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4D EMBRYOGENESIS IMAGE ANALYSIS USING PDE
METHODS OF IMAGE PROCESSING

Paul Bourgine, Róbert Čunderĺık, Olga Drbĺıková-Stašová,
Karol Mikula, Nadine Peyriéras, Mariana Remeš́ıková, Barbara Rizzi,
and Alessandro Sarti

In this paper, we introduce a set of methods for processing and analyzing long time
series of 3D images representing embryo evolution. The images are obtained by in vivo
scanning using a confocal microscope where one of the channels represents the cell nuclei
and the other one the cell membranes. Our image processing chain consists of three steps:
image filtering, object counting (center detection) and segmentation. The corresponding
methods are based on numerical solution of nonlinear PDEs, namely the geodesic mean
curvature flow model, flux-based level set center detection and generalized subjective sur-
face equation. All three models have a similar character and therefore can be solved using
a common approach. We explain in details our semi-implicit time discretization and finite
volume space discretization. This part is concluded by a short description of paralleliza-
tion of the algorithms. In the part devoted to experiments, we provide the experimental
order of convergence of the numerical scheme, the validation of the methods and numerous
experiments with the data representing an early developmental stage of a zebrafish embryo.

Keywords: image processing, embryogenesis, image analysis, finite volume method, image
filtering, object counting, segmentation, partial differential equation

Classification: 35A99, 74S10, 68U10

1. INTRODUCTION

The modern microscopy technique allows in vivo imaging of organisms at cell level
and at very early stages of development, even as soon as one cell or few cells stage,
without corrupting the cell integrity and normal development of the embryo. The
speed of the scanning is also improving and therefore it is possible to obtain images
of long periods of the embryonic development with a relatively short time step.
Having such data, we can perform miscellaneous analyses of the embryogenesis and
compare the development of different individuals. Some of the interesting challenges
of nowadays are for example reconstructing the cell lineage tree – tracking the cells of
an embryo from one cell stage to the fully developed organism, quantitative analysis
of the embryo – determining the number of cells, cell density, density of cell divisions
etc., finding some general characteristics of the embryogenesis process or measuring
the differences between individuals developing in different conditions, e. g. after
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application of some drugs.
In order to reach such goals, we need, besides sufficiently good quality data,

precise and efficient image processing algorithms. For all the embryo analyses men-
tioned above, it is necessary to process a large number of 3D data, while each of the
images can contain thousands of cells. The algorithms must be able to deal with the
imperfections of the images that are intrinsically linked to the scanning technique
– noise, presence of artifacts, incomplete or unclear structures. As the results of
some algorithms are not used only for the analyses themselves but also as inputs for
other image processing methods, it is important that each algorithm is as reliable
as possible. All this puts high demands on all involved methods.

In this paper, we present an efficient strategy for analysis of time series of 3D
embryogenesis images. Our technique consists of a set of image processing algorithms
that are based on PDE models. We present a unified approach to all parts of the
image processing chain – the mathematical models for all individual processes have
similar features and the corresponding numerical solutions are based on the same
principle. All the methods can be naturally parallelized using a common approach
as well.

The first step of the technique is the image filtering. This is an essential step
because some noise is always present in any microscope image and its level increases
with the speed of image acquisition that is a key issue in the cell lineage tree re-
construction. We perform this step by numerical solution of the so-called geodesic
mean curvature flow model (GMCF) [3, 4, 9] which was chosen from several available
methods by careful testing. The second step is the flux-based level set center detec-
tion method (FBLSCD) used to extract the approximate position and number of cell
nuclei centers. FBLSCD is an evolutionary process based on an advection-diffusion
formulation of morphological operators. The process consists of numerical solution
of the model using the flux-based finite volume discretization [6, 7] and consecutive
detection of local maxima of the evolving function. The final step is the image seg-
mentation by the generalized subjective surface method (GSUBSURF) [5, 11, 14].
The results obtained by segmentation can be directly used for various analyses of
the embryo and cell tracking. In all mentioned steps, we apply the semi-implicit
time discretization and finite volume space discretization.

The paper is organized as follows. First, we describe the data we are dealing with.
In the next section, we present the mathematical models of all three processes of the
chain. After, we explain our numerical methods used for solving all these models
and we briefly discuss the parallel implementation of the algorithms. In the last
section of the paper, we will mention several possible applications of our strategy
and we will show results of some experiments and embryo analyses. The validation
of the individual steps of the procedure is also provided.

2. EMBRYOGENESIS IMAGE DATA

Within the scope of our research, we work with two types of images – images of cell
nuclei and cell membranes. The images are obtained by a confocal laser microscope
with a color output. However, there is always only one color channel that is impor-
tant (typically red for nuclei images and green for membrane images), which means
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that the greylevel scale (a scalar intensity function) is sufficient for the representation
of the data.

Let us denote by u0
N : Ω → R, Ω ⊂ R3 the intensity function representing the

nuclei image and by u0
M : Ω → R, Ω ⊂ R3 the function corresponding to membrane

image, Ω being a 3D rectangular image domain. Without loss of generality we can
assume that 0 ≤ u0

N ≤ 1 and 0 ≤ u0
M ≤ 1 .

Our research was mainly focused on the embryonic development of zebrafish
(danio rerio, see Figures 1, 2). This animal is a popular model organism in devel-
opmental biology because its embryos develop rapidly and they are large, resistant
and transparent. The part of embryogenesis we are interested in covers hundreds
to thousands of cells in one time moment which is a reasonable and yet not trivial
number to process.

Fig. 1. Zebrafish embryo in a 2D horizontal slice view. On the left,

the image of cell nuclei, on the right, the cell membranes.

Fig. 2. Zebrafish embryo in a 2D vertical slice view. On the left,

the image of cell nuclei, on the right, the cell membranes.
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3. MATHEMATICAL MODELS FOR THE IMAGE PROCESSING
ALGORITHMS

In this section, we will describe the PDE models involved in our image processing
chain.

3.1. Image filtering by the geodesic mean curvature flow

The image filtering is the basic step of the overall procedure and it is necessary to
perform it before any further method is applied. The noise is intrinsically linked
to the microscopy technique and its presence increases with decreasing time step
of the scanning. Optimizing the signal to noise ratio and the speed of imaging
always means to accept a certain level of noise. Many image analysis algorithms
are generally not able to work directly with noisy images because the presence of
spurious noisy structures can lead to incorrect results. The developed methods are
usually also computationally much faster when applied to properly filtered image
data.

There is a number of methods that could be used to filter the image data sets
described in Sec. 2 and therefore some tests had to be performed in order to choose
the most appropriate one. In Sec. 6.2.1, we provide a quantitative study of the
image filtering properties of several nonlinear diffusion models. The results show
that the geodesic mean curvature flow model is the most suitable one for the data
we are dealing with. The partial differential equation for the GMCF filtering reads
as follows

ut − |∇u|∇.

