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NUMERICAL SIMULATION
OF SUSPENSION INDUCED RHEOLOGY

Rodolphe Prignitz and Eberhard Bänsch

Flow of particles suspended in a fluid can be found in numerous industrial processes uti-
lizing sedimentation, fluidization and lubricated transport such as food processing, catalytic
processing, slurries, coating, paper manufacturing, particle injection molding and filter op-
eration. The ability to understand rheology effects of particulate flows is elementary for the
design, operation and efficiency of the underlying processes. Despite the fact that particle
technology is widely used, it is still an enormous experimental challenge to determine the
correct parameters for the process employed. In this paper we present 2-dimensional numer-
ical results for the behavior of a particle based suspension and compare it with analytically
results obtained for the Stokes-flow around a single particle.

Keywords: CFD, multiphase flows, particulate flow, finite elements, subspace projection,
rheology

Classification: 76D05, 70E55, 76M10

1. INTRODUCTION

The aim of the present paper is to analyze and develop an algorithm for the simula-
tion of a huge amount of particles suspended in a viscous liquid. Related work can
be found for instance in [3, 6, 7, 9] and [14]. We adapted the work of [7], such that it
fits our requirements to obtain a fast and accurate code for the simulation of a huge
number of particles in a viscous fluid. Our own contribution is the representation
of the particles utilizing adaptive finite element techniques, the time discretization
as well as the incorporation of a subspace projection method. In this paper we
report on 2 dimensional simulations, the extension to 3 dimensions is conceptually
straightforward and will be published in forthcoming papers. The remainder of the
paper is organized as follows. In Section 2 and 3 we present a short overview of
the mathematical model and numerical method used, while in Section 4 we present
results on the change of rheology in suspended fluids.
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2. NUMERICAL METHOD

2.1. Mathematical Model

In this section we introduce a model for particulate flows. For the ease of presentation
we restrict ourselves to the 2d–case with one particle. The extension to 3d and/or
more particles is straightforward. We denote by Ω(t) ⊂ R2 the area occupied by
the fluid with homogeneous Dirichlet boundary condition on its outer boundary ΓD.
P (t) ⊂ R2 is the particle and its center of mass is denoted by X = 1

|P (t)|
∫
P (t) xdx,

ΓD

Ω(t)P(t)

U, ω u, p

Fig. 1. Fluid domain with arbitrary particle inside.

while r = x −X is its relative coordinate. It should be emphasized that the fluid
area and the particle area don’t intersect, Ω(t) ∩ P (t) = ∅. The unknowns in the
fluid area are the velocity u and the pressure p, which are described by the Navier–
Stokes equations. The particle, being a rigid body, is described by Newton’s law.
The describing values are the translatorial and angular velocities U , ω, respectively,
the position X and the orientation in space given by the angle Θ. The system in
non-dimensional form reads

∂tu+ u · ∇u+∇ ·

σ︷ ︸︸ ︷(
pI− 1

Re
D [u]

)
= f in Ω(t), (1)

∇ · u = 0 in Ω(t), (2)

u = 0 on ΓD, (3)

u = U + ω × r on ∂P (t), (4)

MU̇ = F +

∫

∂P (t)

σ · n ds, (5)

Ẋ = U, (6)

Iω̇ =

∫

∂P (t)

r× σ · n ds, (7)

Θ̇ = ω, (8)

see for example [6]. The two integrals on the right hand side represent the force and
the torque, respectively, exerted by the fluid on the particle. Here, σ is the stress
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tensor, M denotes the mass of the particle and I its inertia. F is an external force
acting on the particle, Re denotes the Reynolds number and the deformation tensor
is defined by D [u]i,j = ∂jui + ∂iuj.

