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EMPIRICAL ESTIMATES IN STOCHASTIC
OPTIMIZATION VIA DISTRIBUTION TAILS

Vlasta Kaňková

“Classical” optimization problems depending on a probability measure belong mostly
to nonlinear deterministic optimization problems that are, from the numerical point of
view, relatively complicated. On the other hand, these problems fulfil very often assump-
tions giving a possibility to replace the “underlying” probability measure by an empirical
one to obtain “good” empirical estimates of the optimal value and the optimal solution.
Convergence rate of these estimates have been studied mostly for “underlying” probability
measures with suitable (thin) tails. However, it is known that probability distributions
with heavy tails better correspond to many economic problems. The paper focuses on dis-
tributions with finite first moments and heavy tails. The introduced assertions are based
on the stability results corresponding to the Wasserstein metric with an “underlying” L1

norm and empirical quantiles convergence.

Keywords: stochastic programming problems, stability, Wasserstein metric, L1 norm, Lip-
schitz property, empirical estimates, convergence rate, exponential tails, heavy
tails, Pareto distribution, risk functionals, empirical quantiles

Classification: 90C15

1. INTRODUCTION

To introduce a “classical” one-stage stochastic optimization problem let (Ω, S, P )
be a probability space; ξ (:= ξ(ω) = [ξ1(ω), . . . , ξs(ω)]) s-dimensional random
vector defined on (Ω, S, P ); F (:= F (z), z ∈ Rs) the distribution function of ξ;
Fi(:= Fi(zi), zi ∈ R1), i = 1, . . . , s one-dimensional marginal distribution functions
corresponding to F ; PF , ZF the probability measure and the support corresponding
to F. Let, moreover, g0(:= g0(x, z)) be a real-valued (say continuous) function de-
fined on Rn×Rs; XF ⊂ Rn be a nonempty set depending (generally) on F ; X ⊂ Rn

be a nonempty “deterministic” set not depending on F .

If the symbol EF denotes the operator of mathematical expectation corresponding
to F, then a rather general “classical” one-stage stochastic programming problem
can be introduced in the form:

Find

ϕ(F ) := ϕ(F, XF ) = inf{EFg0(x, ξ)|x ∈ XF }. (1.1)
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Since in applications very often the measure PF has to be replaced by empirical one,
the solution of (1.1) has to be (mostly) sought w.r.t. an “empirical problem”:

Find

ϕ(FN
ω ) := ϕ(FN

ω , XFN
ω
) = inf{EFN

ω
g0(x, ξ)|x ∈ XFN

ω
}. (1.2)

FN
ω denotes an empirical distribution function determined by a random sample

{ξi}Ni=1 (not necessarily independent) corresponding F. It is known that under rather
general assumptions ϕ(FN

ω ) is a “good” estimate of ϕ(F ).

The investigation of these estimates started in 1974 (see [34]) and was followed by
a “statistical” approach and the stability investigation e. g. in [2, 7, 22, 26, 31]. The
investigation of the convergence rate started in [8] and follows e. g. in [1, 6, 19, 23, 29].
Let us recall the first result about the convergence rate.

Theorem 1.1. (Kaňková [8]) Let t > 0, X be a nonempty compact, convex set. If

1. g0(x, z) is a uniformly continuous, bounded function on X × ZF ,

2. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L
′
,

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample corresponding to PF ,

then there exist K(t, X, L
′
), k1(M) > 0, (|(g0(x, z)| ≤M, M > 0) such that

P{ω : |ϕ(F, X)− ϕ(FN
ω , X)| > t} ≤ K(t, X, L

′
) exp{−Nk1(M)t2}.

Remarks.

1. Under the assumptions of Theorem 1.1 it has been proven that

P{ω : Nβ |ϕ(F, X)− ϕ(FN
ω , X)| > t} −→

(N→∞)
0 for β ∈ (0, 1/2).

2. The assertion of Theorem 1.1 is valid independently of the distribution function
F ; consequently also for the distribution functions with heavy tails. On the
other hand g0(·, ·) must be a bounded function. This condition substitutes,
evidently, the assumption on a bounded support of the corresponding random
element in the Hoeffding paper [5].