(
g (|∇Gσ ∗ u|) ∇u

|∇u|

)
= 0 , (1)

where u(t, x), t > 0, represents the filtered image intensity function. We start from
the initial condition u(0, x) = u0

N (x) for nuclei images resp. u(0, x) = u0
M (x) for

membrane images and we consider the zero Neumann boundary conditions on the
boundary ∂Ω of the image domain. In this model, the mean curvature motion of
the level sets of function u is determined by the edge indicator function

g(s) =
1

1 +Ks2
, K ≥ 0 (2)

that is applied to the image gradient presmoothed by the Gaussian kernel with a
small variance σ. The essential property of this function is that its negative gradient
points towards the edges in the image. The diffusion term in (1) causes accumulation
of the level sets of u along the boundaries of objects in the image and therefore this
filtering is edge preserving.

The optimally filtered image is obtained as the solution of (1) after a few time
steps, at time t = TF . The optimality of the filtering result in a specific time step
as well as of the method itself can be verified by taking in account the criterion
of the mean Hausdorff distance from a gold standard, as we show in Sec. 6.2.1.
Let u0

Nf
, u0

Mf
represent the results of filtering for the nuclei and membrane images,

respectively.
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3.2. Object counting by the flux-based level set center detection

The second step of our approach is the detection of cell nuclei centers. The method
that we suggest was originally designed to solve this particular task but it can be
applied to a general problem of counting important objects in an image.

The principle of this process lies in the fact that all visible objects in the image
can be seen as humps of relatively higher image intensity (in case of dark objects on
bright background we consider the inverted image). Any such hump is represented
by certain image intensity level sets. The diameters of these level sets allow us
to distinguish between significant objects, e. g. cell nuclei, and spurious structures
like noise or inner peaks of intensity, which still remain there after GMCF filtering.
For cell nuclei, the diameter d is relatively large, 0 ≪ c1 ≤ d ≤ c2, while the
diameter of the level sets corresponding to noise or inner structures is much smaller,
0 < d ≪ c1. In general, the level sets are closed surfaces and if all their points are
moving (advected) at a constant speed in the direction of the inner normal to the
level set, the encompassed volume is decreasing and finally the hump disappears. Our
object counting method is based on the fact that the level sets with small diameter
corresponding to spurious structures disappear quickly, while level sets representing
important objects are observable in a much longer time scale.

It is well-known that if the evolution of level sets depends on the local mean
curvature then the speed of their shrinking tends to infinity as the diameter of level
sets tends to zero. We use this fact for an additional speed up of the above mentioned
advective level set motion. So, in our model, the normal velocity V of any level set
is given as V = δ+µk where δ and µ are constants (model parameters) and k is the
mean curvature. Such process of the level set evolution can then be represented by
the following equation

ut + δ
∇u

|∇u| · ∇u− µ|∇u|∇.

( ∇u

|∇u|

)
= 0 (3)

applied to the initial condition u0
Nf

, resp. u0
Mf

(the result of the filtering algorithm).
Again, we consider the zero Neumann boundary condition. Due to the shrinking
and smoothing of all (real and spurious) structures in such an evolution process,
we observe decreasing of the number of local maxima of the solution u satisfying
the equation (3). This decrease is fast in the beginning and later it is stabilized.
We stop this process when the slope of the decreasing is below a certain threshold.
The approximate cell nuclei centers are represented by the points in which the local
maxima of the function u are achieved at the stopping time TC . The number of the
local maxima nC and their positions sl, l = 1, . . . , nC at the time TC are the main
outputs of FBLSCD algorithm. However, some algorithms for embryo analysis, e. g.
cell tracking methods, can take advantage also of the centers detected in earlier time
steps. The principle of the center detection process is illustrated in Figure 3.

3.3. Segmentation by the generalized subjective surface method

The result of the center detection can be directly used to provide information about
the embryo, e. g. it gives the number of cells at a certain time point or the global
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Fig. 3. The center detection process. Top left, the intensity function of the original

image. Top right, the intensity function of the filtered image. Bottom left, the intensity

after 5 steps of center detection process. Bottom right, the intensity after 26 steps when

we stopped the process.

and local densities of cells (supposing that we know the total volume of the embryo).
Another important application, and the final step of our procedure, is the cell seg-
mentation and embryo segmentation. By cell segmentation we mean extraction of
the shape of either the cell nucleus or the whole cell, depending on which of the two
types of images we process. The embryo segmentation is extraction of the shape
of the whole organism. The approximate cell centers represent the seeds for any of
these segmentation processes.

Let us assume that sl, l = 1, . . . , nC are the points in R3 where the approximate
cell centers were detected by FBLSCD at the stopping time TC . First, we construct
an initial segmentation function for any of these points. The principle of the subjec-
tive surface method is that the position of the seed (cell center) is the main factor
determining the form of the function. Having constructed the initial function, we
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let it evolve by solving the following GSUBSURF equation

ut − wcon∇g · ∇u− wdifg|∇u|∇.

( ∇u

|∇u|

)
= 0 , (4)

where u is the evolving function, u(0, x) = u0(x) (the initial segmentation function)
and we consider the zero Dirichlet boundary condition on ∂Ω. The function g =
g(|∇Gσ ∗u0

f |), where u0
f = u0

Nf
in case of nuclei segmentation and u0

f = u0
Mf

in case

of membrane segmentation, is of the form (2) or we can use a more general form

g(s) = f

(
1

1 +Ks2

)
, (5)

keeping in mind that the function f has to preserve the edge detecting property of
the original function stated in (2). If f is suitably chosen, this generalization can
speed up the process of segmentation and improve the quality of the results.

The reason why we call the model (4) generalized lies in introducing the param-
eters wcon and wdif in the equation. If we set wcon = 1.0 and wdif = 1.0, we can
rewrite (4) in the form

ut − |∇u|∇.

(
g

∇u

|∇u|

)
= 0

which is a classical subjective surface formulation stated in [14]. Using the new
parameters wcon and wdif that can be considered as the weights for the advection
and diffusion processes makes the model more flexible. Having the possibility to
control separately the two processes, we have the potential to improve the efficiency
of the method. Figure 4 illustrates the evolution of the solution for various values
of parameters wcon and wdif . We can see that the time TS necessary to segment
the object can significantly differ as well as the way the function is evolving. The
optimal parameters are found after performing several tests of this type (see row 3 of
Figure 4 where the appropriate choice of parameters led to a very fast segmentation).

4. THE DISCRETIZATION OF THE MODELS

In this section, we will describe the numerical methods that are used for solving the
equations corresponding to filtering, center detection and segmentation explained in
Sec. 3. Though we will show the discretization of all three problems separately, we
will emphasize some general ideas that can be applied to any of the models.

4.1. The time discretization

For discretizing any of the equations (1), (3), (4) in time, we use the semi-implicit
approach that guarantees unconditional stability of the diffusion terms. Let us
suppose that we solve the filtering, center detection and segmentation problems in
time intervals 〈0, TF 〉, 〈0, TC〉 and 〈0, TS〉, respectively. Let NF , NC and NS be
the corresponding number of uniform time steps and τF = TF/NF , τC = TC/NC ,
τS = TS/NS .
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Fig. 4. The influence of convection and diffusion weights on the evolution of the solution

of (4). The solution is displayed in times t = 0, t = 1, t = 2, t = 5, t = 10, t = 40. Row 1,

wcon = 1.0, wdif = 1.0. Row 2, wcon = 1.0, wdif = 10.0. Row 3, wcon = 10.0, wdif = 2.0.

Row 4, wcon = 10.0, wdif = 0.1.