Following an idea of [7], we derive a weak formulation of the problem in the form
of the one domain approach. To this end, the space of combined velocities is defined
by

Hc(Ω) =

{
(v, V, ξ) |v ∈

(
H1(Ω)

)2
, V ∈ R2, ξ ∈ R,

v = 0 on ΓD, v = V + ξ × r in P (t)

}
, (9)

where ξ × r := (−r2ξ, r1ξ). Note that the combined fluid/particle domain Ω =
Ω(t) ∪ P (t) does not depend on time t. The space Hc(Ω) is called the space of
combined velocities, since it contains all velocities posed in this problem, the fluid
velocity, the translational particle velocity and the angular velocity represented by
v, V and ξ respectively. We emphasize that the fluid velocity is defined on the whole
domain Ω and is restricted to the particle velocity inside the particle by the above
definition. With test functions (v, V, ξ) ∈ Hc(Ω) and q ∈ L2(Ω) we can state the
weak formulation of our problem (1) – (8) as

∫

Ω

∂tu · v + u · ∇u · v − p∇ · v − 1

2Re
D [u] : D [v] dx

+(1− α)MU̇ · V + (1− α) Iω̇ · ξ =

∫

Ω

f · v dx+ F · V, (10)

∫

Ω

∇ · u q dx = 0, (11)

Ẋ = U, (12)

Θ̇ = ω. (13)

Hereby α is the density fraction defined by α = ρ/ρP . In order to obtain this weak
formulation one has to perform the symbolic calculation

∫

Ω(t)

(1) · v dx+ (5) · V + (7) · ξ.

After partial integration of the stress tensor term, the boundary integrals arising
will cancel with the ones from the terms (5) · V and (7) · ξ. Finally the formulation
is extended to the domain Ω. As we want to focus on the numerical method in the
next chapter, we refer the reader to [7] for a more detailed derivation of the weak
formulation.

For a shorter notation we define the linear forms

m(u,v) =

∫

Ω

u · v dx, (14)



284 R. PRIGNITZ AND E. BÄNSCH

s(u,v) =
1

2Re

∫

Ω

D [u] : D [v] dx, (15)

k(u,v,w) =

∫

Ω

w · ∇u · v dx, (16)

b(p,v) =

∫

Ω

p∇ · v dx, (17)

L(U, V ) = (1 − α)MU · V, (18)

S(ω, ξ) = (1 − α) (Iω) · ξ, (19)

yielding in the following formulation of the problem

m(∂tu,v) + k(u,v,u) + s(u,v)− b(p,v) + L(U̇ , V ) + S(ω̇, ξ)

= m(f,v) + F · V, (20)

b(q,u) = 0, (21)

Ẋ = U, (22)

Θ̇ = ω. (23)

3. NUMERICAL METHOD

Our numerical scheme to solve the problem (20) – (23) is based on the following four
steps

• Splitting: in order to reduce the complexity of the problem we separate the
calculation of the particle’s time dependent location from the calculation of
the flow field.

• Time discretization: a BDF2 projection scheme is used for the efficient solution
of the Navier–Stokes equations.

• Subspace projection: a novel method to take into account the restriction of
the function space Hc(Ω).

• Adaptivity: local (time dependent) grid refinement is crucial to represent the
particle’s geometry.

3.1. Splitting

For an efficient numerical treatment we initially split the position of the particle
from the remaining variables.

1. Predictor: Solve for X , U , Θ, ω using equations (22), (23), MU̇ = F and
Iω̇ = 0.

2. Velocities:

m(∂tu,v) + k(u,v,u) + s(u,v)− b(p,v) + L(U̇ , V ) + S(ω̇, ξ) = m(f,v),

b(q,u) = 0. (24)
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In the first step the positions (X , Θ) and velocities (U , ω) of the particle are cal-
culated, while in the second step the velocities of the particle are corrected and the
fluid velocity and pressure is computed. The effect of the external force F is only
taken into account in the predictor step. The force the fluid cause on the particle
is created implicitly by the terms L(U̇ , V ), S(ω̇, ξ) and the usage of the space of
combined velocities Hc(Ω).

