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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 5 , P AGE S 8 3 1 – 8 4 9

REDUCTION AND TRANSFER EQUIVALENCE

OF NONLINEAR CONTROL SYSTEMS: UNIFICATION

AND EXTENSION VIA PSEUDO-LINEAR ALGEBRA

Ülle Kotta, Palle Kotta and Miroslav Halás

The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction
and transfer equivalence for continuous- and discrete-time nonlinear control systems. The
necessary and sufficient condition for reducibility of nonlinear input-output equation is
presented in terms of the greatest common left factor of two polynomials describing the
behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the
reduced (irreducible) system equation that is transfer equivalent to the original system
equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results
also for systems defined in terms of difference, q-shift and q-difference operators.

Keywords: nonlinear control systems, input-output models, reduction, pseudo-linear al-
gebra, transfer equivalence

Classification: 93C10, 93B20, 93B25

1. INTRODUCTION

In every research field a moment arrives when there is a need to make the exist-
ing knowledge base more compact to facilitate the growth of the field. Nonlinear
control theory that has been developed actively since mid 80-s is not an exception.
There are many results in nonlinear control theory showing significant similarities in
continuous- and discrete-time cases. The paper shows how to apply the pseudo-linear
algebra to unify the study of continuous- and discrete-time nonlinear control sys-
tems to the general solutions of the problems from which the results for continuous-
and discrete-time systems follow as special cases. This will be demonstrated on the
example of the system reduction problem though we argue that the pseudo-linear
algebra can be used to unify the study that relies on the ‘tangent linearized sys-
tem description’, formulated in terms of differential one-forms [10], like accessibility,
feedback linearization, inversion etc. We apply the pseudo-linear algebra to unify
the results on reducibility, reduction and transfer equivalence for single-input single-
output (SISO) continuous- and different discrete-time control system descriptions.
In [20] for the same purpose the calculus on homogeneous time scales has been ap-
plied, and this motivates our choice since it allows to compare the two approaches
providing tools for unification and extension. The main tool of the time scale cal-
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culus is a delta-derivative but that of the pseudo-linear algebra is a pseudo-linear
map, including the delta-derivative as a special case but accommodating addition-
ally a shift operator that is more conventional in control theory (unlike the difference
operator being a special case of delta-derivative) and also a q-shift operator.

Pseudo-linear algebra [1, 5], alternatively called Ore algebra, provides the tools to
study the common properties of linear differential, difference, shift and other type of
operators, such as q-difference and q-shift operators, expressed in terms of the skew
polynomials. These tools have been applied earlier for study of controllability of
linear time-varying control systems, see [4, 7] and the references therein. For nonlin-
ear control systems, pseudo-linear algebra was first used in the authors’ conference
paper [15], though its possibility was implicitly suggested already in [28]. Note that
in order to make the tools of pseudo-linear algebra applicable for nonlinear systems,
one has to find first the ‘tangent linearized system’ equations in terms of differential
one-forms by applying the (Kähler) differential operator to the system equations.
That way one can associate with the control system a pseudo-linear map, defined
over the differential (or difference – in the discrete-time case) field of meromorphic
functions in system variables (see [18, 31, 32]), pretty much in the similar man-
ner it has been done in the linear time-varying case. Then, in the practical terms,
checking irreducibility and finding the reduced system requires to find the greatest
common left factor of two polynomials from the skew (Ore) polynomial ring, with
the polynomial indeterminate being the pseudo-linear operator. The resulting time-
varying linear models can be used for checking the solvability of various problems
of interest but for finding the solutions one has to address the integrability aspects.
However, even for the analysis, the application of the respective results from the lin-
ear time-varying theory requires special attention and is not, in most cases, directly
applicable. The main source of the trouble comes from the fact that the polynomial
coefficients as the time-varying functions are not free parameters, but the composite
functions depending on time via the system’s state, input and output variables, see
also [27, 30].

To conclude, the main novelty of this paper, compared to [20] is that it allows to
unify more cases into a single framework from which the continuous- and discrete-
time results follow as special cases. Of course, [20] and this paper have many overlap-
pings since both work with ‘tangent linearized systems’ and with polynomials from
the skew (Ore) polynomial ring that act as operators on the differential one-forms,
describing the ‘tangent linearized system’1. However, these skew rings are different
since the one in [20] does not accommodate the case when delta-derivative equals to
zero, corresponding to the pure shift case. The latter implies that in this paper the
multiplication rule in the polynomial ring may take a different form when compared
to [20], and then of course, the computations with polynomials differ. Finally, the
main results look like very similar, but otherwise, of course, one could not speak
about unification. Note that there exist results in nonlinear control theory, relying
on the ‘tangent linearized system description’, and not carrying over from continuous

1The ‘tangent linearized system’ approach together with the Ore rings has been used earlier
in a number of papers devoted to the study of nonlinear control systems like [16, 18, 29, 31, 32].
However, these papers focus on the special cases of the Ore rings and do not address the unification
power of the Ore ring.
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to the discrete-time case, see for example [19]. Application of pseudo-linear algebra
will help to reveal and explain such discrepancies between the results concerning the
differential equations and their discrete-time analogues. A practical advantage of the
unification of the solutions via the tools of pseudo-linear algebra is in the reduction
of the implementation load since one may now write a single Maple function that
covers all the special cases. The extra bonus is the existing software in Maple, in
the form of built-in-packages like OreTools [1] and OreModules [8] that can handle
a number of issues, related to Ore polynomials.

The paper is organized as follows. In Section 2 we give a brief exposition of
the pseudo-linear algebra. Section 3 describes the control system in terms of two
polynomials from the skew polynomial ring, being the pseudo-linear operators that
act on differential one-forms. The results of this section may be also considered
as an original contribution since up to now there does not exist a journal paper
demonstrating whether and how the pseudo-linear algebra is applicable in the study
of nonlinear control systems. In Section 4 the necessary and sufficient reducibility
condition is given and in Section 5 the reduction procedure is described. Moreover,
in this section the new definition of transfer equivalence of two systems is related
explicitly to the equality of their (recently introduced) transfer functions, and the
reduced system is shown to be transfer equivalent to the original system. In Section 6
three examples are given, and finally, Section 7 concludes the paper.

