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ON HYPERPLANES AND SEMISPACES
IN MAX–MIN CONVEX GEOMETRY

Viorel Nitica and Sergĕı Sergeev

The concept of separation by hyperplanes and halfspaces is fundamental for convex
geometry and its tropical (max-plus) analogue. However, analogous separation results in
max-min convex geometry are based on semispaces. This paper answers the question which
semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes
in max-min convex geometry.
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1. INTRODUCTION

Consider the set B = [0, 1] endowed with the operations⊕ = max,∧ = min. This is a
well-known distributive lattice, and like any distributive lattice it can be considered
as a semiring equipped with addition ⊕ and multiplication ⊗ := ∧. Importantly,
both operations are idempotent, a⊕a = a and a⊗a = a∧a = a, and closely related
to the order: a⊕ b = b ⇔ a ≤ b ⇔ a∧ b = a. For standard literature on lattices and
semirings see e. g. [1] and [9].

We consider Bn, the cartesian product of n copies of B, and equip this cartesian
product with operations of taking componentwise ⊕: (x⊕y)i := xi⊕yi for x, y ∈ Bn

and i = 1, . . . , n, and scalar ∧-multiplication: (a ∧ x)i := a ∧ xi for a ∈ B, x ∈ Bn

and i = 1, . . . , n. Thus Bn is considered as a semimodule over B [9]. Alternatively,
one may think in terms of vector lattices [1].

A subset C of Bn is said to be max-min convex, (or briefly convex), if the relations
x, y ∈ C,α, β ∈ B, α⊕ β = 1 imply α ∧ x ⊕ β ∧ y ∈ C. Here and everywhere in the
paper we assume the priority of ∧ over ⊕. If x, y ∈ Bn, the set

[x, y] := {α ∧ x⊕ β ∧ y ∈ Bn|α, β ∈ B, α⊕ β = 1}
= {max(min(α, x),min(β, y)) ∈ Bn|α, β ∈ B,max (α, β) = 1}, (1)

is called the max-min segment (or briefly, the segment) joining x and y. Like in the
ordinary convexity in the real space, a set is max-min convex if and only if any two
points are contained in it together with the max-min segment joining them. The
max-min segments have been described in [14, 16]. Other types of convex sets are
max-min semispaces, halfspaces and hyperplanes.
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One of the main motivations for the investigation of max-min convex sets is in the
study of tropically convex sets, analogously defined over the semiring Rmax, which is
the completed set of real numbers R∪{−∞} endowed with operations of idempotent
addition a⊕ b := max(a, b) and multiplication a⊗ b := a+ b. Tropical convexity and
its lattice-theoretic generalizations, pioneered in [17, 18], received much attention
and rapidly developed over the last decades [3, 4, 5, 6, 10, 12, 13]. Another source of
interest comes from the matrix algebra developed over the max-min semiring, also
known as fuzzy algebra [2, 7, 8].

In this article we continue the study of max-min convex structures started in
[11, 14, 15]. We are interested in separation of max-min convex sets by max-min
hyperplanes and semispaces.

When z ∈ Bn, we call a subset S(z) of Bn a max-min semispace (or, briefly, a
semispace) at z, if it is a maximal (with respect to set-inclusion) max-min convex
set avoiding z; a subset S of Bn is called a semispace, if there exists z ∈ Bn such
that S = S(z). We recall that in Bn there exist at most n + 1 semispaces at each
point, exactly n+1 at each finite point, and each convex set avoiding z is contained
in at least one of those semispaces [15].

Amax-min hyperplane (briefly, a hyperplane) is the set of all points x = (x1, . . . , xn)
∈ Bn satisfying an equation of the form

a1 ∧ x1 ⊕ . . .⊕ an ∧ xn ⊕ an+1 = b1 ∧ x1 ⊕ . . .⊕ bn ∧ xn ⊕ bn+1, (2)

with ai, bi ∈ B for i = 1, . . . , n+ 1, where each side contains at least one term. The
combinatorial structure of hyperplanes is described in [11]. If the equality in (2) is
replaced by a strict (resp. non-strict) inequality, then we obtain an open halfspace
(resp. a closed halfspace). Note that any max-min closed halfspace is a max-min
hyperplane (due to a⊕ b = b ⇔ a ≤ b) but not conversely.

One of the main applications of semispaces is in separation results: the family of
semispaces is the smallest intersectional basis for the family of all convex sets in Bn

[15]. Separation results by hyperplanes and halfspaces in the tropical convexity and
lattice-theoretic generalizations are found in [3, 4, 5, 6, 10, 17, 18]. These results are
very optimistic: any point can be separated from a closed tropically convex set, and
even any two compact non-intersecting convex sets can be separated from each other
by two closed halfspaces [6]. In contrast, [11] contains a counterexample to separation
of a point and a max-min convex set by max-min hyperplanes (equivalently, by max-
min halfspaces).