3. L. Dal, C.H. Chen and J.R. Birge (see [1]) have tried to generalize the last
assumption (for s = 1) to the case when

EF exp{θξ} <∞ for 0 ≤ θ ≤ θ0, θ0 constant. (1.3)

Evidently, the relation (1.3) can be fulfilled only for F with thin tails. Tito
Homen-de-Mello (see [19]) has continued in the last direction.
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The assumption of “thin” tails is not fulfilled in many applications. A relatively
detailed analysis of heavy tailed distributions is presented in [20]. A relationship
between the stable distributions and heavy tailed distributions can be found e. g. in
[15]; between the stable heavy tailed distributions and the Pareto tails is known and
can be found e. g. in [15] and [18] (see also [21]). Furthermore, it follows from the
relation (1.1) that the assertion of Theorem 1.1 is valid for problems in which the
objective function is in the form of a linear functional of probability measure PF .
This assumption is not fulfilled in many cases in which risk measures appear (for
more details see e. g. [24]). We are intend to deal also with new above mentioned
situations. We start our investigation with problems in which XF = X or when

XF := XF (δ) =

s⋂

i=1

{x ∈ X : PFi{ω : gi(x) ≤ ξi(ω)} ≥ δi}, (1.4)

with gi(:= gi(x)), i = 1, . . . , s real-valued (say continuous) functions defined on Rn,
δ = (δ1, . . . , δs), δi ∈ (0, 1), i = 1, . . . , s. To get the new results we plan to employ
the stability assertion corresponding to the Wasserstein metric with an “underlying”
L1 norm [12]. According to an analysis presented in [20], a transformation to one
dimensional random element can be (from the economic point of view) very suitable.

Remark. The problem (1.1) with XF fulfilling (1.4) is known as the problem with
individual probabilistic constraints (corresponding to random right-hand sides). The
problems with joint probability constraints cover more applications. It is known that
we can approximate the joint probabilistic constraints by individual case (see e. g.
[10, 25]) and, consequently, to transform them also to one dimensional case.

2. SOME DEFINITIONS AND AUXILIARY ASSERTIONS

First, let P(Rs) denote the set of Borel probability measures on Rs, s ≥ 1. We set

M1(Rs) =

{
P ∈ P(Rs) :

∫

Rs

‖z‖1sP (dz) <∞
}
, ‖ · ‖1s denotes L1 norm in Rs.

Let, furthermore, kF (δ) = (kF1(δ1), . . . , kFs(δs)), δ = (δ1, . . . , δs) be defined by

kFi(δi) = sup
zi∈R1

P{ω : zi ≤ ξi(ω)} ≥ δi, i = 1, . . . , s. (2.5)

We introduce the system of the assumptions:

A.1 • g0(x, z) is a uniformly continuous function on X × Rs,

• g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz
constant L (corresponding to the L1 norm) not depending on x,

A.2 • {ξi}∞i=1 is a sequence of independent random vectors corresponding to F,

• FN
ω is an empirical distribution function determined by {ξi}Ni=1, N =

1, 2, . . . ,
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A.3 PFi , i = 1, . . . , s are absolutely continuous w.r.t. the Lebesgue measure on R1

(we denote by fi, i = 1, . . . , s the probability densities corresponding to Fi),

A.4 there exist constants ϑi > 0, i = 1, . . . , s and neighborhoods Ui(kFi(δi)) of
kFi(δi) such that fi(zi) > ϑi for zi ∈ Ui(kFi(δi)),

A.5 EF g0(x, ξ) is a Lipschitz function on X.

2.1. Stability assertions

Proposition 2.1. (Kaňková and Houda [12]) Let PF , PG ∈ M1(Rs), X be a com-
pact set. If the assumption A.1 is fulfilled, then

|ϕ(F, X)− ϕ(G, X)| ≤ L

s∑

i=1

∫ +∞

−∞
|Fi(zi)−Gi(zi)| dzi.