2. PSEUDO-LINEAR ALGEBRA

Definition 2.1. Let K be a field and σ : K → K an automorphism of K. A map
δ : K → K which satisfies

δ(α + β) = δ(α) + δ(β)
δ(αβ) = σ(α)δ(β) + δ(α)β

(1)

is called a pseudo- or σ-derivation2.

Obviously, σ(α/β) = σ(α)/σ(β) and δ(α/β) = (βδ(α)−αδ(β))/(σ(β)β) for α, β ∈
K with β 6= 0.

Definition 2.2. A σ-differential field is a triple (K, σ, δ) where K is a field, σ is an
automorphism of K and δ is a σ-derivation.

The σ-differential field K is the starting point for constructions used in charac-
terizing reducibility property of different nonlinear control systems.

A left polynomial is an element which can be uniquely written in the form

a =

n∑

i=0

αi∂
n−i, αi ∈ K (2)

where ∂ is a formal variable (polynomial indeterminate) and a 6= 0 iff at least one
of the functions αi, i = 0, . . . , n is nonzero. If α0 6= 0, then the positive integer n is

2Note that σ-derivation may be interpreted as the delta-derivative from the homogeneous time
scale calculus.
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called the degree of the left polynomial a and denoted by d0(a). In addition, we set
d0(0) = −∞.

Any automorphism σ and σ-derivation δ induce a (left) non-commutative skew
polynomial ring. The term skew means that the derivative (shift, difference) operator
does not commute with every element in the coefficient field.

Definition 2.3. The left skew polynomial ring given by σ and δ is the ring K[∂; σ, δ]
of polynomials in ∂ over K with the usual addition, and the (non-commutative)
multiplication defined, for any α ∈ K, by the commutation rule

∂ · α = σ(α) · ∂ + δ(α). (3)

This rule can be uniquely extended to multiplication on monomials by

(α∂n)(β∂m) = (α∂n−1)(σ(β)∂m+1 + δ(β)∂m),

and then to arbitrary polynomials by

(
n∑

i=0

αi∂
n−i

)



m∑

j=0

βj∂
m−j



 .

A ring is called an integral domain, if it does not contain any zero divisors. This
means that if a and b are two elements of ring such that ab = 0, then a = 0 or b = 0.

Proposition 2.4. (McConnell and Robson [24])

(i) The ring K[∂; σ, δ] is an integral domain.

(ii) If a and b are nonzero skew polynomials, then d0(ab) = d0(a) + d0(b).

Moreover, the ring K[∂; σ, δ] satisfies the so-called (left) Ore condition.

Proposition 2.5. (Left Ore condition). (Ore [25]) For all non-zero a, b ∈ K[∂; σ, δ],
there exist non-zero a1, b1 ∈ K[∂; σ, δ] such that a1b = b1a.

Elements of such a ring are called skew polynomials or non-commutative polyno-
mials or Ore polynomials.

For any differential field K with a time-derivation δ = d
dt

, K[D; 1K, δ] is the ring of
linear ordinary differential operators. If σ is the automorphism over K which takes
t to t + 1, then K[E; σ, 0] is the ring of linear ordinary shift (recurrence) operators,
while K[E; σ, ∆], where ∆ = 1

µ
(σ−1K), µ ∈ IR is the ring of linear ordinary difference

operators. If σ is the automorphism over K which takes t to qt, then K[Q; σ, ∆] with
∆ = 1

µ
(σ − 1K) is the ring of linear ordinary q-difference operators, see [1, 5].

Definition 2.6. Let V be a vector space over a field K. A map θ : V → V is called
pseudo-linear if

θ(w + v) = θ(w) + θ(v)
θ(αw) = σ(α)θ(w) + δ(α)w

(4)

for any α ∈ K, w, v ∈ V .
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Table 1. Basic types of operators.

Case σ δ θ f(t)

differential 1K
d
dt

δ df(t)
dt

shift t → t + 1 0 σ f(t + 1)
difference t → t + 1 ∆ δ 1

µ
[f(t + 1) − f(t)]

q-shift t → qt 0 σ f(qt)
q-difference t → qt ∆ δ 1

µ
[f(qt) − f(t)]

Note that any field K is a vector space itself. Hence, we can consider pseudo-
linear maps over K assuming that (4) holds for an α, w, v ∈ K. Obviously, any
pseudo-derivation δ over K is a pseudo-linear map, simply by letting θ = δ. If δ = 0
then θ = σ and (4) is clearly satisfied. Also a difference operator ∆ = 1

µ
(σ − 1K),

is a pseudo-linear map by letting θ = ∆. Note that (4) is again satisfied, since
∆(αw) = σ(α)∆(w)+∆(α)w = 1

µ
σ(α)(σ(w)−w)+ 1

µ
(σ(α)−α)w = 1

µ
[σ(αw)−αw].

Thus, pseudo-linear maps allow to handle differential, shift and difference structures
from a unified viewpoint.

The basic types of operators that can be addressed within the pseudo-linear
algebra are listed in Table 1. Note that only the 1st, 3rd and 5th operator can be
handled within the time scale formalism, whereas the 2nd and 4th cannot.

Any pseudo-linear map θ : V → V induces an action denoted by ∗

∗ : K[∂, σ, δ] × V → V ;

(
n∑

i=0

αi∂
i

)

∗ w =

n∑

i=0

αiθ
i(w)

for any w ∈ V . For the sake of simplicity, below the symbol ∗ is dropped. Multipli-
cation in K[∂; σ, δ] corresponds to the composition of operators and (rs)w = r(sw)
for any r, s ∈ K[∂; σ, δ] and w ∈ V . So the elements of K[∂; σ, δ] can be viewed as
operators acting on V .