The main goal of this paper is to further clarify separation by hyperplanes in max-
min algebra. The main result of this paper, Theorem 3.1, shows which closures of
semispaces are hyperplanes and which are not. As a corollary, we obtain in what case
it is possible to separate a point from a closed max-min convex set by a hyperplane.

2. THE STRUCTURE OF SEMISPACES

We recall the structure of the semispaces in Bn at an arbitrary point x0. We follow
closely [15].
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Without loss of generality we may assume that the coordinates (x0
1, . . . , x

0
n) of

the point x0 are in decreasing order, that is:

x0
1 ≥ · · · ≥ x0

n. (3)

The set {x0
1, . . . , x

0
n} admits a natural subdivision into ordered subsets such that

the elements of each subset are either equal to each other or are in strictly decreasing
order, say

x0
1 = · · · = x0

k1
> · · · > x0

k1+l1+1 = · · · = x0
k1+l1+k2

. . .

> x0
k1+l1+k2+l2+1 = · · · = x0

k1+l1+k2+l2+k3
> . . .

> x0
k1+l1+···+kp−1+lp−1+1 = · · · = x0

k1+l1+···+kp−1+lp−1+kp

> · · · > x0
k1+l1+···+kp+lp(= x0

n),

(4)

where we make the following conventions:

1. k1 = 0 if and only if the sequence (4) starts with the strict inequality x0
1 > x0

2;
in this case l1 6= 0 and the beginning of the sequence will be:

x0
1 > · · · > x0

l1 > x0
l1+1 = · · · = x0

l1+k2
> . . .

· · · > x0
l1+k2+l2 > x0

l1+k2+l2+1 = . . . ;
(5)

in particular, if (4) has only strict inequalities between its terms one has p = 1, k1 =
0, l1 = n. When (4) has only equalities between its terms, one has p = 1, k1 = n, l1 =
0.

2. lp = 0 if and only if the sequence {x0
1, . . . , x

0
n} ends with equalities, that is,

with x0
n−1 = x0

n; in this case, if p ≥ 2, the end of the sequence (4) will be

. . . > x0
k1+l1+...+kp−1+lp−1+1 = . . . = x0

k1+l1+...+kp−1+lp−1+kp
, (6)

while if p = 1, the whole sequence will be x0
1 = . . . = x0

k1
(= x0

n). In other words, we
take lp 6= 0 if and only if x0

n−1 > x0
n.

Let us introduce the following notations:

L0 = 0,K1 = k1, L1 = K1 + l1 = k1 + l1, (7)

Kj = Lj−1 + kj = k1 + l1 + . . .+ kj−1 + lj−1 + kj (j = 2, . . . , p), (8)

Lj = Kj + lj = k1 + l1 + . . .+ kj + lj (j = 2, . . . , p). (9)

We observe that lj = 0 if and only if Kj = Lj and Lp = n.
The following description of semispaces is taken from [15, Proposition 4.1]. We

need to distinguish the case when the sequence (4) ends with zeros either/or begins
with ones, since some semispaces become empty in that case.

Proposition 2.1. Let x0 = (x0
1, . . . , x

0
n) ∈ Bn, x0

1 ≥ . . . ≥ x0
n, and let k1, l1, . . . , kp,

lp, p be non-negative integers as above.
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a) If 0 < x0
i < 1 for all i = 1, . . . , n, then there are n+ 1 semispaces

S0(x
0), S1(x

0), . . . , Sn(x
0) at x0, namely:

S0(x
0) = {x ∈ Bn|xi > x0

i for some 1 ≤ i ≤ n}, (10)

SKj+q(x
0) = {x ∈ Bn|xKj+q < x0

Kj+q, or xi > x0
i for some Kj + q + 1 ≤ i ≤ n}

(q = 1, . . . , lj ; j = 1, . . . , p) if lj 6= 0,
(11)

SLj−1+q(x
0) = {x ∈ Bn|xLj−1+q < x0

Lj−1+q, or xi > x0
i for some Kj + 1 ≤ i ≤ n}

(q = 1, . . . , kj ; j = 1, . . . , p if k1 6= 0, or j = 2, . . . , p if k1 = 0).
(12)

b) If there exists an index i ∈ {1, . . . , n} such that x0
i = 1, but no index j such

that x0
j = 0, then the semispaces at x0 are S1(x

0), . . . , Sn(x
0) of part a).

c) If there exists an index j ∈ {1, . . . , n} such that x0
j = 0, but no index i such

that x0
i = 1, then the semispaces at x0 are S0(x

0), S1(x
0), . . . , Sβ−1(x

0) of part a),
where

β := min{1 ≤ j ≤ n| x0
j = 0}. (13)

d) If there exist indices i, j ∈ {1, . . . , n} such that x0
i = 1 and x0

j = 0, then the

semispaces at x0 are S1(x
0), . . . , Sβ−1(x

0) of part a), where β is the number (13).