The GMCF equation (1) can be approximated in the following way. For any
n = 1 . . .NF we get an equation

un − un−1

τF
− |∇un−1|∇.

(
g
(
|∇Gσ ∗ un−1|

) ∇un

|∇un−1|

)
= 0 , (6)

where un represents the solution on the nth time level.
The discretization of the FBLSCD model (3) reads as follows, for any n = 1 . . .NC

un − un−1

τC
+ δ

∇un−1

|∇un−1| · ∇un−1 − µ|∇un−1|∇.

( ∇un

|∇un−1|

)
= 0 . (7)

For the GSUBSURF equation (4) we get for all n = 1 . . .NS

un − un−1

τS
− wcon∇g · ∇un−1 − wdifg|∇un−1|∇ · ∇un

|∇un−1| = 0 . (8)

4.2. Finite volume space discretization

In order to discretize (6), (7), (8) in space, we apply the finite volume method. The
principle that we explain here is applicable to all models mentioned above.
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First, we identify the finite volumes of the mesh Th with the voxels of the 3D image
which is the most natural choice. We denote each finite volume by Vijk, i = 1 . . .N1,
j = 1 . . .N2, k = 1 . . .N3. Such a finite volume grid is regular rectangular and let
h1, h2, h3 represent the size of the volumes in x1, x2, x3 direction, respectively. Let
m(Vijk) denote the volume of Vijk and cijk its barycenter. By un

ijk we will denote
the approximate value of un in cijk.

For all volumes Vijk , we define two index sets. First, let Nijk denote the set of
all (p, q, r) such that p, q, r ∈ {−1, 0, 1}, |p|+ |q|+ |r| = 1. Then, let Pijk represent
the set of all (p, q, r) satisfying p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 2. Let us first
consider (p, q, r) ∈ Nijk. The line connecting the center of Vijk and the center of its
neighbor Vi+p,j+q,k+r is denoted by σpqr

ijk and its length m(σpqr
ijk ). The faces of finite

volume Vijk are denoted by epqrijk with area m(epqrijk ) and normal νpqrijk . Let xpqr
ijk be

the point where the line σpqr
ijk crosses the face epqrijk . Finally, for any (p, q, r) ∈ Pijk ,

let ypqrijk denote the midpoints of the voxel edges. The approximate value of un−1 at

xpqr
ijk and ypqrijk , where (p, q, r) belongs to the corresponding index set, is denoted by

upqr
ijk , omitting the time index, as only the values from the time level n − 1 will be

needed in these points.
The implementation of the boundary conditions is done in the following way. In

case of Dirichlet boundary condition, we set un
ijk = 0 for the volumes touching the

boundary of the domain and the above definitions are valid only for the inner volumes
Vijk . In case of Neumann boundary condition, we use the reflection principle.

Fig. 5. The finite volume mesh.

Now let us integrate the GMCF equation discretized in time (6) over every finite
volume Vijk . We get

∫

Vijk

un − un−1

τF
dx−

∫

Vijk

|∇un−1|∇.

(
g
(
|∇Gσ ∗ un−1|

) ∇un

|∇un−1|

)
dx = 0 . (9)

The first term on the LHS can be simply approximated as
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∫

Vijk

un − un−1

τF
dx ≈ m(Vijk)

un
ijk − un−1

ijk

τF
·

Assuming that the approximation of |∇un−1| in Vijk is a constant, the second term
can be rewritten using the divergence theorem

∫

Vijk

|∇un−1|∇.

(
g
(
|∇Gσ ∗ un−1|

) ∇un

|∇un−1|

)
dx

= Q̄n−1
ijk

∑

Nijk

∫

epqrijk

g
(
|∇Gσ ∗ un−1|

) ∇un

|∇un−1|ν
pqr
ijk dγ , (10)

where Q̄n−1
ijk is an average modulus of |∇un−1| in Vijk .

A similar procedure can be applied to the FBLSCD problem. In order to obtain
a space discretization of (7), we first perform the integration over Vijk

∫

Vijk

un − un−1

τC
dx+

∫

Vijk

δ
∇un−1

|∇un−1| · ∇un−1 dx

−
∫

Vijk

µ|∇un−1|∇.

( ∇un

|∇un−1|

)
dx = 0 . (11)

Again, we can take the approximation

∫

Vijk

un − un−1

τC
dx ≈ m(Vijk)

un
ijk − un−1

ijk

τC
·

Now we will rewrite the second term on the LHS, performing the following procedure.
Let us denote

v = δ
∇un−1

|∇un−1| ·

As suggested in [6], the convective term can be written in an equivalent form

v · ∇un−1 = ∇.(vun−1)− un−1∇ · v . (12)

Therefore, considering un−1 constant in Vijk we get
∫

Vijk

v · ∇un−1 =
∑

Nijk

∫

epqrijk

un−1v · νpqrijk dγ − un−1
ijk

∑

Nijk

∫

epqrijk

v · νpqrijk dγ . (13)

The last term on the LHS of (11) is the diffusion term that can be rewritten similarly
to (10)

∫

Vijk

µ|∇un−1|∇.

( ∇un

|∇un−1|

)
dx = µQ̄n−1

ijk

∑

Nijk

∫

epqrijk

∇un

|∇un−1|ν
pqr
ijk dγ . (14)
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Finally we come to the space discretization of (8) that can be done following the
same principle as in the case of FBLSCD. First, the integration over Vijk reads

∫

Vijk

un − un−1

τ
dx−

∫

Vijk

wcon∇g · ∇un−1 dx−
∫

Vijk

wdifg|∇un−1|∇ · ∇un

|∇un−1| dx = 0 .

(15)
The approximation of the time derivative term is standard

∫

Vijk

un − un−1

τS
dx ≈ m(Vijk)

un
ijk − un−1

ijk

τS
·

As we are dealing with a convection-diffusion model as in the case of FBLSCD, we
use an analogous expression of the two remaining terms on the LHS. This time we
define v as

v = −wcon∇g

and afterwards the second term on the LHS is expressed by (13). The diffusion term
is rewritten as follows

∫

Vijk

wdifg|∇un−1|∇.
∇un

|∇un−1| dx = wdifgijkQ̄
n−1
ijk

∑

Nijk

∫

epqrijk

∇un

|∇un−1| .ν
pqr
ijk dγ , (16)

where gijk is the average modulus of g in Vijk.
Let us note that in all mentioned models, the absolute value of the gradient |∇u|,

resp. |∇un−1| for the equations discretized in time, appears in denominator. In prac-
tical implementations, this term is substituted by the regularized term

√
ε2 + |∇u|2,

resp.
√
ε2 + |∇un−1|2, where ε is the regularization parameter, usually ε ≪ 1. Then,

instead of Q̄n−1
ijk we use Q̄n−1

ε,ijk, the average modulus of
√
ε2 + |∇un−1|2.

Summarizing the expressions stated in (10), (13), (14) and (16), we can see that
to properly approximate any of them, we need to approximate the average modulus
of |∇un−1|, resp.

√
ε2 + |∇un−1|2, g(|∇Iσ |), where Iσ = Gσ ∗ u0

F , and g(|∇un−1
σ |),

un−1
σ = Gσ∗un−1, in both Vijk and on voxel faces epqrijk . There are various possibilities

how to do that. In [12], three variants based on the same principle were described
and tested. Here we mention only one of them, the so called reduced diamond cell
approximation, that appeared to be the most suitable for our practical purposes due
to its simplicity and overall good performace.