An algebraic setting for dealing and studying theoretic properties of nonlinear
control systems is often built up by introducing the notion of differential form.
From that point of view it will be important to satisfy commutativity of differential
operator d with a pseudo-linear operator θ, i. e. d · θ = θ · d. Note that for this
purpose in case of ∆ = 1

µ
(σ − 1K), the parameter µ is assumed to be a real number

and hence the q-differential case, where σ : t → qt and δ = 1
qt−t

(σ − 1K), does not
accommodate into our approach.

3. CONTROL SYSTEMS

In the polynomial approach, SISO nonlinear control system is described by two
skew polynomials that act as differential, difference or shift operators on input and
output differentials [18, 20, 31, 32]. In this subsection we consider a wide class of non-
linear control systems and unify the polynomial formalism, replacing the differential,
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difference or shift operators in polynomials by a more general pseudo-linear map that
accommodates all three cases and many more.

For the sake of simplicity, for y(t) we write just y, and the symbol y〈1〉 stands
for a pseudo-linear operator: y〈1〉 = θ(y). It can be a derivation, y〈1〉 = ẏ, that
corresponds to the continuous-time case, a shift y〈1〉 = σ(y), or a difference, y〈1〉 =
1
µ
(σ(y) − y) with µ ∈ IR, that correspond to two alternative discrete-time cases.

Consider a nonlinear SISO control system, described by the i/o equation

y〈n〉 = φ
(

y, . . . , y〈n−1〉, u, . . . , u〈s〉
)

(5)

where u ∈ IR and y ∈ IR denote the input and the output of the system and φ
is a real analytic function, n and s are nonnegative integers such that s < n. Let
ϕ(y, . . . , y〈n〉, u, . . . , u〈s〉) := y〈n〉 − φ(y, . . . , y〈n−1〉, u, . . . , u〈s〉). Then equation (5)
can be rewritten as

ϕ(y, . . . , y〈n〉, u, . . . , u〈s〉) = 0. (6)

Associate with system (5) the field K of meromorphic functions of the independent
system variables {y〈j〉, 0 ≤ j ≤ n − 1, u〈k〉, k ≥ 0}. Assume that system (5) is
generically submersive, i. e.

∂σn(y)/∂(y, u) 6≡ 0 (7)

is satisfied generically, i. e. almost everywhere except on a set of measure zero.
Assumption (7) reduces to the well known condition in the case of discrete-time
nonlinear systems when y〈1〉 = σ(y) [23] and is trivially satisfied in the case of
continuous-time nonlinear systems when σ(y) = y. Under (7), σ is an automorphism
of K. Let δ be a pseudo-derivation defined on K. The field K can be endowed with
σ-differential structure, determined by system equation (5) and the triple (K, σ, δ)
forms a σ-differential field. K is not inversive in general, i. e. some elements of K
may not have preimages with respect to σ. Note that under assumption (7) there
exists, up to an isomorphism, a unique σ-differential field K∗ called the inversive
closure of K [9]. Here we assume that the inversive closure is given and by abuse of
notation we use the same symbol K for both. A construction of the inversive closure
follows the same line as in [2, 21]; for the case φ in (5) being a rational function, a
more detailed construction is given in [16].

The nonlinear system (5) can be represented in terms of two skew polynomials
in the ring K[∂; σ, δ]. By differentiating (5) we obtain,

dy〈n〉 −
n−1∑

i=0

∂φ

∂y〈i〉
dy〈i〉 =

s∑

i=0

∂φ

∂u〈i〉
du〈i〉

or, alternatively

pdy = qdu (8)

where p = ∂n −
∑n−1

i=0
∂ϕ

∂y〈i〉 ∂
i and q =

∑s
i=0

∂ϕ

∂u〈i〉 ∂
i and p, q ∈ K[∂; σ, δ], i. e. are

polynomials over the σ-differential field K.
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Let σn := σ ◦ σ ◦ . . . ◦ σ
︸ ︷︷ ︸

n times

, and δn = δ ◦ δ ◦ . . . ◦ δ
︸ ︷︷ ︸

n times

.

We define a pseudo-linear operator θ, associated with system (5) and acting on
K, separately for derivation, shift and difference operators.

First, if σ = 1K and δ = d/dt, a pseudo-linear operator θ = δ and

δϕ({y〈j〉, u〈k〉}) =
∂ϕ

∂y〈j〉
δy〈j〉 +

∂ϕ

∂u〈k〉
δu〈k〉 (9)

where δy〈j〉 = y〈j+1〉, j = 0, . . . , n−2, δu〈k〉 = u〈k+1〉, but δy〈n−1〉 = φ(y, . . . , y〈n−1〉,
u, . . . , u〈s〉).

Second, if δ = 0, a pseudo-linear operator θ = σ and

σϕ({y〈j〉, u〈k〉}) = ϕ({σy〈j〉, σu〈k〉}) (10)

where σy〈j〉 = y〈j+1〉, σu〈k〉 = u〈k+1〉, σy〈n−1〉 = φ(y, . . . , y〈n−1〉, u, . . . , u〈s〉).
Finally, if δ = 1

µ
(σ − 1K) := ∆ with µ ∈ IR, then a pseudo-linear operator θ = ∆

and

∆ϕ({y〈j〉, u〈k〉}) =
1

µ

[

ϕ({σy〈j〉, σu〈k〉}) − ϕ({y〈j〉, u〈k〉})
]

(11)

where σ = µ∆+1K, ∆y〈j〉 = y〈j+1〉, ∆u〈k〉 = u〈k+1〉, and ∆y〈n−1〉 = φ(y, . . . , y〈n−1〉,
u, . . . , u〈s〉).