Employing the triangular inequality and (1.4) we can obtain

|ϕ(G, XG)−ϕ(F, XF )| ≤ |ϕ(G, XG)−ϕ(F, XG)|+ |ϕ(F, XG)−ϕ(F, XF )|. (2.6)
According to the relations (1.4) and (2.5) we can write

XF := X̄F (kF (δ)) =
s⋂

i=1

{x ∈ X : gi(x) ≤ kFi(δi)}. (2.7)

If X is a compact set, gi, i = 1, . . . , s continuous functions on X, then XF , XG

are compact sets. Employing Proposition 2.1 we obtain the upper bounds for
|ϕ(G, XG) −ϕ(F, XG)|. If, furthermore, ∆[·, ·] = ∆n[·, ·] denotes the Hausdorff
distance in the space of nonempty, closed subsets of Rn (for the definition see e. g.
[28]), then in [9] are introduced assumptions under which it is possible to evaluate
C̄ > 0 such that

∆[XF (δ), XG(δ)] = ∆[X̄(kF (δ)), X̄(kG(δ))] ≤ C̄
∑s

i=1 |kFi(δi) − kGi(δi)|,
kGi(δi) ∈ Ui(kFi(δi)), i = 1, . . . , s; Ui(kFi(δi)) defined by A.4.

(2.8)
Consequently, it follows from Proposition 2.1, the relations (2.6), (2.8) that the
upper bound of |ϕ(F, XF ) − ϕ(G, XG)| can be numerically evaluated. Moreover,
this bound can be employed for a construction of solutions approximate schemes
with known deterministic approximation error bound (similar approach has been
already employed in [11, 32]).

2.2. Empirical estimates

Replacing G by FN
ω we can investigate properties of the empirical estimates ϕ(FN

ω ).

Lemma 2.2. (Shorack and Wellner [33]) Let s = 1, PF ∈ M1(R1). Let, moreover,
the assumption A.2 be fulfilled, then

P

{
ω :

∫ ∞

−∞
|F (z)− FN

ω (z)| dz −→
(N→∞)

0

}
= 1.
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Proposition 2.3. (Kaňková [13]) Let s = 1, t > 0, the assumption A.3 be fulfilled.
If there exists ψ(N, t, R) such that the empirical distribution function FN

ω fulfils
for R > 0 the relation

P{ω : |F (z)− FN
ω (z)| > t} ≤ ψ(N, t, R) for every z ∈ (−R, R),

then for t
4R < 1 it holds that

P

{
ω :

∫ ∞

−∞
|F (z)− FN

ω (z)| dz > t

}

≤
(
12R

t
+ 1

)
ψ(N,

t

12R
, R) + P

{
ω :

∫ −R

−∞
F (z) dz >

t

3

}

+P

{
ω :

∫ ∞

R

(1 − F (z)) dz >
t

3

}
+ 2NF (−R) + 2N(1− F (R)).

Corollary 2.4. Let s = 1, t > 0, the assumptions A.2, A.3 be fulfilled. If there

exists β > 0, R := R(N) > 0 defined onN such that R(N) −→
(N→∞)

∞ and, moreover,

Nβ

∫ −R(N)

−∞
F (z) dz −→

(N→∞)

0, Nβ

∫ ∞

R(N)

[1− F (z)] dz −→
(N→∞)

0,

2NF (−R(N)) −→
(N→∞)

0, 2N [1− F (R(N))] −→
(N→∞)

0,

(
12NβR(N)

t
+ 1

)
exp

{
−2N

(
t

12R(N)Nβ

)2
}

−→
(N→∞)

0,

(2.9)

then

P{ω : Nβ

∫ ∞

−∞
|F (z)− FN (z)ω| > t} −→

(N→∞)

0.

(N denotes the set of natural numbers.)