Our scheme is using the values of un−1 in the midpoints ypqrijk of the voxel edges
which are approximated for any (p, q, r) ∈ Pijk by

upq0
ijk =

1

4
(un−1

ijk + un−1
i+p,j,k + un−1

i,j+q,k + un−1
i+p,j+q,k) ,

up0r
ijk =

1

4
(un−1

ijk + un−1
i+p,j,k + un−1

i,j,k+r + un−1
i+p,j,k+r) ,

u0qr
ijk =

1

4
(un−1

ijk + un−1
i,j+q,k + un−1

i,j,k+r + un−1
i,j+q,k+r).
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Let us denote by ∇pqrun−1
ijk the approximation of the gradient in the barycenter xpqr

ijk

of the face epqrijk , (p, q, r) ∈ Nijk, of the voxel Vijk . Using this notation, we can define

∇p00un−1
ijk = (p(un−1

i+p,j,k − un−1
ijk )/h1, (u

p10
ijk − up,−1,0

ijk )/h2, (u
p01
ijk − up,0,−1

ijk )/h3) ,

∇0q0un−1
ijk = ((u1q0

ijk − u−1,q,0
ijk )/h1, q(u

n−1
i,j+q,k − un−1

ijk )/h2, (u
0q1
ijk − u0,q,−1

ijk )/h3) ,

∇00run−1
ijk = ((u10r

ijk − u−1,0,r
ijk )/h1, (u

01r
ijk − u0,−1,r

ijk )/h2, r(u
n−1
i,j,k+r − un−1

ijk )/h3) .

The required approximations can be now defined as

Qpqr;n−1
ijk = |∇pqrun−1

ijk |, Qpqr;n−1
ε,ijk =

√
ε2 + |∇pqrun−1

ijk |2 ,

Q̄n−1
ijk =

1

6

∑

Nijk

|∇pqrun−1
ijk |, Q̄n−1

ε,ijk =

√√√√ε2 +
1

6

∑

Nijk

|∇pqrun−1
ijk |2 , (17)

gpqr;n−1
ijk = g

(
|∇pqrun−1

σ;ijk|
)
, gijk = g


1

6

∑

Nijk

|∇pqrIσ;ijk |


 .

4.3. The fully discrete formulation of the problems

Having computed all the necessary approximations, we are ready to write the fully
discrete formulations of the problems (1), (3), (4).

The discretization of the filtering problem (1) is straightforward. (17) gives us
all required approximations and recalling (10), we can write the discrete equation

m(Vijk)
un
ijk − un−1

ijk

τF
= Q̄n−1

ijk

∑

Nijk

m(epqrijk )
gpqr;n−1
ijk

Qpqr;n−1
ijk

un
i+p,j+q,k+r − un

ijk

m(σpqr
ijk )

· (18)

In order to write the discrete form of FBLSCD, we define for (p, q, r) ∈ Nijk

vpqrijk = m(epqrijk )

(
δ
un−1
i+p,j+q,k+r − un−1

ijk

Qpqr;n−1
ijk m(σpqr

ijk )

)
· (19)

We will distinguish between the outflow and inflow boundaries by defining two sets of
indices Nout

ijk = {(p, q, r) ∈ Nijk , v
pqr
ijk > 0} , N in

ijk := {(p, q, r) ∈ Nijk , v
pqr
ijk ≤ 0} .

If we use the upwind principle for approximating the first integral on the RHS in
(13), we obtain

∫

Vijk

v · ∇un−1 ≈
∑

Nout
ijk

un−1
ijk vpqrijk +

∑

Nin
ijk

un−1
i+p,j+q,k+rv

pqr
ijk − un−1

ijk

∑

Nijk

vpqrijk

=
∑

Nin
ijk

(un−1
i+p,j+q,k+r − un−1

ijk )vpqrijk . (20)

The diffusion term is approximated as follows
∫

Vijk

µ|∇un−1|∇ ·
( ∇un

|∇un−1|

)
dx ≈ µQ̄n−1

ijk

∑

Nijk

m(epqrijk )
un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ijk m(σpqr

ijk )
· (21)
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The final fully discrete form of FBLSCD is given by

m(Vijk)
un
ijk − un−1

ijk

τC
=

∑

Nin
ijk

(un−1
ijk − un−1

i+p,j+q,k+r)v
pqr
ijk

+ µQ̄n−1
ijk

∑

Nijk

m(epqrijk )
un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ijk m(σpqr

ijk )
, (22)

where vpqrijk is substituted by (19).
The last step is the full discretization of the GSUBSURF equation which is anal-

ogous to FBLSCD. Again, we define

vpqrijk = m(epqrijk )

(
−wcon

gi+p,j+q,k+r − gijk
m(σpqr

ijk )

)
, (23)

where we consider the approximation of ∇g.νpqrijk . Then the discrete convection term
is exactly of the form (20). For the diffusion term we have

∫

Vijk

wdifg|∇un−1|∇ · ∇un

|∇un−1| dx ≈ wdif gijk Q̄
n−1
ijk

∑

Nijk

m(epqrijk )
un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ijk m(σpqr

ijk )
·

(24)
The fully discrete form of the GSUBSURF equation reads as follows

m(Vijk)
un
ijk − un−1

ijk

τS
=

∑

Nin
ijk

(un−1
ijk − un−1

i+p,j+q,k+r)v
pqr
ijk

+ wdif gijk Q̄
n−1
ijk

∑

Nijk

m(epqrijk )
un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ijk m(σpqr

ijk )
, (25)

where vpqrijk is given by (23).
All the discrete equations (18), (22), (25) together with boundary conditions rep-

resent linear systems with unknowns un
ijk. These systems can be solved by SOR

method. Since we start the iterative process using the result from the previous time
step, we have a good initial approximation and SOR method is sufficiently fast.

5. PARALLELIZATION OF THE ALGORITHMS

The microscopes produce images with a resolution that results in a huge amount of
data. Our algorithms were used to process 3D images of size up to 50MB (using
one-byte representation of the image intensity) and the newest devices produce data
that can be much larger. Since several double precision floating point arrays with
dimensions corresponding to the image size are used in the implementations of our
algorithms, the memory requirements of the programs highly exceed the limits of a
standard single processor machine and the algorithms have to be parallelized.

The parallelization of all methods that we mentioned is based on the same prin-
ciple. Let us note that nuclei and cell shape segmentation do not usually require
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a parallel approach because the corresponding equation can be solved only on a
small subvolume surrounding the segmented object. Filtering, center detection and
embryo segmentation are mostly not suitable for serial computing.

We use MPI interface and the so called SPMD (single program multiple data)
model, where each parallel process executes the same code on a different set of data.
First, we split the data into several parts (proportional to the number of processors).
Then we rewrite the serial program in such a way that each process handles the
correct part of data and transmits necessary information to other processes. Figure 6
shows our data distribution among the processes.

1 n1 n1+1

0 1 n1 n1+1

0 1 i

j

k

Fig. 6. Data distribution and its overlap over parallel processes (Figure from [13]).

