ Ω,
where g is concave and Lipschitz with a constant L > 0 on B(x0, δ). Set f := −g.
Applying (2.1) to any point x ∈ B(x0, δ), we obtain D+u(x) = −∂f(x) + 2Kx,
x ∈ B(x0, δ). So (iii) (of Theorem CY) easily implies that, for some 0 < τ1 < τ ,
we have that f(ξ(s)) ∈ B(x0, δ) and ∂f(ξ(s)) ⊂ B(0, L) for each s ∈ [0, τ1], and

(3.2) inf
s∈[0,τ1]

diam ∂f(ξ(s)) > 0.

We will show that there exists 0 < τ2 < τ1 such that

(3.3) δ := inf
s∈(0,τ2]

diam 〈e2, ∂f(ξ(s))〉 > 0.

Suppose on the contrary that there exits a sequence (tn) such that tn ց 0 and

(3.4) lim
n→∞

diam 〈e2, ∂f(ξ(tn))〉 = 0.

Set qn := ξ(tn)/tn and xn := ξ(tn) = tnqn. Since qn → q by (i), Lemma 2.2 gives
that

(3.5) lim
n→∞

diam 〈q, ∂f(ξ(tn))〉 = 0.

Since (3.4) and (3.5) clearly imply limn→∞ diam ∂f(ξ(tn)) = 0, we obtain a
contradiction with (3.2).

Step 2. Let ξ = (ξ1, ξ2). By (ii), we have lims→0+(ξ1)
′

+(s) = 1 and therefore
there exits 0 < τ3 < τ2 such that 1/2 ≤ (ξ1)

′(s) for a.e. s ∈ (0, τ3). So ξ1
is Lipschitz strictly increasing on [0, τ3] and (ξ1)

−1 is Lipschitz on [0, α], where
α := ξ1(τ3). Set d(x) := ξ2 ◦ (ξ1)

−1(x), x ∈ [0, α]. Then d is Lipschitz and
ψ(x) := (x, d(x)), x ∈ [0, α], is an equivalent parametrization of ξ|[0,τ3].

Step 3. Choose a partition {−L = y0 < y1 < · · · < yp = L} of the interval
[−L,L] such that max{yi − yi−1, i = 1, . . . , p} < δ/2. For each x ∈ (0, α), the
set 〈e2, ∂f(ψ(x))〉 ⊂ [−L,L] is a closed interval of length at least δ and so we can
choose ix ∈ {1, . . . , p} such that

(3.6) yix
∈ 〈e2, ∂f(ψ(x))〉 and yix−1 ∈ 〈e2, ∂f(ψ(x))〉.

For i ∈ {1, . . . , p}, set Ai := {x ∈ (0, α) : ix = i}. We will show that, for each
i ∈ {1, . . . , p} with Ai 6= ∅, the function d|Ai

can be extended to a Lipschitz DC
function ϕi on R.
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To this end, fix a such i and set

ω1(x) := f(x, d(x)) − yid(x) and ω2(x) := f(x, d(x)) − yi−1d(x) for x ∈ Ai.

Since ω1(x) − ω2(x) = (yi−1 − yi)d(x), x ∈ Ai, it is sufficient to prove that ωj

(j = 1, 2) can be extended to a Lipschitz convex function cj defined on R.
For each x ∈ Ai, choose px ∈ R such that (px, yi) ∈ ∂f(x, d(x)) and consider

the affine function

ax(t) := ω1(x) + px(t− x), t ∈ R.

Set

c1(t) := sup{ax(t) : x ∈ Ai}, t ∈ R.

Since ω1 is clearly bounded on Ai and |px| ≤ L for x ∈ Ai, it is easy to see that
c1 is a Lipschitz convex function on R.

Now consider arbitrary x, t ∈ Ai, x 6= t. Since (px, yi) ∈ ∂f(x, d(x)), we have

f(t, d(t)) − f(x, d(x)) ≥ px(t− x) + yi(d(t) − d(x)),

and therefore

ω1(t) = f(t, d(t)) − yid(t) ≥ f(x, d(x)) − yid(x) + px(t− x) = ax(t).