Pictures of all types of semispaces in B2 are shown in Figure 1. The figure is
taken from [15].

3. MAIN RESULTS

If we take the topological closure of semispaces, all inequalities in (10) – (12) become
non-strict. We denote such closures by Si(x

0).
We will also denote

Dn = {
n︷ ︸︸ ︷

(a, . . . , a) | a ∈ B}. (14)

This set will be called the diagonal of Bn.
Next we investigate when the closures of semispaces are hyperplanes.

Theorem 3.1. (Semispaces and Hyperplanes) Assume that x0 ∈ Bn satisfies
x0
1 ≥ x0

2 ≥ · · · ≥ x0
n and let H := Si(x

0) for i = 0, 1 . . . , n. The following statements
are equivalent.

a) H takes either of the following forms for some a ∈ B:

H+(a) = {x | xi ≥ a for some i = 1, . . . , n}, for a < 1,

H−
i (a) = {x | xi ≤ a}, for a > 0, i = 1, 2, . . . , n.

(15)

b) H = Si(y) for some y ∈ Dn.

c) H is a hyperplane.
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a1

a2

b1

b2

c1

c2

d1

S0 S1 S2

Fig. 1. Semispaces in dimension 2.
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P r o o f . First we observe that a) and b) are equivalent. Indeed, H+(a) = S0(x)
and H−

i (a) = Si(x) where x = (a, . . . , a).
We can represent

H+(a) = {x |
n⊕

i=1

xi = a⊕
n⊕

i=1

xi},

H−
i (a) = {x | xi = a ∧ xi}.

(16)

which shows a)⇒ c).
It remains to show that the closure of a semispace that is not of the form (15)

cannot be a hyperplane.

Case 1. Consider S0(x
0) where x0 /∈ Dn.

If x0
i = 0 for some i, then S0(x

0) = Bn = H+(0). Hence we can assume x0
i > 0

for all i.
Let y ∈ Bn be such that yi < x0

i for all i, and

x0
1 > y1 > x0

n > yn. (17)

We define z1 and z2 by

z1i =

{
x0
1, if i = 1,

yi, otherwise,
z2i =

{
x0
n, if i = n,

yi, otherwise.
(18)

Obviously S0(x
0) contains both z1 and z2, but it does not contain y = z1 ∧ z2. Our

goal is to show that any hyperplane defined by (2) that contains z1 and z2 will also
contain y. Equation (2) for z1, z2 and y reduces to, respectively,

a1 ∧ x0
1 ⊕ an ∧ yn ⊕ α = b1 ∧ x0

1 ⊕ bn ∧ yn ⊕ β, (19)

a1 ∧ y1 ⊕ an ∧ x0
n ⊕ α = b1 ∧ y1 ⊕ bn ∧ x0

n ⊕ β, (20)

a1 ∧ y1 ⊕ an ∧ yn ⊕ α = b1 ∧ y1 ⊕ bn ∧ yn ⊕ β, (21)

where
α =

⊕

i6=1,n

ai ∧ yi, β =
⊕

i6=1,n

bi ∧ yi. (22)

We need to show that (19) and (20) together imply (21). We do this by showing
that the minimum of left hand sides of (19) and (20) is always equal to the left hand
side of (21). By analogy, the same holds for the right hand sides.

We first pull α out of the brackets using the distributivity law (b⊕ a)∧ (c⊕ a) =
(b ∧ c)⊕ a:

(a1 ∧ x0
1 ⊕ an ∧ yn ⊕ α) ∧ (a1 ∧ y1 ⊕ an ∧ x0

n ⊕ α)

= ((a1 ∧ x0
1 ⊕ an ∧ yn) ∧ (a1 ∧ y1 ⊕ an ∧ x0

n))⊕ α.
(23)

It remains to show that

(a1 ∧ x0
1 ⊕ an ∧ yn) ∧ (a1 ∧ y1 ⊕ an ∧ x0

n)

= a1 ∧ y1 ⊕ an ∧ yn.
(24)
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If a1, an are large enough then (17) implies

a1 ∧ x0
1 ≥ a1 ∧ y1 ≥ an ∧ x0

n ≥ an ∧ yn, (25)

and in this case it is easy to see that (24) holds, both sides being equal to a1 ∧ y1.
Note that the first and the third inequalities always hold. The second inequality
may not hold true, but then a1 ≤ y1, in which case a1 ∧ x0

1 = a1 ∧ y1. In this case
we use the distributivity again, and this transforms the left hand side of (24) to

(a1 ∧ y1)⊕ (an ∧ yn ∧ x0
n) = (a1 ∧ y1)⊕ (an ∧ yn), (26)

which proves (24) and hence the claim for Case 1.