3D images are represented by 3D arrays indexed by i, j, k. They are given in the
index ranges i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3. The computational domain
given by the finite volume space discretization is equal to the image domain. In order
to distribute the data (i. e. the image as well as the solution of the corresponding
equation) to nprocs processors, we define n1 = N1/nprocs + 1, nlast

1 = N1 − (nprocs −
1)n1 and we set n2 = N2, n3 = N3. We store the first part of 3D data, i. e.
i = 1, . . . , n1 + 1, j = 1, . . . , n2 + 1, k = 1, . . . , n3 + 1, cf. Figure 5, on the root
process with rank 0. The next process with rank 1 handles the next part of the
image, i. e. all 2D slices j = 1, . . . , n2 + 1, k = 1, . . . , n3 + 1 locally indexed by i in
the range i = 0, . . . , n1 + 1, where the 2D slice with i = 0 corresponds to the slice
with index i = n1 in the root process with rank 0. The data distribution is similar
on further processes. For the last process, we have i = 1, . . . , nlast

1 . The complete
solution is obtained by merging the solutions from the individual processes. The
data overlap is necessary for information exchange between neighboring processes in
order to solve iteratively the linear system and compute its coefficients.

All our algorithms use the SOR method in order to solve the corresponding linear
system. However, there is a dependence of the currently updated value uijk on its
six neighbors ui+p,j+q,k+r , (p, q, r) ∈ Nijk. Such dependence is not well suited for
the parallelization but there exists an elegant way how to change the standard SOR
method so that it can be efficiently parallelized, cf. e. g. [1]. All voxels are split
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in two groups. RED elements are those with the sum of their indexes equal to
an even number. Conversely, BLACK elements fulfill the condition that the sum
of their indexes is an odd number. Then the six neighbors of a RED element are
BLACK elements and the value of a RED element depends only on the BLACK
elements, and vice-versa. Due to this fact, we can split one SOR iteration in two
steps. First we update RED elements simultaneously on all processors. Then the
updates in overlapping slices are interchanged between neighboring processes using
MPI functions. After, the BLACK elements are updated on all processors and again,
the updates from the overlapping regions are transferred between the neighboring
processes. This completes one step of the RED-BLACK SOR algorithm which we
use in all parallel versions of our methods.

6. APPLICATIONS AND EXPERIMENTS

In this section we will discuss the practical aspects of the methods introduced in
the above text. First, we will examine the behaviour of the numerical scheme by
determining its experimental order of convergence. After, we will illustrate how our
image processing chain works on typical data. We will start by showing some results
of filtering, after the center detection and finally some segmented objects. Each
part will start with some sort of validation of the corresponding method. Finally we
will explain how the results of segmentation can be used to analyze the process of
embryogenesis.

6.1. Experimental order of convergence of the numerical schemes

In order to verify the convergence properties of the proposed schemes, we made
several experiments to examine the experimental order of convergence for various
problems. Such tests confirm the reliability of our discretization methods.

A representative example (with known exact solution) for all our models is a
simple level set equation in the following form

∂tu = |∇u|∇ ·
( ∇u

|∇u|

)
, (26)

resp. its regularized variant

∂tu =
√
ε+ |∇u|2 ∇ ·

(
∇u√

ε+ |∇u|2

)
· (27)

The exact solution of (26) is

u(x, y, z, t) =
x2 + y2 + z2 − 1

4
+ t (28)

and let us consider Dirichlet boundary conditions and the initial condition given
by this solution. The regularized problem (27) was solved in the time domain
I = [0, 0.16] and in the spatial domain Ω = [−1.25, 1.25]3 that consisted of n3
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voxels and the space step was h1 = h2 = h3 = h = 2.5/n. The time step τ was
taken proportional ho h2. The error of the numerical solution was measured in
L∞(I, L2(Ω)) norm which is natural for testing the schemes for solving parabolic
problems. The results of our tests are shown in Table 1. We display results for grad-
ually refined grid and also for various values of ε. We can see that for this coupling
of the space and time steps, our schemes are second order accurate for this type of
smooth solution.

Table 1. Experimental order of convergence for the reduced diamond cell scheme,

equation (27), analytical solution (28). The L∞(I, L2(Ω)) errors

and corresponding EOC are displayed for various values of ε.

n τ ε = h EOC ε = h2 EOC ε = 10−6 EOC
10 0.04 4.9584e-2 9.6094e-3 4.3292e-3
20 0.01 1.6991e-2 1.545 1.3388e-3 2.844 1.0697e-3 2.017
40 0.0025 4.4410e-3 1.936 8.8258e-4 2.244 2.6622e-4 2.007
80 0.000625 1.1104e-3 2.000 6.7506e-5 2.066 6.6493e-5 2.001
160 0.00015625 2.7709e-4 2.003 1.6681e-5 2.017 1.6618e-5 2.000

Now let us try a more difficult example. We consider a highly singular solution
of (26) given by

u(x, y, z, t) = min

(
x2 + y2 + z2 − 1

4
+ t, 0

)
. (29)

We use the same space and time step coupling τ h2 and because the exact solution
is not smooth, we measure the error in L1(I, L1(Ω)) norm. The best convergence
properties were observed for ε = h2 and therefore we show just results for this choice.
Table 2 displays the results for gradually refined grid similarly as in the previous
case. We can see that our method converges also for the singular solution, although
the EOC is now less than 2.

Table 2. Experimental order of convergence for the reduced diamond cell scheme,

equation (27), analytical solution (29).

n τ L1(I, L1(Ω)) EOC
10 0.04 2.089161e-2
20 0.01 9.704067e-3 1.10626
40 0.0025 4.094488e-3 1.24491
80 0.000625 1.674962e-3 1.28955

160 0.00015625 6.949633e-4 1.26912

Another test was realized for the GSUBSURF problem. Since the analytical
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solution of the equation (4) is not known, we consider a modified problem

∂tu− wcon∇g∇u− wdifg
√
ε2 + |∇u|2 ∇ · ∇u√

ε2 + |∇u|2
= f(u) . (30)

We consider the function ũ(x, y, z, t) = t cos(πx) cos(πy) cos(πz) to be the analytical
solution of the problem. Then we get for f(u):

f(u) = ∂tũ− wcon∇g∇ũ− wdifg
√
ε2 + |∇ũ|2 ∇ · ∇ũ√

ε2 + |∇ũ|2
·

The function g was taken in the form g(x, y, z) = cos2(πx) cos2(πy) cos2(πz). The
values of model parameters were chosen as follows: wcon = 1.0, wdif = 1.0, ε = h2,
Ω = [−0.5, 0.5]3, T = 0.16, τ = 4h2. The results are displayed in Table 3 where we
again see the experimental order of convergence of the method.

Table 3. Experimental order of convergence for the reduced diamond

cell scheme, equation (30).

n τ L∞(I, L2(Ω)) EOC
10 0.04 2.294529e-2
20 0.01 9.546493e-3 1.26516
40 0.0025 3.636421e-3 1.39245
80 0.000625 1.478174e-3 1.29870

160 0.00015625 6.501010e-4 1.18508

6.2. The image processing chain

In all experiments below, we use image data representing the development of a
zebrafish embryo. The imaging started approximately 4 hours after fertilization and
continued for several hours. The time step ∆t between the subsequent 3D images
varies from 1 to 5 minutes. Each 3D image is constructed by scanning several dozens
to hundreds of 2D slices, the size of each slice is typically 512 × 512 pixels. Each
image in the time sequence usually contains several thousands of cells.