P r o o f . Since it has been proven in [3] that for independent random sample

P{ω : |F (z)− FN
ω (z)| > t} ≤ 2 exp{−2Nt2} indepedently on z ∈ R1,

the assertion follows from the assertion of Proposition 2.3. �

Remark. According to the about mentioned inequality we can write (in the case
of independent random sample) ψ(N, t) instead of ψ(N, t, R). Furthermore, em-
ploying the last inequality, the assertions of Proposition 2.1, Proposition 2.3, we
can numerically (for every given F ) evaluate P{ω : |ϕ(F, X) − ϕ(FN

ω X)| > t} for
N ∈ N , t > 0.
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Corollary 2.5. (Kaňková [13]) Let s = 1, t > 0, the assumptions A.2, A.3 be
fulfilled. If there exists constants C1, C2 and T > 0 such that

f(z) ≤ C1 exp{−C2|z|} for z ∈ (−∞, −T ) ∪ (T, ∞),

then

P{ω : Nβ

∫ ∞

−∞
|F (z)− FN

ω (z)| > t} −→
(N→∞)

0 for β ∈ (0, 1/2).

To apply Corollary 2.4 to “heavy” tails, we recall the Pareto distribution.

Definition 2.6. Meerschaert [20]. A random variable ξ(:= ξ(ω)) has a Pareto
distribution if

P{ω : ξ > z} = Cz−α, f(z) = Cαz−α−1 for z > C
1
α ,

0 z ≤ C
1
α ,

(2.10)

where C > 0, α > 0 are constants and f(:= f(z)) is a probability density.

The Pareto distribution has only one tail and for α > 1 we obtain PF ∈ M1(R1).

Corollary 2.7. Let s = 1, t > 0, α > 1 and β, γ > 0 fulfil the inequalities γ >
1
α ,

γ
β > 1

α−1 , γ + β < 1
2 . Let, moreover, the assumptions A.2, A.3 be fulfilled. If

there exist constants C > 0, T > 0 such that

f(z) ≤ Cα|z|−α−1 for z ∈ (−∞, −T ) ∪ (T, ∞),

then

P{ω : Nβ

∫ ∞

−∞
|F (z)− FN

ω (z)| > t } −→
(N→∞)

0.

P r o o f . First, it follows from the assumptions for z > T, R(N) = Nγ , R(N) > T
that

Nβ
∫∞
R(N)[1− F (z)] dz ≤ Nβ [C(−α+ 1)z−α+1]∞R(N) = −C(−α+ 1)NβNγ(−α+1),

N [1− F (R(N))] ≤ NCN−αγ = CN1−αγ .

Setting R(N) = Nγ we can see that the assertion follows from the assertion of
Corollary 1, the last system of inequalities and the properties of the distribution
functions. �

Examples. The following two cases of combinations of α, γ, β fulfil the assump-
tions of Corollary 3.

1. α = 3 + ε, γ = 1
3 , β = 1

6 , ε > 0 arbitrary small,

2. α = 4 + ε, γ = 1
4 , β = 1

4 , ε > 0 arbitrary small.
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Lemma 2.8. Let s = 1, t > 0, β ∈ (0, 1
2 ), δ ∈ (0, 1), A.2, A.3, A.4 be fulfilled,

then

1. P{ω : kFN (δ) −→
(N→∞)

kF (δ)} = 1,

2. P{ω : Nβ |kF (δ) − kFN (δ)| > t} −→
(N→∞)

0.

P r o o f . The assertion of Lemma 2.8 follows from [30] (see also [14]). �

2.3. Bivariate Pareto distributions

A few definitions of slightly different univariate Pareto distributions exist in the lite-
rature. We recall the Pareto(I)(σ, α) distribution (introduced in [17]) that is very
similar to the definition corresponding to the relation (2.10) (C := σα).

Definition 2.9. (Kotz, Balakrishnan and Johnson [17]) The random value ξ is said

to have a univariate Pareto(I)(σ, α) distribution if Pα{ω : ξ > z } =
(

z
σ

)−α

for

z ≥ σ, σ > 0, α > 0.

Mostly (in applications), a random element is represented by an s-dimensional
random vector (s > 1). A bivariate and multivariate Pareto distributions corre-
sponding to P (I)(σ, α) are introduced in [17]. We recall the bivariate case only.

Definition 2.10. (Kotz, Balakrishnan and Johnson [17]) The random two dimen-
sional vector ξ = (ξ1, ξ2) is said to have a bivariate Pareto distribution of the first
kind if the joint probability density function fξ1,ξ2(z1, z2) fulfil the relation

fξ1,ξ2(z1, z2) = (α+ 1)α(θ1θ2)
α+1(θ2z1 + θ1z2 − θ1θ2)

−(a+1),

z1 ≥ θ1 > 0, z2 ≥ θ2 > 0, α > 0.