Over the σ-differential field K one can define the vector space E of differential
one-forms spanned by the differentials of elements K, that is E = spanK{dξ; ξ ∈ K}.
Any element v ∈ E is a vector of the form v =

∑s
i=1 γidξi where all γi ∈ K. We say

that v ∈ E is exact if v = dϕ for some ϕ ∈ K.
For F ∈ K we define d : K → E (called the differential of F ) as follows3

dF :=
n−1∑

i=0

∂F

∂y〈i〉
dy〈i〉 +

k∑

l=0

∂F

∂u〈l〉
du〈l〉.

The vector space E can also be endowed with the σ-differential structure. However,
this time there is no need to define actions separately. Each pseudo-linear operator
θ : K → K induces pseudo-linear operator θ : E → E as follows

θ(v) = v〈1〉 =
∑

i

[σ(γi)d(θ(ξi)) + δ(γi)dξi]. (12)

The operator θ commutes with operator d, θ(dϕ) = d(θ(ϕ)), and reduces to the well-
known rules δv =

∑

i[γid(δξi) + δ(γi)dξi] and σv =
∑

i σ(γi)d(σξi), for the special
cases of continuous-time systems (σ = 1K, θ = δ = d/dt) and discrete-time systems
(δ = 0, θ = σ), respectively. Now it is clear why µ in (11) has to be a real constant,
since otherwise ∆(dϕ) 6= d(∆ϕ), or going into details 1

µ
(d(σϕ)−dϕ) 6= d( 1

µ
(σϕ−ϕ)).

Using the induction principle one can prove the following lemma.

3Note that in case of rational functions F (·), dF may be understood as Kähler differential [17],
see [16]. The latter applies sometimes in more general cases too, see Remark C1 in [11].
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Lemma 3.1. Let F ∈ K and i ∈ IN . Then θi(dF ) = dF 〈i〉.

We briefly demonstrate some basic computations in (K, σ, δ) and E by the follow-
ing example.

Example 3.2. Consider the nonlinear q-difference system with q = 2,

y(2t) − y(t) = y(t)u(t),

rewritten in terms of the pseudo-linear operator as

y〈1〉 = ∆y = yu. (13)

The σ-differential field associated with (13) is (K, σ, ∆), where σ takes t to 2t,
∆ = σ − 1K, and the pseudo-linear operator θ = ∆. Note that (K, σ, ∆) has σ-
differential structure, defined by the system equation. If for instance ϕ = y2, then
ϕ〈1〉 = ∆ϕ = (σy)2 − y2 = (∆y + y)2 − y2 = (yu + y)2 − y2.

Also σ-differential structure of E is defined by the system equations. If for instance
v = 2udy, then v〈1〉 = ∆v = 2σ(u)dσ(y) − 2udy = 2(∆u + u)d(∆y + y) − 2udy =
2(u〈1〉 + u)d(yu + y) − 2udy, or if computed directly by (12), v〈1〉 = 2σ(u)d(∆y) +
2∆(u)dy = 2(u〈1〉 + u)d(yu) + 2u〈1〉dy which yields the same result.

Since K[∂; σ, δ] is an Ore ring, one can construct the division ring of fractions.
If p = p1p2 and d0(p1) > 0, then p1 is called a left divisor of p and p is called left
divisible by p1. If for p1, p2 ∈ K[∂; σ, δ], pc is a left divisor of p1−p2, then pc is called
a common left divisor of p1 and p2. If the degree of pc is the greatest of all common
left divisors of p1 − p2, then pc is called the greatest common left divisor (gcld).

To find the gcld one can use the left Euclidean division algorithm [5]. To perform
the left Euclidean division algorithm it is sufficient that σ be an automorphism
(that holds under Assumption (7)). For given two polynomials p1 and p2 with
d0(p1) > d0(p2) there exist a unique polynomial γ1 and a unique left remainder
polynomial p3 such that

p1 = p2γ1 + p3, d0(p3) < d0(p2).

Using the (left) Euclidean division algorithm, after k − 1 steps, we obtain

p2 = p3γ2 + p4

...
pk−2 = pk−1γk−2 + pk

pk−1 = pkγk−1.

Hence the gcld of p1 and p2 is pk. Moreover, eliminating polynomials pk−1, . . . , p3

we get the Bézout identity, i. e. there exist polynomials r, s ∈ K[∂; σ, δ] such that
p1r+p2s = pk. The gcld is only unique up to multiplication of it by a functions from
K, but it can be made unique by requiring it to be monic. Thus for two polynomials
p̃1 and p̃2 we have

p1 = pkp̃1, p2 = pkp̃2.

If d0(pk) = 0, then the polynomials p1 and p2 are called left coprime (or alternatively,
relatively left prime).
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4. REDUCIBILITY CONDITION

The reduction of an input-output (i/o) differential (or difference in the discrete-
time case) equation is an important subtask in finding the minimal, i. e. accessi-
ble and observable realization of the nonlinear control system. Denote f 〈i...k〉 :=
(f 〈i〉, . . . , f 〈k〉).

Definition 4.1. A function ϕr 6≡ constant in K, such that ϕr(0, . . . , 0) = 0, is said
to be an autonomous variable for control system (5) if there exist an integer ν ≥ 1
and a non-zero analytic function F so that

F
(

ϕ〈0...ν〉
r

)

= 0. (14)

Definition 4.2. Control system (5) is said to be irreducible if there does not exist
any non-zero autonomous variable in K. Otherwise system (5) is called reducible.

If system (5) is reducible, then there exist an autonomous variable ϕr = ϕr

(
y〈0..r〉 ,

u〈0..l〉
)

with r < n and a non-zero analytic function F such that (6) can be rewritten
as

ϕ = kF
(

ϕ〈0..ν〉
r

)

= 0,

where ν ≥ 1 and k is a non-zero element of K. Since ϕr 6≡ const and ν ≥ 1, then
r ≥ 1 and ν + r ≥ n.