For most of the experiments, we used datasets with a low time step ∆t (∆t ≈
1min). Such datasets are suitable for good cell tracking but due to the high speed
of scanning, they suffer from some inevitable loss of quality. Anyway, as we will see,
most of the algorithms are able to operate well also on such data. Some of the ex-
periments, especially for the membrane segmentation, were performed on data with
a higher ∆t and better signal, as the membrane images are in general more suscep-
tible to the presence of artifacts, incomplete borders and spurious inner structures.
Many applications of the membrane segmentation, e. g. determining the shape of
cells or the area of the cell contact surface, are not connected to the cell tracking
and therefore they do not depend so strongly on the speed of the scanning.



4D Embryogenesis Image Analysis 243

Before starting, let us make a short remark about the presentation of the re-
sults. Where possible, we use 3D visualization. In some cases, especially for the
segmentation results, we show 2D slices that provide a better insight to the data
and illustration of the ideas. However, such a visualization is more likely to empha-
size local errors and distract the three-dimensional relations. This fact should be
taken in account while viewing such figures.

6.2.1. Image filtering

The image filtering is a widely studied topic and there are a number of techniques
able to efficiently remove the noise from the image data. For our purposes, we tested
several nonlinear diffusion models, namely the basic mean curvature flow (MCF),
slowed mean curvature flow (SMCF), geodesic mean curvature flow (GMCF) and
the regularized Perona–Malik model (PM). Detailed description of the methods can
be found in [10].

The filtering results were quantified using the mean Hausdorff distance between
the manually segmented nuclei surfaces – the ‘gold standard’ and the corresponding
nuclei isosurfaces in the original and filtered data. Further tested criterion for filter-
ing is related to the splitting ability of artificially connected neighboring nuclei due
to the image acquisition error.

First, let us define the mean Hausdorff distance. Let A = {a1, . . . , ap} and
B = {b1, . . . , bq} denote two finite point sets. Then the mean Hausdorff distance is
defined as, cf. [18],

MHD(A,B) = max (mhd(A,B),mhd(B,A)) ,

where

mhd(A,B) = 1/p

p∑

i=1

min
b∈B

‖ai − b‖

is called mean directed Hausdorff distance and ‖ · ‖ is an underlying norm (usually
Euclidean). The mean Hausdorff distance is widely used to measure the similarity
between two point sets, cf. e. g. [8, 18]. In our case the sets A and B are given by
discrete points that form the surface of the gold standard and an isosurface either
in an original or in a filtered volume.

The results of the comparison are presented in Figure 7 and Table 4. The optimal
filtering parameters for each method were chosen according to the mean Hausdorff
distance observed for a large range of isosurfaces. We can see that the mean cur-
vature flow achieves the minimum value of the mean Hausdorff distance for the
isosurface value 25. It has the highest smoothing capability in a small range of
intensity levels in a neighborhood of this value. This leads to a strongly convex
graph which indicates significant changes in the distribution of the image intensity
and consequent modifications of shape of the objects in the image. Other filter-
ing techniques significantly reduce the mean Hausdorff distance for a large range
of isosurfaces. We can observe that the graph of GMCF has the lowest convexity
for lower intensities which represents the robustness of this method, in other words,
any of the corresponding isosurfaces can be used for correct representation of the
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nucleus because they all have more or less the same Hausdorff distance from the
gold standard.
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Fig. 7. Graphs of the mean Hausdorff distances for the original data and data filtered

using the optimal values of parameters. (The figure from [10].)

Table 4. The mean Hausdorff distances in µm for the original and filtered data

using the optimal values of parameters. (The table from [10].)

Isosurface Original MCF SMCF PM GMCF
15 0.506 0.394 0.411 0.369 0.308
20 0.394 0.271 0.302 0.292 0.282
25 0.352 0.238 0.265 0.272 0.283
30 0.350 0.262 0.274 0.284 0.308
35 0.377 0.319 0.313 0.318 0.344
40 0.422 0.393 0.364 0.367 0.392
45 0.476 0.473 0.429 0.424 0.449

Another experiment inspected the capability of the methods to smooth the small
intensity variations and preserve or even improve the edge information. Figure 8
shows the graphs of the image intensity along a line crossing a nucleus. We can see
that the line representing GMCF is totally flat outside the nucleus. Such flattening
of low intensity regions causes enhancement of the nuclei boundaries.

The last tested property was the ability to split spuriously connected objects that
occur in the images due to the physical constraints of microscopy. A subvolume of
the original data with 22 connected regions was selected and the number of connected
regions in filtered subvolumes was evaluated, cf. Table 5. The result shows that the
GMCF method was able to divide 50% of the spuriously connected regions.
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Fig. 8. Graphs of the original and filtered image intensities in a neighborhood of a

nucleus after 5 and 15 time steps. (The figure from [10].)

Table 5. The number of spuriously connected regions found in original

and filtered data using the optimal choice of parameters. (The table from [10].)

Original MCF SMCF PM GMCF
22 20 21 18 11

All the above mentioned merits of the GMCF led to the choice of this filtering
technique for our image algorithm chain.

Figures 9 and 10 show a few examples of the GMCF filtering. We used a uniform
rectangular grid with h1 = h2 = h3 = 0.01 and the time step τF is indicated below
the figures. The values of the other model parameters were K = 5.0 and σ = 0.0001.
The norm of gradient |∇un−1| was regularized with ε = 0.01. Figure 9 shows 2D
slices of filtered nuclei and membrane images compared to original data. Figure 10
illustrates how the filtration process gradually removes the noise from the original
image.

6.2.2. Center detection

In order to validate our object counting algorithm, we performed a manual center
detection on a subvolume of a nuclei image and we tested the correctness of the
result obtained by automatic detection. Considering the further applications of the
center detection, there are three basic types of errors that can occur. False positive
detection is the case when the algorithm finds a center that does not correspond to
any important object in the image. This happens especially in large epithelial nuclei
that can contain inner structures that cause detection of more than one center in a
single nucleus. Another false positive case is detection of a center that corresponds
to some artifact or noise structure. False negative detection is the case when an
object was not detected. This is usual for small nuclei of very low intensity. Finally,
if the detected center is too far from the center of mass of the object, it can cause
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Fig. 9. Comparison of original noised and filtered images. In the left column, we can see

the original data, in the right column the corresponding results of GMCF filtering. We

used τF = 0.0002 and 5 time steps for nuclei images and 10 steps for membrane images.

some problems in the segmentation process as the segmentation result significantly
depends on the location of the compact support of the initial segmentation function
which is given by the position of the segmentation seed.

In order to measure the quality of our automatic object detection, we evaluated
the number of false positive (FP) and false negative (FN) cases and the average
distance D̄ of an automatically detected center to the corresponding center found
by hand. The results are presented in Table 6 and Figure 11. As we can see, for
this particular subvolume the algorithm found 102 out of 106 nuclei, with no false
positives. The false negative detections appear only on the border of the subvolume.
The average error in the position of the centers is small compared to the diameter of
the nuclei which is typically from 10µm to 20µm. 45% of the centers were detected at
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Fig. 10. The GMCF filtering process illustrated on the isosurface I = 30 of the data.