3.2. Time discretization

For the time discretization of the predictor a velocity verlet method with a = F
M for

the variables X and U is used:

Xk+1 = Xk + τUk +
τ2

2
ak, (25)

Uk+ 1
2 = Uk +

τ

2
ak, (26)

ak+1 = evaluate forces at new positions Xk+1, (27)

Uk+1 = Uk+ 1
2 +

τ

2
ak+1. (28)

For a more detailed description of the algorithm see for example [11]. The same is
valid for the variables Θ and ω.

The flow field governed by the Navier–Stokes equations is solved by a BDF2
based projection method in rotational form, see [8]. Introducing the time step τ ,
and γ = 2

3τ this scheme is based on three steps to solve equations (24):

1. Burgers problem

m(uk+1,v) + γk(uk+1,v,uk+1) + γs(uk+1,v)

+
2

3
L(Uk+1, V ) +

2

3
S(ωk+1, ξ)

= γb(pk,v) + γm(f(tk+1),v)

+m

(
4

3
uk − 1

3
uk−1,v

)
+ γb

(
4

3
χk − 1

3
χk−1,v

)

+
2

3
L(Uk, V ) +

2

3
S(ωk, ξ). (29)

2. Poisson problem

m(∇χk+1,∇Ψ) =
1

γ
b(Ψ,uk+1). (30)

3. Update

m(pk+1, q) = m(pk + χk+1, q)− b

(
q,

2

Re
uk+1

)
. (31)

In the calculations presented later, the form k is linearized by k(uk+1,v, 2uk−uk−1).
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3.3. Spatial discretization

The crucial point in the spatial discretization is to define a discrete counterpart of
Hc(Ω) and, moreover, the concrete realization of the this non-standard finite element
space. A brief description of how to solve this problem is given in the sequel. A
more detailed presentation will be published in near future.

Let T be a triangulation of Ω. Define the usual finite element space by

X(Ω) =

{
(v, V, ξ) |v ∈

(
C0(Ω)

)2
, v ∈

(
P k(T )

)2 ∀T ∈ T ,

V ∈ R2, ξ ∈ R,v = 0 on ΓD

}
.

A discrete subspace of Hc(Ω) is now given by

Xc(Ω) =

{
(vc, V, ξ) ∈ X(Ω)| vc = V + ξ × r in P (t)

}
.

For an arbitrary time step k the linearized equation (29) may be rewritten with the
bilinear form a, the corresponding operator A, and the cumulative right hand side
g: find u ∈ Xc(Ω) such that for all v ∈ Xc(Ω) it holds

a(u,v) =: (Au,v) = (g,v). (32)

To circumvent the explicit representation of Hc(Ω), a subspace projection P : X →
Xc is used. With this operator (32) may be formulated in terms of the standard
finite element space X(Ω): find ũ ∈ X(Ω) such that for all v ∈ X(Ω) it holds

(APũ,Pv) = (g,Pv). (33)

Note that the solution u is now easily found by taking u = Pũ, where ũ is a solution
of equation (33). The above system now leads to the linear system of equations for
the nodal vector Ũ of the form

PTAPŨ = PTG, (34)

where A is the system matrix corresponding to operator A and P is a matrix repre-
sentation of P . Note that, when using iterative solvers, one can bypass to explicitly
compute the modified system matrix PTAP , but rather just slightly needs to modify
the matrix vector product, because one only has to take into account the action of
PTAP on a vector. We call this method subspace projection method. Because the
matrix P is quite simple, its not necessary to store it explicitly. Instead, a short rou-
tine can perform the multiplication of P and PT with a vector v. This pseudo-code
shows that computation.
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! Multiplication (u,U,omega)=P*(v,V,xi)

subroutine Pmul(v,V,xi,u,U,omega)