The necessary and sufficient condition for reducibility of system (5) is given below
and expressed in terms of the subspace H∞ of H1 := spanK{dy〈i〉, du〈j〉, 0 ≤ i ≤
n − 1, 0 ≤ j ≤ s} ⊂ E defined by

H∞ := spanK{ω : ω〈k〉 ∈ H1, ∀k ≥ 0}. (15)

Theorem 4.3. The system (5) is reducible iff H∞ 6= {0}.

P r o o f . Follows directly from the proofs of Lemma 9 and Proposition 4.4 in [6]
and [2], respectively. �

The next theorem gives the alternative necessary and sufficient condition for
reducibility of (5) in terms of differential polynomials from the ring K[∂; σ, δ].

Theorem 4.4. The control system (5) is reducible in the sense of Definition 4.2 if
and only if the polynomials p and q in (8), associated with system (5) are not left
coprime4.

4Of course, one may take a step further like in Proposition 6.5 of [16] and prove that the module
E is torsion-free iff the (monic) greatest common left divisor of p and q is 1, getting that way an
intrinsic (and not equation-based as in this paper) reducibility condition as suggested by [12, 13]
for linear systems. We have not done this since the focus of our paper is on unification, including
unification of the computations and in order to verify whether the module is torsion-free, one may
check whether p and q have a trivial greatest common left divisor.
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P r o o f . Necessity. Suppose the system (5) is reducible, meaning that there exist
functions ϕr and F such that (14) holds. Note that

dϕr =

r∑

i=0

∂ϕr

∂y〈i〉
dy〈i〉 +

l∑

j=0

∂ϕr

∂u〈j〉
du〈j〉. (16)

Let ϕ̃ := F
(

ϕ
〈0..ν〉
r

)

. Then ϕ̃ ∈ K and

dϕ̃ =

ν∑

k=0

∂F

∂ϕ
〈k〉
r

dϕ〈k〉
r . (17)

By Lemma 3.1, ∂idy = dy〈i〉, ∂jdu = du〈j〉 and ∂kdϕr = dϕ
〈k〉
r allowing to rewrite

(16) and (17) in terms of differential polynomials in operator ∂ over K:

dϕr =

(
r∑

i=0

∂ϕr

∂y〈i〉
∂i

)

dy +





l∑

j=0

∂ϕr

∂u〈j〉
∂j



 du := p̃dy − q̃du (18)

and

dϕ̃ =

(
ν∑

k=0

∂F

∂ϕ
〈k〉
r

∂k

)

dϕr := ςdϕr (19)

Then the equation dϕ̃ = 0 can be rewritten as

ς [p̃dy − q̃du] = 0, (20)

where d0(ς) = ν ≥ 1 and d0(p̃) = r < n. Moreover, n = d0(p) ≤ d0(ς ·p̃) = ν+r, so in
the similar manner as in the proof of Lemma 6.5 in [16] the right-hand division yields
ςp̃ = αp + r with d0(r) < n. Since pdy = qdu and ςp̃dy = ςq̃du, rdy = [ςq̃ − αq]du.
This gives rise to a linear relation among the vectors {dy, . . . , dy〈n−1〉, u〈k〉, k ≥ 0}
because d0(r) < n. Hence r = 0 and ςq̃ = αq. Consequently, ςp̃ = αp. The
remaining part of the proof is by contradiction. Suppose that polynomials p and q
in (8) are left coprime. Then α is the greatest common left divisor of polynomials
αp, αq and from Bézout identity there exist polynomials u, v ∈ K[∂; σ, δ] such that
αpu + αqv = α. Then we get ςp̃u + ςq̃v = α. Therefore, there exist χ = p̃u + q̃v ∈
K[∂; σ, δ] such that α = ξχ. Hence ξp̃ = ξχp and consequently, p̃ = χp yielding
d0(p̃) ≥ d0(p), a contradiction to d0(p̃) = r < n = d0(p). Hence the polynomials p
and q have a common left divisor.

Sufficiency. Suppose the polynomials p, q with d0(p) = n and d0(q) = s have a
common left factor ς with d0(ς) = ν > 0. Then the equation (8) can be rewritten
as

pdy − qdu = ς [p̃dy − q̃du] = 0 (21)

where d0(p̃) = n− ν, d0(q̃) = s− ν, ς = ςν∂ν + . . . + ς1∂ + ς0 with ςν 6= 0 and ςi ∈ K
for 0 ≤ i ≤ ν.
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We will show that the one-form ω := p̃dy − q̃du belongs to the subspace H∞.
From (21),

ςω =

ν∑

i=0

ςiω
〈i〉 = 0,

showing that the one-forms {ω〈i〉, 0 ≤ i ≤ ν} are linearly dependent over K and

ω〈ν〉 =

ν−1∑

i=0

ςi
ςν

ω〈i〉.

Using the induction principle one can prove that there exist βik ∈ K, i = 0, . . . , ν−1
such that

ω〈k〉 =

ν−1∑

i=0

βikω〈i〉 ∀k ≥ 0. (22)

Since d0(p̃) = n − ν and d0(q̃) = s − ν, the one-forms ω〈k〉 ∈ H1, for k = 0, . . . , ν
yielding ω〈k〉 ∈ H1, for all k ≥ 0. Thus, ω ∈ H∞ by the definition of H∞, see (15).
Hence, by (22) H∞ 6= {0}, and from Theorem 4.3 system (5) is reducible. �

5. REDUCTION AND TRANSFER EQUIVALENCE

If the polynomials p and q have the gcld χ, then the differential one-form ω =
p̃dy − q̃du (see (18)) is either exact or can be made exact by multiplying it with
an integrating factor, see [10, 20, 23] for the continuous-time and two discrete-
time cases, shift and difference operator based cases, respectively. Then there exist
functions α ∈ K and ϕir ∈ K such that αω = dϕir . Because χ is the gcld of p and
q, polynomials p̃ and q̃ are left coprime. In analogy with the continuous-time case
[10] we call dϕir an irreducible differential form and ϕir(·) = c an irreducible i/o
equation of system (5).