The pictures show the result after 0, 5, 10 and 40 time steps. τF was 2.10−5 .

the exact position, the others are slightly shifted which does not cause any problem
for the subsequent segmentation.

The chosen subvolume is a representative part of the inner cell layers of the
embryo. For the outer (epithelial) layer, we would usually observe false positive
cases. In Sec. 6.3, we explain how we can correct such errors. Higher rate of false
negative cases can occur in the parts with weaker staining. Discovering or correcting
false negative detections would be much more difficult than correction of the false
positives. Therefore, for data with varying level of staining, the algorithm must
be set up in a way that avoids production of false negative detections, even if it
often means to accept a certain number of (usually correctable) false positives. In
practice it means that the stopping criterion must be adjusted, making the FBLSCD
algorithm stop at an earlier stage of the evolution.

The parameters for this test were set as follows. The space grid is uniform with
h1 = h2 = h3 = 0.01 and τC = 0.00125. Further we set δ = 1.0, µ = 0.00125 and we
regularize |∇un−1| by ε = 10−6 in the convection term and ε = 1.0 in the diffusion
term. Even though the images are filtered, they can be still deteriorated by a certain
level of low intensity noise. In such case we apply an additional FBLSCD parameter
– threshold. Then the detection algorithm ignores the local maxima which are below
the chosen threshold value. This value depends on the intensity of the objects and
the noise in the image. In this experiment we used thres = 0.08, considering the
image intensity from the interval [0; 1].

Table 6. Evaluation of the quality of the automatic center detection

on a subvolume.

Centers manual Centers FBLSCD FP FN D̄ Exact positions
106 102 0 4 0.8197µm 48

Using the same parameters, we make an experiment on an image from another
data set. The evolution is illustrated in Figure 12 and 13 which give us an image
of how the FBLSCD method works. In Figure 12, we visualize the centers detected
in the original image, in the image filtered by GMCF and then in time steps 2, 3
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Fig. 11. Comparison of the nuclei centers detected manually (left)and by FBLSCD

(right). On the left, the centers missing in the automatic detection are indicated.

and 9 of FBLSCD. In the original image, we can see a large amount of redundant
centers. After GMCF filtering, the number of centers is reduced, though it is still
too high, and due to formation of regions with constant intensity, some local maxima
cannot be localized. In time step 2 of FBLSCD, we can still observe about 25% of
extra centers but what is important, each object contains at least one detected local
maximum. Then, a single time step is sufficient to smooth the subtle intensity peaks
inside the nuclei and only 3 redundant centers corresponding to tiny noise structures
remain. In time step 9, all redundant centers are removed while we still have no
false negative detection. Figure 13 presents the intensity profile of a 2D slice of the
original and filtered data, and afterwards a 2D slice of the function evolving by the
FBLSCD model (3). The graph of the evolution of the number of centers is also
provided and it shows that the process is really most stabilized at time step 9, when
the number of detected centers is 30.

6.2.3. Cell nuclei segmentation

In order to start the segmentation process, we first need to construct an appropriate
initial segmentation function. If we deal with ideal images, the final result is almost
independent of the initial function, but in our case the objects in images can be
nonhomogeneous and the images can contain some artifacts or inner structures in
the objects, or the objects can be artificially connected. Moreover, because there
are millions of cells to process in one 3D+time data set, the segmentation function
should evolve into its final shape very quickly. Therefore we try to set the starting
form of the segmentation function as close to the actual segmented object as possible.
The nuclei are in general approximately spherical or ellipsoidal objects, so we start
from a function whose all isosurfaces are equal ellipsoids. The center of such an
ellipsoid is given by the detected position of the nucleus center and the radii are
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Fig. 12. The center detection process. Top left, local maxima in the original data (159).

Top right, data filtered by GMCF (54 centers). Bottom, time steps 2 (42 centers), 3 (33

centers) and 9 (30 centers) of FBLSCD.

chosen by estimating the size of the cell, based on measuring the distance from its
nearest neighbor.

The validation, similarly as in the case of image filtering, was done by measuring
the mean Hausdorff distance between the manually segmented surfaces (the manual
segmentation was done in ITK-SNAP [16]) and an isosurface (I = 127) of the seg-
mentation function obtained by GSUBSURF method. The model parameters were
chosen as follows: g(s) = Gρ ∗ 1

(1+Ks2)6 , ρ = 0.0001, K = 1000, σ = 0.0, wcon = 10.0,

wdif = 2.0 (note that the convolution was in this case applied to the edge detector
instead of the image data). We used time step τS = 0.1 and voxel dimensions
h1 = h2 = h3 = 1.0, TS = 5. These values were found by thorough testing on
various zebrafish data, with the goal to minimize the CPU time and maximize the
accuracy. They also minimize the mean Hausdorff distance from the gold standard
in this test example.

The results of the test are presented in Table 7 and Figure 14. The gold stan-
dard consists of 28 cells. The Hausdorff distance between all these cells and their
corresponding GSUBSURF counterparts was computed and Table 7 displays the
minimum, maximum and arithmetic mean of these distances. The gold standard
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Fig. 13. The center detection process. Top, profile of a 2D slice of the original and

filtered data. Middle, profile of a 2D slice of the function evolving by FBLSCD, time

steps 2, 3, 9. Bottom, time evolution of the number of detected centers. A flat region

starting at time step 9 indicates that the process is stabilized and can be stopped.

cells are a part of the subvolume used for FBLSCD validation, so we recall that the
typical diameter of the nucleus is 10µm − 20µm. Comparing with this dimension,
we can say that the GSUBSURF method provides reliable results.

Using the same parameters, we segmented two complete nuclei images repre-
senting two different stages of the embryonic development. The result is shown in
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Table 7. The mean Hausdorff distance of the

automatically segmented nuclei from the gold standard.

Cells Min. MHD Max. MHD Mean MHD
28 0.270µm 1.590µm 0.654µm

Figure 15.
Let us also remark that extensive testing of the generalized subjective surface

method really proved its efficiency and applicability in practice. For suitably chosen
parameters wcon, wdif , segmentation of one nucleus on a standard CPU does not
take more than a few seconds and it appears to be several times faster than the
classical subjective surface approach (wcon = 1.0, wdif = 1.0) or the segmentation
using explicit finite difference schemes [17].

Fig. 14. Comparison of the GSUBSURF segmentation of cell nuclei with manual

segmentation. Top left, nuclei segmented by GSUBSURF. Top right, manually segmented

nuclei. Bottom left, the initial condition for the GSUBSURF segmentation, 2D slice.

Bottom middle, the result of GSUBSURF segmentation. Bottom right, the manual

segmentation.
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Fig. 15. Segmented nuclei of the embryo, isosurface I = 127 of the segmentation

function. On the left, time step 1 of the data series, on the right, time step 500.

6.2.4. Cell membrane segmentation

The validation of the membrane segmentation was done in the same way as in the
case of cell nuclei. 10 manually segmented cells represent the gold standard that was
compared with the GSUBSURF segmentation. The results of the test are shown in
Table 8 and Figure 16. The size of the cells in the sample was approximately
10µm− 15µm.

