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NULL CONTROLLABILITY OF A NONLINEAR

DIFFUSION SYSTEM IN REACTOR DYNAMICS

Kumarasamy Sakthivel, Krishnan Balachandran,

Jong-Yeoul Park and Ganeshan Devipriya

In this paper, we prove the exact null controllability of certain diffusion system by
rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable
coefficients in a bounded interval of R with a distributed control acting on a subinterval.
We first prove a global null controllability result of an associated linearized integrodif-
ferential equation by establishing a suitable observability estimate for adjoint system with
appropriate assumptions on the coefficients. Then this result is successfully used with some
estimates for parabolic equation in L

k spaces together with classical fixed point theorem,
to prove the null controllability of the nonlinear model.

Keywords: controllability, observability, parabolic integrodifferential equation

Classification: 93B05, 93B07

1. INTRODUCTION

It is interesting to note that in various fields of physics and engineering, many of the
applications begin with a partial (or ordinary) differential equation and, through
simplifying assumptions, we arrive at an integral or integrodifferential equation.
Consider for example, in the analysis of space time dependent nuclear reactor dy-
namics, if the effect of a linear temperature feedback is taken into consideration and
the reactor model is considered as an infinite rod, then the one group neutron flux
y(t, x) and the temperature v(t, x) in the reactor are given by the following coupled
equation (see, [20, 21, 27])

yt − (a(t, x)yx)x = (b(t, x)v + c1(t, x) − 1)Σfy (t > 0,−∞ < x <∞) (1)

ρ̃c2vt = c3Σgy, (2)

where a is the diffusion coefficient and Σf ,Σg, b, ρ̃, c1, c2 and c3 are the physical
quantities. By integrating (2) in the interval (0, t) and substituting it in (1), we
obtain the following nonlinear integrodifferential diffusion equation:

yt − (a(t, x)yx)x = βb(t, x)y

∫ t

0

y(r, x) dr + c(t, x)y (t > 0,−∞ < x <∞)
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where the constant β and the coefficient c are the quantities associated with the
initial temperature and various physical parameters.

Therefore, in this paper we consider the following nonlinear integrodifferential
control problem(taking β = 1)






zt − (a(t, x)zx)x + b(t, x)z

∫ t

0

z(r, x) dr + c(t, x)z = 1ωu(t, x), in Q

z = 0, on Σ

z(0, x) = z0(x), in Ω,

(3)

where Ω = (i1, i2) is a bounded interval in R, T > 0 is a fixed time. The notations
Q = (0, T ) × Ω and Σ = (0, T ) × {i1} ∪ (0, T ) × {i2} is the boundary and 1ω is the
characteristic function of an open set ω ⊂ Ω. The state z = z(t, x) and the control
u = u(t, x) (which acts on the system through ω) are unknowns to be determined
for any arbitrary but fixed initial data z0 ∈ H1

0 (Ω).
Moreover, we assume that the coefficients a ∈ C1,2(Q̄), c ∈ L∞(Q̄) and b is

sufficiently smooth satisfying the following conditions:

a(t, x) ≥ amin > 0 and b(t, ·)|t=0,T = 0, b(t, x) ≥ 0. (4)

The system (3) is said to be null controllable at time T if, for each z0 ∈ H1
0 (Ω),

there exists u ∈ L2((0, T )×ω) such that the associated solution satisfies z(T, x) ≡ 0
in Ω.

The existence, uniqueness and asymptotic behavior of the solutions of the nonlin-
ear integrodifferential equation of the form (3) have been studied by several authors
(see, for example, [20, 21]). The problem of exact null controllability of related mod-
els without the integral term as a nonlinearity has been studied by several authors
in the last two decades. We will explain briefly some results from the literature.
For the first time, Lebeau and Robbiano [18] studied the null controllability of the
linear heat equation in a bounded domain Ω ⊂ R

n by a localized control force which
acts on a subdomain ω ⊂ Ω by using the spectral decomposition of the solutions.
Fursikov and Imanuvilov [14] proved these results for semilinear equation