Since at(t) = ω1(t), t ∈ Ai, we obtain that c1 extends ω1. Quite similarly we can
find a convex Lipschitz extension c2 of ω2.

Since d(x) ∈ {ϕ1(x), . . . , ϕp(x)} for each x ∈ (0, α), and d, ϕ1, . . . , ϕp are
continuous on [0, α], we can clearly find i0, iα ∈ {1, . . . , p} such that d(0) = ϕi0(0)
and d(α) = ϕiα

(α).
Let h be the extension of d with h(x) = ϕi0(x), x < 0 and h(x) = ϕiα

(x), x > α.
Then h is continuous on R and h(x) ∈ {ϕ1(x), . . . , ϕp(x)} for each x ∈ R. Thus
Lemma 2.1 implies that h is DC on R, i.e., h = γ1 − γ2, where γ1 and γ2 are
convex on R. Then yj := γj |[0,α], j = 1, 2, are clearly convex Lipschitz functions,
and ψ(x) = (x, y1(x) − y2(x)), x ∈ [0, α].

Step 4. If (3.1) does not hold, we can choose a Cartesian system of coordinates
given by an isometry A : R

2 → R
2 such that A(x0) = (0, 0) and A(q) = (1, 0).

Applying steps 1-3 to u∗ := u◦A−1 and ξ∗ := A◦ξ, we obtain ψ of the demanded
form with ψ([0, α]) ⊂ Σ(u∗) = A(Σ(u)). �

Remark 3.2. Well-known elementary properties of convex functions on R easily
imply that the one-sided derivative ψ′

+ (ψ′

−
) exists and is right (left) continuous

on [0, α) ((0, α]) and has finite variation on this interval. In other words, ψ
has bounded convexity (see [11, Theorem 3.1] or [6, Lemma 5.5]). Further, since
clearly |ψ′

+| ≥ 1, |ψ′

−
| ≥ 1 we obtain that the curve ψ has finite turn (see [2,

Theorem 5.4.2] or [6, Theorem 5.11]). So the curve ψ∗ := A−1 ◦ ψ, for which
ψ∗([0, α]) ⊂ Σ(u), has also bounded convexity and finite turn.
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Remark 3.3. The proof of Theorem 3.1 and Remark 3.2 show that, for the curve
ξ : [0, τ ] → Σ(u) from Theorem CY, there exists 0 < τ∗ < τ such that ξ|[0,τ∗]

has finite turn. In fact, this assertion “is not weaker” than Theorem 3.1, since it
implies quickly Theorem 3.1 by standard methods.

Remark 3.4. We did not show that the curve ξ from Theorem CY has near 0 (left-
continuous) left derivative ξ′

−
at all points. However, the proof of Theorem 3.1

clearly implies that ξ has (left-continuous) left half-tangent on (0, τ∗] for some
0 < τ∗ < τ .

We will not give detailed proofs of facts from Remarks 3.2–3.4, since they would
be inadequately long, and these facts are not essential for the present short note.
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Birkhäuser, Boston, 2004.

[4] Clarke F.H., Optimization and nonsmooth analysis, 2nd edition, Classics in Applied Math-
ematics, 5, SIAM, Philadelphia, 1990.

[5] Cannarsa P., Yu Y., Singular dynamics for semiconcave functions, J. Eur. Math. Soc. 11

(2009), 999–1024.
[6] Duda J., Curves with finite turn, Czechoslovak Math. J. 58 (133) (2008), 23–49.
[7] Mifflin R., Semismooth and semiconvex functions in constrained optimization, SIAM J.

Control Optimization 15 (1977), 959–972.
[8] Pavlica D., On the points of non-differentiability of convex functions, Comment. Math.

Univ. Carolin. 45 (2004), 727–734.
[9] Spingarn J.E., Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math.

Soc. 264 (1981), 77–89.
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