For the segmentation of the whole cells, we use an initial condition which is
naturally more similar to the cell structure than simple spheres or ellipsoids. We start
from an ellipsoid situated in the nucleus center as in the case of nuclei segmentation.
Then, when some point inside this ellipsoid is closer to the center of another cell,
the value of the segmentation function in this point is set to zero. In this way,
we obtain an initial segmentation function of Voronoi type. The parameters for
segmentation were set as follows. The edge detector g(s) = 1

1+Ks2 , K = 1000,
wcon = 10.0, wdif = 0.2, τS = 0.1, h1 = h2 = h3 = 1.0. Again, the method appears
to be faster than the classical subjective surface method, though we need to perform
approximately 10 times more time steps of the segmentation as in the case of nuclei.

Table 8. The mean Hausdorff distance of the

automatically segmented cells from the gold standard.

Cells Min. MHD Max. MHD Mean MHD
10 0.348µm 0.977µm 0.648µm
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Fig. 16. Comparison of the GSUBSURF segmentation of the whole cells with manual

segmentation. Top left, cells segmented by GSUBSURF. Top right, manually segmented

cells. Bottom left, the initial condition for the GSUBSURF segmentation, 2D slice.

Bottom middle, the result of GSUBSURF segmentation. Bottom right, the manual

segmentation.

6.2.5. Embryo segmentation

The membrane images can be used not only for extraction of the shape of the
individual cells but also for segmentation of the shape (or surface) of the whole
embryo. In order to construct a suitable initial segmentation function, we place an
ellipsoidal segmentation function in each cell center, similarly as in the case of nuclei
segmentation, so that the union of all these functions covers the whole embryo. Then
we start the segmentation process. Figure 17 shows the result of such a procedure.
The parameters that we used were g(s) = 1

1+Ks2 , K = 1000, wcon = 10.0, wdif = 2.0,
τS = 0.1, h1 = h2 = h3 = 1.0. The stopping time was TS = 100.

6.3. Further applications in embryogenesis

Finally let us mention a few other interesting practical applications of the methods
we introduced. The results of the image processing chain can provide a lot of useful
information about the embryogenesis.
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Fig. 17. Segmentation of the whole embryo. On the left, segmentation of time step 1 of

the data set, 3D view of the isosurface I = 40 of the segmentation function. On the right,

a 2D slice of data and the isosurface I = 40 of the segmentation function, time step 500.

6.3.1. Correction of the center detection

An essential information concerning the process of embryogenesis is the number of
cells in each time step of the image sequence. The center detection method that
we described provides a good estimate of this number, however, this can still be
made more precise. What we have in mind while performing the FBLSCD is to
avoid the false negative detection, that means losing some cell center. In each step
of this multiscale process, there is a certain number of detected centers and we try
to stop the procedure at a time moment when all real cell centers are still present.
In practice, this means admitting a certain number of false positive detections, i. e.
some extra centers that do not correspond to reality, usually double or multiple
detection inside one nucleus. The amount of such centers is usually not higher than
5% of all detected centers. After the detection, we start the nuclei segmentation
which represents a useful tool for correcting the detected centers. Having segmented
all nuclei, we can simply compare their segmentation functions. If there is more than
one center in one nucleus, the results of segmentation started from all these centers
should be very similar to each other. By finding situations like this, we can easily
eliminate the redundant centers and get a more accurate estimate of the number of
cells in the embryo. The idea is illustrated in Figure 18.

6.3.2. Mitosis detection

Another interesting and important application useful especially in the lineage tree
reconstruction, is the detection of cell divisions (mitoses). This is based on both
nuclei and membrane segmentation. We take advantage of the fact that the process
of cell division starts by division of the nucleus and the division of the whole cell
takes place afterwards. This gives us the possibility to detect the anaphase stage
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Fig. 18. Correction of nuclei centers. On the left, two centers found in one nucleus and

their corresponding segmentation functions. On the right, the corrected center obtained

by averaging the two detected centers and the segmentation function constructed by

merging the original two functions.

of the mitosis when there are two nuclei in one cell. Having segmented the nuclei
and membranes and obtained the correct positions of the cell centers, we have all
information sufficient for a reliable mitosis detection. The idea is as follows. Af-
ter segmentation of all cells using the membrane images, we compare the resulting
segmentation functions corresponding to the centers that are situated close to each
other. If we find out that segmentations starting from two different centers give
comparable results, we can suppose that the two centers and corresponding nuclei
are inside the same cell. This is the situation that we are interested in – a candi-
date for mitosis, see Figure 19. Using this approach, we find several possible cell
divisions, however some of them are false positives. This can be caused by the noise
in the image, lower local quality of the data, error in center detection or in the cell
segmentation. Therefore, some more criteria have to be employed in order to obtain
a reliable result. The basic criterion lies in a forward and backward tracking of the
two centers in a short time scale (corresponding to a couple of time steps). If the
mitosis really takes place, there should be always two centers in the neighborhood of
the traced centers in the following time steps. On the other hand, going backwards
in time, we should come to a time moment when there is just one center – this is
the start of the mitosis. Other criteria that are applied deal with the volume of the
nuclei corresponding to the centers and the distance between the centers. Essen-
tially, the two nuclei arising in mitosis should have similar volume and the distance
between them should increase going forward in time and decrease going backwards.

6.3.3. Quantitative characteristics of the embryo

The segmentation can also provide some important quantitative characteristics of the
embryo. For example, using the membrane segmentation, we can obtain an estimate
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Fig. 19. Mitosis detection. On the left, we can see a 2D slice of data (nuclei and

membranes superimposed) and the initial segmentation functions corresponding to the

centers of the two nuclei. On the right, the result of segmentation which is almost the

same for both centers.

Fig. 20. The process of cell division, isosurfaces of nuclei and membrane segmentation

functions are displayed.

of the contact surface between the cells or geometrical descriptors such as sphericity,
flatness or elongation of the cells [15]. The segmentation of the whole embryo allows
us to compute the volume or surface of the organism. In addition, if we know the
number of cells in the embryo, we can calculate its global or local density of cells.
Another interesting characteristic is the density of cell divisions in selected parts of
the embryo. We can also explore just the epithelium (outer layer of cells) of the
animal – its thickness, cell size, density of cells etc. All this information can be very
useful in measuring the differences between various developing individuals and thus
determining how much certain conditions (e. g. drug treatment) affect the standard
process of embryogenesis.

Figure 21 shows one of the basic measurements – the local density of cells. Fig-
ure 22 displays a detail of membrane segmentation and the corresponding cell contact
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surface (intercellular skeleton). The method for finding this surface was explained
in [2].

Fig. 21. Embryo segmentation and local density of cells in a 2D slice of the image data.

Fig. 22. Detection of the cell contact surface. Left, the membrane segmentation

representing the starting point for the detection. Right, the corresponding intercellular

skeleton.

ACKNOWLEDGEMENT

This work was supported by the European projects Embryomics and BioEmergences,
the grants APVV-RPEU-0004-06, APVV-0351-07, APVV-LPP-0020-07 and the grant of



258 P. BOURGINE ET AL.

VEGA 1/0269/09. We would like to express our great thanks to all our collaborators
participating in the projects and to supercomputing centre ccIN2P3 in Lyon where the
large-scale parallel computations were performed.

(Received March 3, 2010)

REFERENCES

[1] Y. Aoyama, J. Nakano: RS/6000 SP: Practical MPI Programming. IBM 1999.
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