yt − ∆y + f(y) = 1ωu, in (0, T ) × Ω

when the function f is sublinear and also they proved the exact controllability of
more general semilinear parabolic equations with variable coefficients by establishing
a global Carleman estimate for linearized problem. A related result has been proved
by Imanuvilov and Yamamoto [15] for parabolic equations in Sobolev spaces of
negative order. Barbu [4] (see, also [5] for a related result) and Fernandez-Cara and
Zuazua [13] generalized those results of [14] for some superlinear nonlinearities using
a classical fixed point method and a Carleman type estimate for associated linear
equation. Anita and Barbu [2] studied some interesting results on null controllability
of nonlinear convective heat equations for n = 1, 2, 3. The null controllability of the
diffusion equation

yt − (a(y))xx = 1ωu, in (0, T )× Ω,
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where Ω is a bounded interval in R, has been discussed by Beceanu [8] by establishing
a Carleman estimate for appropriate linearized equation.

Besides, approximate controllability of the linear heat equations with memory
kernels has been analyzed by Barbu and Iannelli [6] under some technical conditions
on the memory kernels by means of Laplace transform and Yong and Zhang [28]
studied the controllability of the heat equation with hyperbolic memory kernel. The
paper by Sakthivel et al. [22] discusses the exact controllability of some nonlinear
parabolic integrodifferential equations with periodic boundary conditions when the
nonlinearity is of globally Lipschitz and the control u ∈ L2((0, T ) × ω). Whereas
in this work we deal with a particular nonlinear term consisting of an integral in
which the associated linear model is discussed when the linearized coefficient is in
L∞(Q) which leads us to proving some regularity on the control and this result is
then applied to establish some new regularity result for the nonlinear system. Apart
from these results, very recently Sakthivel et al. [24] obtained the local exact null
controllability of nonlinear parabolic integrodifferential equation with nonlinearities
under the integral sign is of globally Lipschitz with homogeneous Dirichlet boundary
conditions.

Remark 1.1. The paper by Sakthivel et al. [23] studies the null controllability of
certain parabolic equations with zeroth order memory integral of the form

∫ t

0

k(t, r)z(r, x) dr

with the assumption that the smooth kernel k(t, ·) has support with respect to
time, that is, supp(k(·, t)) ⊂ (t0, t1) for some arbitrary but fixed t0 and t1 with
0 < t0 < t1 < T. It is worth noting that in the duality process, the coefficient
b(t, x) in (1) turns into a kind of kernel function in which we have not imposed
such assumption and it forces us to prove a new estimate to complete the proof
of Theorem 2.2 which makes this paper substantially different from [23]. Further,
we remark that the model we have considered here is completely different from the
above noted literature due to the peculiar nonlinearity arises when we combine the
system (1) – (2) to get an equivalent model.

Remark 1.2. Though for simplicity, we restrict this paper for one dimensional case,
in the actual reactor systems, the temperature is a function of position x, which may
be one, two or three dimensional. So the discussion we have carried out in this paper
can also be extended for higher dimensions (n = 2, 3) of the model

zt −∇ · (a(t, x)∇z) + b(t, x)z

∫ t

0

z(r, x) dr + c(t, x)z = 1ωu(t, x) in (0, T )× Ω,

with the same assumptions on the coefficients a, b and c and with suitable regularity
on the initial data. More precisely, from the regularity result we have proved in

Lemma 3.2, it is clear that for z0 ∈ H2(Ω) ⊂ W
2− 2

3

3 (Ω) and u ∈ L3(Q), one can
conclude by the Sobolev imbeddings W 2,1

3 (Q) ⊂ L∞(Q), for n = 1, 2, 3 (see, [19]) so
that Theorem 3.4 can be validated for n = 1, 2, 3. Besides, the result can further be
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extended to a larger class of initial data by means of smoothing effect of the heat
equation.

Now we describe some spaces which will be used throughout the paper to formulate
our results. For each positive integer m and p > 1, or p = ∞, we denote as usual by
Wm,p(Ω), the Sobolev space of functions in Lp(Ω) whose weak derivatives of order
less than or equal to m are also in Lp(Ω). When p = 2 instead of Wm,2(Ω), we shall
write Hm(Ω). Besides, we need the space L2(0, T ;H1(Ω)) of all equivalence classes
of square integrable functions from (0, T ) to H1(Ω). The space L2(0, T ;L2(Ω)) is
analogously defined. Moreover, we set

C1,2(Q̄) =
{
w(t, x) ∈ C(Q̄) : wt, wx, wxx ∈ C(Q̄)

}
,

W 2,1
k (Q) =

{
w(t, x) ∈ Lk(Q) : Dr

tD
m
x w ∈ Lk(Q), 2r +m ≤ 2, 2 ≤ k ≤ +∞

}
,

H1(0, T ;L2(Ω)) =
{
w(t, x) ∈ L2(0, T ;L2(Ω)) : dw/ dt ∈ L2(0, T ;L2(Ω))

}
.