Evidently, the marginal densities are

fξi(zi) = αθαi z
−(α+1)
i , zi ≥ θi > 0, i = 1, 2; consequently ξi =d PI

(
1

θi
, α

)
.

Remark. A survey of Pareto distributions applications can be found in [20]. There
exists also an analysis about an approach that αi, i = 1, . . . , s are not necessary the
same for all components.
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3. MAIN RESULTS

3.1. Consistency

Theorem 3.1. Let X be a compact set, the assumptions A.1 and A.2 be fulfilled.
If PF ∈ M1(Rs), then

P{ω : |ϕ(F, X)− ϕ(FN
ω , X)| −→

(N→∞)

0} = 1.

If, moreover, the assumptions A.3, A.4, A.5 and the relation (2.8) are fulfilled, then
also

P{ω : |ϕ(F, XF )− ϕ(FN
ω , XFN

ω
)| −→

(N→∞)

0} = 1.

P r o o f . The assertion follows from (2.6), Proposition 2.1, Lemma 2.2 and Lemma 2.8.
�

Remark. According to the fact that PF ∈ M1(Rs) for many stable (for definition
see e. g. [15]) and Pareto distributions we can see that ϕ(FN

ω ) is a consistent estimate
of ϕ(F ) for many heavy tails distributions.

3.2. Convergence rate

Theorem 3.2. (Kaňková [13]) Let t > 0, X be a compact set, the assumptions
A.1, A.2 and A.3 be fulfilled. If there exist constants C1, C2 > 0 and T > 0 such
that

fi(zi) ≤ C1 exp{−C2|zi|} for zi ∈ (−∞, −T ) ∪ (T, ∞), i = 1, . . . , s, (3.11)

then

P{ω : Nβ|ϕ(F, X)− ϕ(FN
ω , X)| > t} −→

(N→∞)
0 for β ∈ (0, 1/2).

If, moreover, the assumptions A.4, A.5 and (2.8) are fulfilled, then also

P{ω : Nβ |ϕ(F, XF )− ϕ(FN
ω , XFN

ω
)| > t} −→

(N→∞)
0 for β ∈ (0, 1/2).

Theorem 3.3. Let t > 0, X be a compact set, C > 0, αi > 1, i = 1, . . . , s, the
assumptions A.1, A.2 and A.3 be fulfilled. If

1. there exists a constant T > 0 such that

fi(z) ≤ Cαi|zi|−αi−1 for zi ∈ (−∞, −T ) ∪ (T, ∞), i = 1, . . . , s, (3.12)

2. αi > 1, γi > 0, i = 1, . . . , s, β > 0 fulfil the inequalities

γi >
1

αi
,

γi
β
>

1

αi − 1
, γi + β <

1

2
,
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then

P{ω : Nβ|ϕ(FN
ω , X)− ϕ(F, X)| > t} −→

(N→∞)

0.

If, moreover, the assumptions A.4, A.5 and (2.8) are fulfilled, then also

P{ω : Nβ|ϕ(F, XF )− ϕ(FN
ω , XFN

ω
)| > t} −→

(N→∞)
0.

P r o o f . Evidently, under the assumptions PF ∈ M1(Rs). The first assertion of
Theorem 3.3 follows from Proposition 2.1 and Corollary 2.7. The second assertion
follows from the first one and the relation (2.6), (2.8). �

4. APPLICATION TO PORTFOLIO SELECTION

Heavy tails distributions are applied also to assets theory (see e. g. [20]). More-
over, it follows e. g. from [16, 23, 24] that risk measures are not necessary a linear
“functional” of the probability measure. Consequently, new types of optimization
problems arise. To explain this fact, we start with a classical portfolio problem:

Find

max
x∈X

n∑

k=1

ξkxk, X =

{
x ∈ Rn :

n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n

}
, s = n,

where xk is a fraction of the unit wealth invested in the asset k, ξkxk denotes the
return of the value xk invested in the asset k ∈ {1, 2, . . . n}. If ξk, k = 1, . . . , n
are known, then the last problem is a linear programming problem. Since ξk, k =
1, . . . , n are mostly random variables with unknown realizations in a time decision,
it is reasonable to set to the portfolio selection two-objective optimization problem:

Find

max

n∑

k=1

µkxk, min

n∑

k=1

n∑

j=1

xkck,jxj subject to x = (x1, . . . , xn) ∈ X, (4.13)

where µk = EF ξk, ck,j = EF (ξk −µk)(ξj −µj), k, j = 1, . . . n. Markowitz sets to
the problem (4.13) the following one-objective problem:

Find

max




n∑

k=1

µkxk −K

n∑

k=1

n∑

j=1

xkck,jxj


 subject to x ∈ X ; K > 0 is a constant.

(4.14)
Evidently, σ2(x) =

∑n
k=1

∑n
j=1 xkck,jxj = EF{

∑n
j=1 ξjxj − EF [

∑n
j=1 ξjxj ]}2 can

be considered as a risk measure, that can be (see [16]) replaced by

w(x) = EF |∑n
k=1 ξkxk − EF [

∑n
k=1 ξkxk]| ,

w+(x) = EF |∑n
k=1 ξkxk − EF [

∑n
k=1 ξkxk]|

+
,

w−(x) = EF |∑n
k=1 ξkxk − EF [

∑n
k=1 ξkxk]|

−
.

(4.15)
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Replacing in (4.14) σ2(x) by w(x), w+(x) and w−(x) we obtain the problems:
Find

ϕ1(F ) := max
x∈X

[∑n
k=1 µkxk −KEF

∣∣∣
∑n

k=1 ξkxk − EF

[∑n
k=1 ξkxk

]∣∣∣
]
,

ϕ2(F ) := max
x∈X

[∑n
k=1 µkxk −KEF

∣∣∣
∑n

k=1 ξkxk − EF

[∑n
k=1 ξkxk

]∣∣∣
+]
,

ϕ3(F ) := max
x∈X

[∑n
k=1 µkxk −KEF

∣∣∣
∑n

k=1 ξkxk − EF

[∑n
k=1 ξkxk

]∣∣∣
−]
.

(4.16)
Evidently the problems (4.16) are covered by a more general problem:
Find

ϕ(F ) := ϕ̄(F, X) = inf
{
EF g

1
0(x, ξ,EFh(x, ξ))|x ∈ X

}
, (4.17)

where h(x, z) = (h1(x, z), . . . , hm1(x, z)) generally can be an m1-dimensional vec-
tor function defined on X × Rs, g10(x, z, y) is a real valued function defined on
X × Rs × Y, Y ⊂ Rm1 nonempty set. EF [

∑n
k=1 ξkxk] corresponds in (4.16) to

EFh(x, ξ). Furthermore employing the approach of [23] we can this general case
transform to the case of Theorem 3.2 or Theorem 3.3 (for more details see [13]).

Proposition 4.1. (Kaňková [13]) Let X be a compact set, G be an arbitrary s-
dimensional distribution function. Let, moreover, PF , PG ∈ M1(Rs). If

1. g10(x, z, y) is for x ∈ X, z ∈ Rs a Lipschitz function of y ∈ Y with a Lipschitz
constant Ly; Y = {y ∈ Rm1 : y = h(x, z) for some x ∈ X, z ∈ Rs},

2. for every x ∈ X, y ∈ Y there exist finite mathematical expectations

EF g
1
0(x, ξ, EFh(x, ξ)), EF g

1
0(x, ξ, EGh(x, ξ)), EGg

1
0(x, ξ, GFh(x, ξ)),

3. hi(x, z), i = 1, . . . , m1 are for every x ∈ X Lipschitz functions of z with the
Lipschitz constants Li

h (corresponding to L1 norm),

4. g10(x, z, y) is for every x ∈ X, y ∈ Rm1 a Lipschitz function of z ∈ Rs with the
Lipschitz constant Lz (corresponding to L1 norm),

then there exists Ĉ such that

|ϕ̄(F, X)− ϕ̄(G, X)| ≤ Ĉ

s∑

i=1

∫ ∞

−∞
|Fi(zi)−Gi(zi)| dzi. (4.18)