! U, omega

do ii=1,npart ! Number of particles

U(:,ii) = V(:,ii)

omega(ii) = xi(ii)

end do

! u = rigid body motion in the particle

do i=1,nk ! Number of DOFs

if( isparticle(i) ) then

ii= numpart(i)

r(:)= x(:,i) - xpart(:,ii)

u(1,i) = V(1,ii) - r(2)*xi(ii)

u(2,i) = V(2,ii) + r(1)*xi(ii)

else

u(:,i)= v(:,i)

end if

end do

end subroutine

3.4. Adaptivity

Another important point is how to represent the particle’s geometry. In [9] a remesh-
ing technique was used to explicitly follow the geometry in time, [14] introduced a
mesh deformation technique and [7] used Lagrange multipliers. All these techniques
have some pros and cons, in particular in 3d.

In contrast to the above mentioned methods, we use time dependent adaptively
refined grids based on the bisection method by [1] to sufficiently resolve the region
around the particle.

Fig. 2. Adaptive refined mesh around a particle. For an accurate representation

it is useful to refine the mesh on the particle boundary.

The above algorithm was implemented in the finite element flow solver Navier,
for more details see [2].
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4. APPLICATION

4.1. Sedimentation

The first test case presented here is the sedimentation of a single particle in a lighter
fluid. Though conceptually rather simple, this test case might be already quite
revealing. Here, the quantity of interest is the terminal particle velocity, denoted by
U and the corresponding drag cD defined by

F =
1

2
ρcD dU2. (35)

Let us mention that, unlike the 3d case, it is rather difficult to get reliable data for
the validation. We compared the drag coefficient with experimental data by [13],
numerical data by [6] and semi-analytical results from [12], resulting in a pretty
good agreement, see Figure 3. It is worth noting that care must be taken regarding
wall effects. This can be clearly seen in Figure 3, where curves for different values
of the ratio l/d are plotted. Here, d is the particle’s diameter and l the diameter of
the fluid domain. For low Reynolds numbers Re = dU

ν , where large wall friction is
present, a small ratio l/d produces results that are far off the desired ones.
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Fig. 3. Comparison of drag curves.

4.2. Rotational viscometer

In order to study the rheology of suspended liquids, a rotational viscometer is sim-
ulated. This is a device to measure the viscosity of fluids by applying a forced
rotational flow field. The fluid is confined between two concentric cylinders. The
outer one is called cup, the inner one bob, see Figure 4. By rotating the cup and
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Fig. 4. Rotational viscometer.

measuring the required torque, one can calculate the viscosity of the fluid. A short
calculation shows that as long as the flow field is stable, the (non-dimensional) form
of the flow field is independent of the rotational speed o. Assuming the shear rate
to be approximately constant, it can be calculated from the rotational speed o by

duϕ

dr
=

2πrao

ra − ri
, (36)

where ri, ra denote the inner and outer radii, respectively, and uϕ the azimuthal
component of u. The shear stress τ on the surface is given by the torque T through

τ =
T

2πr2a
. (37)

Finally the viscosity is calculated by

η =
T (ra − ri)

4π2or3a
. (38)

Consequently, in a rotational viscometer the viscosity of the fluid is proportional to
the measured torque. Define the relative viscosity η� by

η� =
ηeff
η

=
Teff

T
, (39)

where ηeff is the effective viscosity of the suspension measured in our numerical
experiments and η the viscosity of the fluid. The torque T is calculated by evaluating
the integral

∫
∂B(0,ra)

x× σ · n ds numerically. The computational experiments were

performed with two different particle radii, r = 0.02 and r = 0.04 see Figure 6 for a
visualization of such computations. For the smaller one calculations were conducted
for particle volume fractions φ up to 40%, for the larger one up to 20%. The results
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in Figure 5 show a linear behavior of the relative viscosity up to 20% of particle
volume fraction. For larger φ the relative viscosity increases super linearly. In
addition, there is no influence of the particle size in the results. The same qualitative
characteristics can be observed in 3d-experiments, see for example the overview
article by [10]. A linear fit for low values of φ suggests a behavior like

η� = η (1 + 1.77φ) . (40)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

1

1.2

1.4

1.6

1.8
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φ

η♦
=

η e
f
f
 
/
 

η

 

 

r=0.04

r=0.02

Linear fit for φ<0.15

Fig. 5. Numerical results of relative viscosity versus particle concentration.