Case 2. Consider Si(x
0) where x0 /∈ Dn.

Denote

n(i) =

{
i+ 1, if Ks + 1 ≤ i ≤ Ls,

Ks+1 + 1, if Ls + 1 ≤ i ≤ Ks+1,
(27)

where Ks, Ls are defined by (7) – (9).
If n(i) = n+1 then Si(x

0) = H−
i (x

0
i ). If x

0
i = 1 or x0

j = 0 for some j ≥ n(i) then

Si(x
0) = Bn. Otherwise, we construct points y, z and v defined by

yj =

{
1, if j = i,

x0
j , otherwise,

zj =

{
0, if j ≥ n(i),

x0
j , otherwise,

vj =





1, if j = i,

0, if j ≥ n(i),

x0
j , otherwise.

(28)

It is clear that y and z belong to Si(x
0) but v does not. Our goal will be to show

that if a hyperplane defined by (2) contains y and z then it also contains v. Equality
(2) reduces in the cases of y, z and v respectively to

ai ⊕
⊕

s≥n(i)

(as ∧ x0
s)⊕ α = bi ⊕

⊕

s≥n(i)

(bs ∧ x0
s)⊕ β, (29)

ai ∧ x0
i ⊕ α = bi ∧ x0

i ⊕ β, (30)

ai ⊕ α = bi ⊕ β, (31)

where

α =
⊕

s6=i, s<n(i)

(as ∧ x0
s)⊕ an+1, β =

⊕

s6=i, s<n(i)

(bs ∧ x0
s)⊕ bn+1. (32)

We need to show that (29) and (30) imply (31). Assume by contradiction that
ai ⊕ α 6= bi ⊕ β. Then there exists s ≥ n(i) such that (29) equals as ∧ x0

s or bs ∧ x0
s

implying that x0
s ≥ ai⊕ bi⊕α⊕β. But then x0

i ≥ x0
s ≥ ai⊕ bi⊕α⊕β, and equation

(30), which is assumed to hold, is the same as (31), a contradiction. The proof of
Case 2 is complete and the theorem is proved. �
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Remark 3.2. We recall that in the tropical (max-plus) convex geometry the closure
of any semispace is a hyperplane [12].

The key ingredient in the proof of Theorem 3.1 is the construction of examples
where a point cannot be separated from a closed semispace by a hyperplane. The
proof of Theorem 3.1 shows that such examples can be constructed for any dimension
and for any semispace except for (15) which are precisely the hyperplanes. The proof
for the case of S0(x

0) (Case 1) also shows that such examples can be constructed
for any point outside the diagonal. We conclude the following.

Corollary 3.3. (Non-separation by Hyperplanes) Let x ∈ Bn and x /∈ Dn.
Then there exists a closed max-min convex set C ⊆ Bn such that x cannot be
separated from C by a hyperplane.

Simple counterexamples to separation by hyperplanes in dimension two have been
obtained by one of the authors [11]: as shown on Figure 2, it actually suffices to take
certain max-min segments [14, 16]. The convex set C = [z1, z2] cannot be separated
by hyperplanes from the point x = z1 ∧ z2.

z1

z2

x

C

Fig. 2. Forbidden separation.

Such examples can be extended cylindrically to any dimension, which is precisely
the geometric idea of the proof of Theorem 3.1.

On the other hand, as the semispaces taken at a diagonal point are hyperplanes, it
is possible to separate a point on the diagonal from a closed convex set “classically”.

Corollary 3.4. (Diagonal Separation by Hyperplanes) Let x ∈ Bn and x ∈
Dn. Then any closed max-min convex set C ⊆ Bn such that x /∈ C, can be separated
from x by a hyperplane.

P r o o f . Since x 6∈ C, there is a semispace S at x containing C [15, Theorem 5.1].
If S = S0(x), then for any y ∈ C there exists 1 ≤ i ≤ n such that yi > xi. Due

to compactness of C, there is δ > 0 such that above inequalities can be replaced by
yi ≥ xi + δ. For x+ δ = (x1 + δ, . . . , xn + δ), this implies C is included in S0(x+ δ).
By Theorem 3.1 S0(x+ δ) is a hyperplane. Moreover it does not contain x.
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If S = Si(x), then yi < xi for any y ∈ C. Due to compactness of C, there is
δ > 0 such that above inequality can be replaced by yi ≤ xi − δ. This implies C is
included in Si(x− δ). By Theorem 3.1 Si(x− δ) is a hyperplane. It avoids x. �
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Sergĕı Sergeev, School of Mathematics, University of Birmingham, Edgbaston, Birmingham

B15 2TT. United Kingdom.

e-mail: sergiej@gmail.com


		webmaster@dml.cz
	2013-09-21T15:35:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