Proposition 5.1. In the irreducible equation the highest order of the pseudo-linear
operator acting on input u is strictly lower than that acting on output y.

P r o o f . The proof is by contradiction, yielding s ≥ n. �

Since the mathematical tools we employ require that instead of working with the
equations themselves we work with their (Kähler) differentials, the systems ϕ(·) = 0
and ϕ(·) + constant = 0 are indistinguishable for an arbitrary constant. Of course,
at the last step when the irreducible one-form has to be integrated to obtain the irre-
ducible system equation, one has to specify the integrating constant. In general, this
constant can be defined by the solution (equilibrium point) of the system, assuming
that the reduced system is not allowed to have an equilibrium point not shared with
the original equation. Then the one-forms will be integrated around the shared equi-
librium point to get the reduced system equations. Typically, e. g. in [10], one takes
this constant equal to zero. This choice may yield a situation, described in [10] as
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‘the system of the form (5) under study does not admit an irreducible form’ mean-
ing that one cannot decide whether the system under consideration is irreducible
or not (see Example 6.2 below). The proposition below shows that generically the
reduced equation satisfies also the submersivity assumption and can be expressed in
the form (5).

Proposition 5.2. The system (5) in the neighbourhood of a generic solution admits
an irreducible i/o equation ϕir = c, that can be locally uniquely expressed (up to
an integrating constant c) in the explicit form (5), satisfying assumption (7).

P r o o f . The proof relies on the fact that, according to the proof of Theorem 4.4,
dϕ(·) = 0 can be rewritten in the form dϕ = pdy − qdu = χdϕir, where χ (unique,
if required to be monic) is the gcld of two polynomials p and q. To obtain the
irreducible i/o equation, we take ϕir = c. In the neighbourhood of a generic point
ϕir − c = 0 can be expressed in the form (5), since otherwise the original equation
would not have a form (5), which implies uniqueness. Now assume that (7) is not
satisfied for the irreducible equation. Then the original equation does not satisfy
assumption (7) either. �

The system reduction, based on the notion of the autonomous element, is closely
related to the concept of transfer equivalence of nonlinear control systems.

Definition 5.3. (Transfer equivalence) (Conte et al. [10], Kotta et al. [23])5 Two
systems Σ1 and Σ2 (that admit an irreducible i/o equation) are said to be transfer
equivalent if they have the same irreducible i/o equation.

In the linear case all systems admit an irreducible i/o equation and the definition
above coincides with the classical definition, saying that two systems are transfer
equivalent if their respective transfer functions are equal. However, at the time
when Definition 5.3 was introduced, the notion of transfer function has not yet been
extended for nonlinear control systems. Since now this extension exists [14], our
goal is to reformulate Definition 5.3 in such a way that its dependance on transfer
function becomes explicit. For that, we first recall the definition of the transfer
function [15] for nonlinear control systems, defined in terms of the pseudo-linear
operator. Note that for continuous-time nonlinear systems the new definition was
already suggested in [26], but again, called the input-output equivalence.

By Proposition 2.5 each two elements of K[∂; σ, δ] have a common left multiple,
and K[∂; σ, δ] can be embedded into a non-commutative quotient field [25] by defining
quotients as b−1 ·a where a, b ∈ K[∂; σ, δ] and b 6= 0. Addition is defined by reducing
two quotients to the same denominator b−1

1 a1 + b−1
2 a2 = (d2b1)

−1(d2a1 + d1a2)
where d2b1 = d1b2 by Ore condition. Multiplication is defined by (b−1

1 a1)(b
−1
2 a2) =

(d2b1)
−1c1a2, where d2a1 = c1b2 again by Ore condition. The resulting quotient

field of skew polynomials is denoted by K(∂; σ, δ). Once a fraction of two skew

5Note, however that in [10] the equivalence in the sense of Definition 5.3 is called input-output
(i/o) equivalence. We prefer to call it transfer equivalence since the latter is consistent with the
linear case.
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polynomials is defined, one can introduce a transfer function of nonlinear control
system.

Definition 5.4. (Halás and Kotta [15]) An element F (∂) ∈ K(∂; σ, δ) such that
dy = F (∂)du is said to be a transfer function of the SISO nonlinear system (5).

So, for polynomial system description (8), the transfer function F (∂) = p−1q.
Though one can always associate to a proper rational function F (∂) = p−1q

a corresponding input-output differential form, ω = pdy − qdu, this one-form is
not necessarily integrable. If the i/o differential form is integrable or can be made
integrable multiplying it by an integrating factor, then there exists an input-output
equation of the form (5) such that the transfer function of this i/o equation is F (∂).
In other words, every control system can be expressed as a quotient of the skew
polynomials, but not every quotient of skew polynomials necessarily represents a
control system.

Observe that in case the systems Σ1 and Σ2 have the same irreducible differential
form, their transfer functions are equal. Really, consider two systems, Σ1 being
reducible and Σ2 irreducible but having the same irreducible differential form ω =
p̃dy− q̃du. Then FΣ2

(∂) = p̃−1q̃ and FΣ1
(∂) = p−1q = (ςp̃)−1(ςq̃) = p̃−1q̃ = FΣ2

(∂).
This leads us to the alternative definition of transfer equivalence directly in terms
of the transfer functions.

Definition 5.5. (Transfer equivalence). Two systems Σ1 and Σ2 are transfer equiv-
alent if they have the same irreducible differential form, or said alternatively, have
the same transfer functions.