For more details about these spaces, one can refer to Adams and Fournier [1] and
the classical monograph by Ladyzenskaya et al. [17].

This paper is arranged as follows: In Section 2 we establish a Carleman estimate
for linear adjoint diffusion equation and deduce an observability estimate. In Sec-
tion 3, we first prove the global null controllability of the linear diffusion equation
and then we establish the null controllability of the nonlinear model (3) making use
of Lemma 3.2 and classical fixed point arguments.

2. OBSERVABILITY ESTIMATES

It is well known that the exact controllability of a linear system can be reduced to
the observability estimate of its dual system. In the same way, controllability of a
semilinear system can be reduced to an estimate, provided the observability constant
depends on the coefficients of the “linearized” systems. Thus, one of the main
problems in the theory of exact controllability is how to construct the observability
estimates for the linear system. There are several methods to prove the observability
estimates, for example, multiplier techniques [16, 19], Carleman estimates [14, 26]
and microlocal analysis [7]. The very recent survey article by Zuazua [29] explains
most of the available methods developed by various authors during the last few
decades to study the controllability of partial differential equations. However, to
the best of our knowledge, the most effective method in proving the observability
estimate is the method of Carleman estimates.

In this direction, we first consider the linearized system






zt − (a(t, x)zx)x + g(t, x)

∫ t

0

z(r, x) dr + c(t, x)z = 1ωu(t, x), in Q

z = 0, on Σ

z(0, x) = z0(x), in Ω,

(5)

where g(t, x) = w(t, x)b(t, x), for some function w ∈ L∞(Q). In order to establish
the controllability of (5) it is sufficient to derive a Carleman type estimate for dual
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problem




−yt − (a(t, x)yx)x +GTt ∗ y + c(t, x)y = 0, in Q

y = 0, on Σ

y(T, x) = yT (x), in Ω,

(6)

where yT ∈ L2(Ω) and the notation GTt ∗ y stands for

GTt ∗ y =

∫ T

t

g(r, x)y(r, x) dr. (7)

The following lemma is the most fundamental tool in proving the Carleman type
estimates. The proof of this lemma can be found in [14].

Lemma 2.1. Let ω0 ⊂ ω be an arbitrary fixed subset of Ω. Then there exists a
function ψ ∈ C2(Ω̄) such that

ψ > 0 ∀x ∈ Ω, ψ = 0 on ∂Ω and |ψx| > 0 ∀x ∈ Ω \ ω0.

Further, we are in need of the following weight functions

φ(t, x) = eλψ(x)/π(t) and α(t, x) =
(
eλψ(x) − e2λΨ

)
/π(t), (8)

where π(t) = t(T − t) and Ψ = ‖ψ(x)‖C(Ω̄), the parameter λ > 1 and the function ψ
is defined in the above lemma. From the definitions of φ and α, we note that

φt = eλψ(x)(2t− T )/π2(t), αt = (eλψ(x) − e2λΨ)(2t− T )/π2(t),

and so

|φt| ≤ C̃1φ
2, |αt| = |α(ln(π−1(t))t)| ≤ C̃1φ

2, |αtt| ≤ C̃1φ
3, (9)

where the constant C̃1 > 0 is independent of (t, x) ∈ Q and λ > 1. It is easy to see
that φx = αx = λφψx. Further, ψ is a continuous function with compact support in
Ω; then there exist constants C̃2, C̃3 and C̃4 such that

C̃2 = sup
x∈Ω

|ψx|, C̃3 = sup
x∈Ω

|ψxx| and C̃4 = sup
x∈Ω

|ψx|
2

hold. But, for simplicity, throughout the proof we shall use the generic constant C
alone. Here we see that the weight function α approaches −∞ at t = 0 and t = T ,
and this helps us to get the desired observability estimate. Also the additional
parameter λ is essential in order to obtain the control of the constant which enable
us to handle arbitrarily large coefficients in the coupling terms.