Replacing G by empirical one FN
ω we obtain “empirical problems”:

Find

ϕ2(FN
ω ) = max

x∈X

[
EFN

ω
[
∑n

k=1 ξkxk]−KEFN
ω

∣∣∑n
k=1 ξkxk − EFN

ω
[
∑n

k=1 ξkxk]
∣∣] ,

ϕ3(FN
ω ) = max

x∈X

[
EFN

ω
[
∑n

k=1 ξkxk]−KEFN
ω

∣∣∑n
k=1 ξkxk − EFN

ω
[
∑n

k=1 ξkxk]
∣∣+
]
,

ϕ4(FN
ω ) = max

x∈X

[
EFN

ω
[
∑n

k=1 µkxk]−KEFN
ω

∣∣∑n
k=1 ξkxk − EFN

ω
[
∑n

k=1 ξkxk]
∣∣−

]
.

(4.19)
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Employing furthermore the technique of the Theorem 3.2, Theorem 3.3 and Propo-
sition 4.1 proofs we can see that

P
{
ω : Nβ |ϕi(F )− ϕi(FN

ω )| > t
}

−→
(N→∞)

0, i = 1, 2, 3, (4.20)

where the value of coefficient β is determined by the relations (3.11) or (3.12).

5. DISCUSSION

The paper deals with stability and empirical estimates of the optimal value in
stochastic programming problems. In particular, the aim of the paper is to focus on
heavy tails and Pareto distributions. The presented results are based on the stability
assertions based on the Wasserstein metric corresponding to L1 norm. These sta-
bility results are obtained under the assumptions of compact feasible set, continuity
of the “underlying” objective functions, existence of probability density and so on.
Consequently, the assumptions are rather strong, however on the other hand this ap-
proach enables to evaluate numerically approximations of upper bounds in the case
of deterministic approximative solutions schemes (for details see e. g. [11] or [32]),
as well as the probability of the Monte Carlo error in the empirical approximations.
At the end of the paper, the reported results are applied to some nonlinear (w.r.t.
probability measure) functionals. To obtain the results for optimal solution some
growth assumptions can be assumed (see e. g. [27]). However, this investigation is
beyond the scope of this paper.

More stronger theoretical assertions (under weaker assumptions, i. e. without
the assumptions of compactness of the feasible set, continuity of objective function,
only individual probability constraints, absolutely continuous probability measure
w.r.t. Lebesque measure and so on) are known from the stochastic programming
literature (see e. g. [4] or [27]). These papers also present results concerning the
optimal solutions. However, all these results are based on essentially more general
“complicated” theoretical probability metrics. These abstract assertions are of great
value from the theoretical point of view, and special cases can be sometimes obtained
from them. Our results only try to complete them for possibilities of the numerical
employment and approximation in new arising economic problems.
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[25] A. Prékopa: Probabilistic programming. In: Stochastic Programming, (Handbooks in
Operations Research and Managemennt Science, Vol. 10, (A. Ruszczynski and A.A.
Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 267–352.

[26] W. Römisch and R. Schulz: Stability of solutions for stochastic programs with com-
plete recourse. Math. Oper. Res. 18 (1993), 590–609.

[27] W. Römisch: Stability of stochastic programming problems. In: Stochastic Program-
ming, Handbooks in Operations Research and Managemennt Science, Vol 10 (A.
Ruszczynski and A.A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554.

[28] G. Salinetti and R. J. B. Wets: On the convergence of closed-valued measurable mul-
tifunctions. Trans. Amer. Math. Soc. 266 (1981), 1, 275–289.

[29] R. Schulz: Rates of convergence in stochastic programs with complete integer recourse.
SIAM J. Optim. 6 (1996), 4, 1138–1152.

[30] J. R. Serfling: Approximation Theorems of Mathematical Statistics. Wiley, New York
1980.

[31] A. Shapiro: Quantitative stability in stochastic programming. Math. Program. 67
(1994), 99–108.
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