6. EXAMPLES

Example 6.1. Consider a system described by the i/o equation

y〈2〉 − (yu)〈1〉 + y〈1〉 − uy = 0. (23)

By applying the differential operator d for (23) and taking into account that by (4)
(yu)〈1〉 = σ(u)y〈1〉 + δ(u)y, the equation (8) takes the form

[∂2 + (1 − σ(u))∂ − (δ(u) + u)]dy = [σ(y)∂ + δ(y) + y]du. (24)

Applying the Euclidean division algorithms for p and q, we get

p = q

(
1

y
∂ −

u

y

)

iff y 6= 0. So q is the gcld of p and q. Hence, system (23) is reducible and p̃ = 1
y
∂− u

y
,

q̃ = 1. Then

dϕr =

(
1

y
∂ −

u

y

)

dy − du

or alternatively d[y〈1〉 − yu] = 0. The autonomous variable for system (23) is the

function ϕr(y, y〈1〉, u) = y〈1〉 − yu and (23) may be rewritten as ϕ
〈1〉
r + ϕr = 0.

Finally, note that the reduced system is y〈1〉 = yu.
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The general solution y〈1〉 = yu yields ẏ = yu or σ(y) = yu in the continuous- and
shift-operator-based discrete-time cases, respectively. Below we will demonstrate
that the computations, when done separately for these cases, are consistent with the
general solution. Assume first that σ(y) = y and ∂ := θ = δ, that corresponds to
the continuous-time case and the field K[∂, 1K, δ]. Then by applying the d operator
for

ÿ − ẏu − u̇y + ẏ − yu = 0 (25)

being the special case of (23), (8) takes now the form

[∂2 + (1 − u)∂ − (u̇ + u)]dy = [y∂ + ẏ + y]du. (26)

Applying the left Euclidean division algorithm, we get

p = q

(
1

y
∂ −

u

y

)

,

if only y 6= 0. So q = y∂ + (y + ẏ) is the gcld of p = ∂2 + (1 − u)∂ − (u̇ + u) and

q. Then
(

1
y
∂ − u

y

)

dy = du, or alternatively, d[ẏ − yu] = 0. Hence, system (25) is

reducible. The autonomous variable is the function ϕr(y, ẏ, u) = ẏ − yu and (25)
can be rewritten as ϕ̇r + ϕr = 0.

Assume now that δ = 0 and ∂ := θ = σ that corresponds to the discrete-time
shift-operator-based case, and the field K[∂; σ, 0]. By applying the d operator for
σ2(y)− σ(y)σ(u) + σ(y) − uy = 0, being the special case of (23), equation (8) takes
now the form

[∂2 + (1 − σ(u))∂ − u]dy = [σ(y)∂ + y]du. (27)

Applying the left Euclidean division algorithm, we get that the gcld of p and q is
σ(y)∂ + y and p̃ = 1

y
∂ − u

y
, q̃ = 1. The reduced system reads as σ(y) = yu.

The generically reducible system (5) may not admit irreducible i/o equation for
every constant c.

Example 6.2. Consider the nonlinear system, described by the i/o equation

ϕ = uy〈2〉 − u〈1〉y〈1〉 = 0.

Note that ϕ has been obtained, for u 6= 0 and σ(u) 6= 0, as uσ(u)[(∂ − 1〈1〉)]ϕir ,
where ϕir = y〈1〉/u. If we make the computations, we get the reduced differential
form

dϕir = d

(
y〈1〉

u

)

.

The typical choice c = 0 does not work here. In [10, 21] in such a situation it is
said that the system ‘does not admit the irreducible form’, meaning that one can not
decide whether the system under consideration is irreducible or not. The choice c = 0
comes from the assumption ϕ(0, . . . , 0) = 0 which is natural in the linear setting but
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not, in general, in the nonlinear case. For example, assuming ϕ(1, 1, 1, 1) = 0 yields6

c = 1, and the reduced system equation y〈1〉 = u.

Note that, in general, the system may be reducible in one ring of polynomials but
not in the other(s). The next example servers as a demonstration.

Example 6.3. Consider the nonlinear system, described by the i/o equation

y〈2〉 − y〈1〉u〈1〉 + y〈1〉 − yu = 0. (28)

By applying the differential operator d for (28) we obtain equation (8) with

p = ∂2 + (1 − u〈1〉)∂ − u, q = y〈1〉∂ + y.

Applying the left Euclidean division algorithm, we obtain p = qγ + r with γ =
γ1∂ + γ2 and r = r1. Next, note that

qγ + r = (y〈1〉∂ + y)(γ1∂ + γ2) + r1 =

= y〈1〉∂(γ1)∂ + y〈1〉∂(γ2) + yγ1∂ + yγ2 + r1.

Finally, using the relationship (3), we get

qγ + r = y〈1〉σ(γ1)∂
2 + (yγ1 + y〈1〉σ(γ2) + y〈1〉δ(γ1))∂ + yγ2 + y〈1〉δ(γ2) + r1.

Matching the terms of the same power of the polynomial indeterminate ∂, we get a
system of equations for γ1, γ2 and r1

y〈1〉σ(γ1) = 1
yγ1 + y〈1〉σ(γ2) + y〈1〉δ(γ1) = 1 − u〈1〉

yγ2 + y〈1〉δ(γ2) + r1 = −u.

(29)

Now, if we consider the shift operator based discrete-time case when one interprets
∂ as θ = σ, δ = 0, the equations (29) take the form

σ(y)σ(γ1) = 1
yγ1 + σ(y)σ(γ2) = 1 − σ(u)

yγ2 + r1 = −u

yielding a solution γ1 = 1/y, γ2 = −u/y and r1 = 0. The latter means that the gcld
of p and q is γ, the system (28) is reducible and the irreducible system equation is
σ(y) = uy.

However, if we consider the continuous-time case when one interprets ∂ as θ =
δ = d

dt
and σ = 1K, the equations (29) take the form

ẏγ1 = 1
yγ1 + ẏγ2 + ẏγ̇1 = 1 − u̇
yγ2 + ẏγ̇2 + r1 = −u

yielding r1 6= 0.