Fig. 6. Visualization of simulations with 10 particles of radius r = 0.04 (left)

and 840 particles with radius r = 0.02 (right).

To support our calculations we derived an analytical solution following the ap-
proach in [5]. To this end, a single particle suspended in a steady shear flow
u = (u, v) = (Cy, 0) is considered. Furthermore, the flow is assumed to be gov-
erned by the Stokes equations

− η∆u+∇p = 0, ∇ · u = 0, u = 0 on ∂P. (41)
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With help from [4] the following solution is found:

u = Cy − 1

2

CR2y

x2 + y2
− 2

CR2yx2

(x2 + y2)
2 − 1

4
CR4

(
2

y

(x2 + y2)
2 − 8

x2y

(x2 + y2)
3

)
, (42)

v =
1

2

CR2x

x2 + y2
− 2

CR2y2x

(x2 + y2)
2 − 1

4
CR4

(
−8

y2x

(x2 + y2)
3 + 2

x

(x2 + y2)
2

)
, (43)

p = −4η
CR2yx

(x2 + y2)2
(44)

with the particle radius R. The amount of energy dissipated in a very large circular
domain B(0, Q) of radius Q ≫ R is then given by

W =

∫

∂B(0,Q)

σ ·u ds = C2ηπ Q2+C2ηπ R2−5
C2kπ R4

Q2
+6

C2kπ R6

Q4
−3

C2ηπ R8

Q6
,

(45)
while the loss of energy due to friction of the unperturbed flow u = (Cy, 0) in the
same domain is

Wu = C2ηπ Q2. (46)

If terms of order 1/Q2 or greater are ignored in equation (45), one obtain

△W = W −Wu = C2ηπ R2 = ηC2Φ (47)

for the energy loss caused by one particle with area Φ = πR2. If we assume a sparse
distribution of n particles in the fluid domain with area πQ2 the overall specific
energy loss is

w :=
W

πQ2
= ηC2 + η

C2

πQ2

n∑
Φ = ηC2 (1 + φ) , (48)

with φ = nΦ. On the other hand, the specific energy loss of the suspension is

w = C�2
η�. (49)

C� can be calculated from the solutions (42) – (44) of the Stokes problem, resulting
in

C� = C − n

∫

∂B(0,Q)

(u− Cy) y√
x2 + y2

ds = C − nCπR2 = C (1− φ) . (50)

Inserting equations (48) and (50) into (49) finally yields

η� = η
1 + φ

(1− φ)
2 ≈ η (1 + 3φ) . (51)

This theoretical finding is of the same order of magnitude like the one from our
computational result:

η�num ≈ η (1 + 1.77φ) . (52)
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Quantitatively, however, there is quite a noticeable discrepancy. A possible reason
might be the use of Stokes flow instead of for instance Oseen flow. For Oseen flow,
to our knowledge, there is no explicit solution available though. Thus, this problem
remains open and deserves further investigation. In the three dimensional case,
analytical as well as experimental results are more accessible. It is known, that in
this case the above relation reads

η� ≈ η (1 + 2.5φ) . (53)

5. CONCLUSION

In this paper a finite element method to compute particular flow was presented. The
methods is based on a weak formulation in the form of a one domain approach, a
splitting scheme in time, adaptive grids and a subspace projection method.

A validation with a sedimenting particle results in good agreement to experimen-
tal and theoretical results. For the case of a rotational viscometer good qualitative
agreement is found with a analytical consideration. However, quantitatively there
is a non negligible discrepancy, which makes further investigation, in particular 3d
simulation, necessary.
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