First we establish a Carleman estimate for the variant of the dual problem (6),
namely,






yt + (ayx)x −GTt ∗ y = f(t, x), in Q

y = 0, on Σ

y(T, x) = yT (x), in Ω,

(10)

where the integral GTt ∗ y is defined in (7). Now we are ready to state and prove the
main result of this section.
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Theorem 2.2. (Carleman Type Estimate) Let the functions y and f satisfy (10)
and φ, α be defined as in (8). Suppose assumptions (4) on the coefficients a, b and
c hold true and also assume that ‖w‖L∞(Q) ≤ ρ. Then for any λ ≥ λ0(Ω, T ) and
s ≥ s0(Ω, T, λ, ρ, a, b), the following inequality holds:

∫

Q

e2sα
(
(sφ)3y2 + sφy2

x

)
dxdt ≤ C(λ)

( ∫

Q

e2sαf2 dxdt+

∫

Qω

e2sαs3φ3y2 dxdt
)
, (11)

where Qω = (0, T )× ω and the constant C(λ) > 0 is independent of y and s.

P r o o f . Let us make the change of variable for the unknown function p(t, x) =
esαy(t, x) in (10). Then it becomes





pt(t, x) + L1p(t, x) − L2p(t, x) = fs(t, x), in Q
p = 0, on Σ
p(0, x) = p(T, x) = 0, in Ω,

(12)

where

L1p = −2saλφψxpx − 2saλ2φψ2
xp, (13)

L2p = −s2aλ2φ2ψ2
xp+ sαtp− apxx − saλ2φψ2

xp+ saλφψxxp, (14)

fs = esαf + esαGTt ∗ e−sαp+ axsλφψxp− axpx. (15)

In virtue of (12), we obtain

‖pt + L1p‖
2
L2(Q) + ‖L2p‖

2
L2(Q) − 2〈pt, L2p〉L2(Q) − 2〈L1p, L2p〉L2(Q) = ‖fs‖

2
L2(Q).

Clearly, this would imply the following inequality

− 〈L1p, L2p〉L2(Q) ≤ 〈pt, L2p〉L2(Q) +
1

2
‖fs‖

2
L2(Q). (16)

Now we have to obtain the lower bound for the left hand side L2 integrals and
the upper bound for the right hand side integrals as well. Proceeding with the
computations similar to [9, 14, 23], one indeed obtain the following lemma.

Lemma 2.3. Suppose all the assumptions of Theorem 2.2 are satisfied. Then there
exists a λ̂0(Ω, T ) > 0 such that for an arbitrary λ ≥ λ̂0, there exists a ŝ0(Ω, T, λ, a)
such that for every s ≥ ŝ0, the solution of the problem (12) satisfies the inequality:

∫

Q

s3λ4φ3p2 dxdt+

∫

Q

sλ2φp2
x dxdt

≤ C
(∫

Qω0

s3λ4φ3p2 dxdt+

∫

Qω0

sλ2φp2
x dxdt+ ‖fs‖

2
L2(Q)

)
, (17)

where the constant C > 0 depends only on Ω, ω, T and Qω0
= (0, T ) × ω0.
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We now continue the proof of Theorem 2.2. Estimating the last term in (17), we
obtain

‖fs‖
2
L2(Q) ≤ 4

∫

Q

e2sαf2 dxdt+ 4

∫

Q

e2sα(GTt ∗ e−sαp)2 dxdt

+C

∫

Q

s2λ2φ2p2 dxdt+ C

∫

Q

p2
x dxdt. (18)

Note that for any sufficiently large λ ≥ λ0 and s ≥ s0 (see, for example [23] for precise
values of λ0, s0), the last two integrals in (18) can go with the similar integrals on
the left hand side of (17). Thus we have

∫

Q

s3λ4φ3p2 dxdt+

∫

Q

sλ2φp2
x dxdt ≤ C

∫

Q

e2sαf2 dxdt

+C
( ∫

Qω0

s3λ4φ3p2 dxdt+

∫

Qω0

sλ2φp2
x dxdt+

∫

Q

e2sα(GTt ∗ e−sαp)2 dxdt
)
.(19)

Next, we come back to the original variable y by substituting p = esαy into the
above inequality as follows

∫

Q

e2sα(s3φ3y2 + sφy2
x) dxdt ≤ C

∫

Q

e2sαf2 dxdt

+C(λ)
( ∫

Qω0

e2sα(s3φ3y2 + sφy2
x) dxdt +

∫

Q

e2sα(GTt ∗ y)2 dxdt
)

(20)

for λ ≥ λ0 and s ≥ s0, where the constant C is somehow greater than the constant
defined in the preceding estimate. To estimate the last term in (20), we are in need
of the following lemma.