6One assumes here that the equilibrium point of the reduced system is also an equilibrium point
of the original system.
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To conclude, since the shift and derivation operators have remarkably different
properties, when the computations are made by hand it is easier to make the com-
putations separately in the rings K[∂; σ, 0] and K[∂; 1K, δ]. However, the widespread
use of computers promotes the idea that modern mathematical tools are those that
can be easily transformed into a computer program. The important point to be
mentioned here is that there is a big difference in the concept of simplicity for hu-
man being and for computer algebra system. Moreover, it is important to stress
that behind the separate computations exists a general mathematical abstraction
that accommodates all the cases. So, one can always apply the general algorithms
to get the general solutions to the general problems, and later just specify the given
σ and δ in order to get from the general solution the one of the interest. This has an
advantage from the point of view of possible implementation of the procedures, for
example, in the computer algebra system Maple, since in our setting, one may now
write a single general Maple function for a general Ore ring without the advance
knowledge on σ and δ and then simply specify the meaning of the operators σ and
δ when calling this Maple function.

7. CONCLUSIONS

In this paper, the algebraic formalism of differential one-forms and the related poly-
nomial approach was unified and extended for a wide class of nonlinear control
systems. In the unification and extension pseudo-linear algebra played a key role.
Though differential, shift, difference, q-shift and q-difference operators have remark-
ably different properties, they all accommodate into this mathematical abstraction
as the special cases. However, note that our approach does not accommodate q-
differential operator since it does not commute with the differential operator d. The
tools introduced were applied to study the problems of reducibility, reduction and
transfer equivalence. Our results include the earlier results for nonlinear discrete-
and continuous-time cases [18, 31, 32] respectively and are similar to those of linear
theory.

Note that another approach was suggested in the literature for unification and
extension of the study of irreducibility and reduction problems [20]. The latter ap-
proach relies on system description on homogeneous time scale that accommodates
the continuous-time systems and the discrete-time systems described in terms of
difference operator. Actually, time scale formalism allows to unify only the study of
systems described in terms of pseudo-derivation, therefore leaving out the more con-
ventional system descriptions in terms of the different shift operators. To conclude,
in comparison with the homogeneous time-scale formalism, pseudo-linear algebra is
favorable since

• it accommodates more cases into a single framework, allowing to reduce the
implementation load

• there exists a built-in-package, OreTools [1] that addresses the computations
with Ore polynomials and can be a good starting point for control application
related implementations
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• it is a purely algebraic approach in nature.

However, pseudo-linear algebra, at least in its present version, is unable to tackle
the systems defined on non-homogeneous but regular time scales [3].

An important partly open problem is how to lift the non-trivial irreducible differ-
ential form dϕir (or alternatively, the autonomous element of the ‘tangent linearized
system’) to autonomous element ϕir + c of the respective nonlinear system. Though
it has been proved that the irreducible differential form is closed (perhaps after
multiplication it by a integrating factor), the question remains how to define the
constant c. In majority of cases, including the book [10], the problem is left unex-
plored by assuming that ϕ(0, . . . , 0) = 0 yielding the only choice c = 0. However,
to achieve a complete foundation of the approach, based on the ‘study of tangent
linearized systems’, such aspect must be worked out as well in a full rigor.
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[8] F. Chyzak, A. Quadrat, and D. Robertz: OREMODULES: A symbolic package for
the study of multidimensional linear systems. In: Applications of time-delay systems.
Lecture Notes in Control and Inform. Sci. 352 (J. Chiasson and J.-J. Loiseau, eds.),
Springer-Verlag, Berlin 2007, pp. 233–264.

[9] R.M. Cohn: Difference Algebra. Wiley-Interscience, New York 1965.

[10] G. Conte, C. H. Moog, and A.M. Perdon: Algebraic Methods for Nonlinear Con-
trol Systems. Theory and Applications. Second edition. Lecture Notes in Control and
Inform. Sci., Springer, London 2007.

[11] E. Delaleau: Classical electrical engineering questions in the light of Fliess’s differential
algebraic framework of non-linear control systems. Internat. J. Control 81, (2008), 3,
382–397.

[12] M. Fliess: Some basic structural properties of generalized linear systems. Syst. Contr.
Lett. 15 (1990), 391–396.

[13] M. Fliess and M. Mounier: Controllability and observability of linear delay systems:
an algebraic approach. ESAIM Control, Optimization and Calculus of Variations 3,
(1998), 301–314.

[14] M. Halás: An algebraic framework generalizing the concept of transfer functions to
nonlinear systems. Automatica 44 (2008), 1181–1190.
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[23] Ü. Kotta, A. S. I. Zinober, and P. Liu: Transfer equivalence and realization of nonlinear
higher order input-output difference equations. Automatica 37 (2001), 1771–1778.

[24] J. C. McConnell and J. C. Robson: Noncommutative noetherian rings. With the co-
operation of L.W. Small. John Wiley & Sons, Ltd., Chichester 1987.

[25] O. Ore: Theory of non-commutative polynomials. Ann. of Math. 32 (1933), 480–508.



Reducibility and Reduction of Nonlinear Control Systems: Unification 849

[26] A.-M. Perdon, C. H. Moog, and G. Conte: The pole-zero structure of nonlinear control
systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems,
Pretoria 2007, pp. 690–693.

[27] R. Toth: Modeling and Identification of Linear Parameter-Varying Systems. PhD.
thesis. Delft University of Technology 2008.

[28] J. F. Pommaret and A. Quadrat: Localization and parametrization of linear multidi-
mensional control systems. Systems Control Lett. 37 (1999), 247–260.

[29] X. Xia, L.A. Marques, P. Zagalak, and C. H. Moog: Analysis of nonlinear time-delay
systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555.

[30] R. Ylinen: Application of polynomial systems theory to nonlinear systems. In: Proc.
16th IFAC World Congress, Prague 2005.

[31] C. Zhang and Y. Zheng: A polynomial approach to discrete-time nonlinear system
controllability. Internat. J. Control 77 (2004), 491–477.

[32] Y. Zheng, J. Willems, and C. Zhang: A polynomial approach to nonlinear system
controllability. IEEE Trans. Automat. Control 46 (2001), 1782–1788.
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