Lemma 2.4. Suppose all the assumptions of Theorem 2.2 hold true. Then, there
exists a constant C > 0 depending only on Ω, T, ρ and b satisfying the estimate:

∫

Q

e2sα(GTt ∗ y)2 dxdt ≤ C

∫

Q

e2sαy2 dxdt. (21)

P r o o f . We shall prove this lemma, with the help of the assumptions on b and
certain interesting properties of the weight functions. Let us first set

b̃(τ, x) = −bτ (τ, x) and yt(ζ, x) =

∫ ζ

T
2

|y(r, x)| dr, ζ ≤ t.

Then the formal integration by parts in time yields

∫ T

0

b̃(τ, x)yt(τ, x) dτ =

∫ T

0

b(τ, x)|y(τ, x)| dτ − (b(τ, x)yt(τ, x))
∣∣∣
τ=T

τ=0
,
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and therefore

∫

Q

e2sα(GTt ∗ y)2 dxdt ≤ ρ

∫

Q

e2sα
(∫ T

0

b(ζ, x)|y(ζ, x)| dζ
)2

dxdt

= ρ

∫

Q

e2sα
(∫ T

0

b̃(ζ, x)yt(ζ, x) dζ
)2

dxdt

≤ ρCbT

∫

Q

e2sα
( ∫ T

0

dζ
∣∣∣
∫ t

T
2

|y(r, x)| dr
∣∣∣
2)

dxdt

= ρCbT
2

∫

Q

e2sα
∣∣∣
∫ t

T
2

|y(r, x)| dr
∣∣∣
2

dxdt. (22)

Now, let us observe that

∫

Q

e2sα
∣∣∣
∫ t

T
2

|y(r, x)| dr
∣∣∣
2

dxdt

=

∫ T
2

0

∫

Ω

e2sα
∣∣∣
∫ t

T
2

|y(r, x)| dr
∣∣∣
2

dxdt+

∫ T

T
2

∫

Ω

e2sα
∣∣∣
∫ t

T
2

|y(r, x)| dr
∣∣∣
2

dxdt ≡ I1 + I2.

From the definition of the weight function α, it is clear that

αt = −2
(e2λΨ − eλψ)

(
t− T

2

)

π2(t)
≥ 0 for 0 ≤ t ≤

T

2
,

which leads to

I1 ≤

∫ T
2

0

∫

Ω

e2sα
(T

2
− t

)( ∫ T
2

t

|y(r, x)|2 dr
)

dxdt

≤
C(Ω, T )

s

∫ T
2

0

∫

Ω

(e2sα)t

( ∫ T
2

t

|y(r, x)|2 dr
)

dxdt

≤ C(Ω, T )

∫ T
2

0

∫

Ω

e2sα|y(t, x)|2 dxdt for 0 ≤ t ≤
T

2
and s ≥ s0,

since the boundary terms disappear due to the fact that α(0, x) = −∞ and inner in-
tegral vanishes at t = T/2. For any t ∈ (T/2, T ), applying Fubini’s theorem together
with the fact that e2sα is a decreasing function in (T/2, T ), we also have

I2 =

∫ T

T
2

∫

Ω

( ∫ T

r

e2sα(t,x) dt
)
|y(r, x)|2 dxdr

≤ C(T )

∫ T

T
2

∫

Ω

e2sα(r,x)|y(r, x)|2 dxdt for
T

2
≤ r ≤ t ≤ T.

Hence, by combining the preceding estimates, one can complete the proof. �
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In order to complete the proof of Theorem 2.2, it is sufficient to express the
integral of e2sαsφy2

x over Qω0
in the right hand side of (20), in terms of e2sαs3φ3y2

over a larger domain Qω. To this end, we multiply the first equation in (10) by
θ(y) := e2sαsφχy and integrate over Qω, where the function χ ∈ C2

0 (ω) satisfies
χ = 1 in ω0, 0 ≤ χ ≤ 1, to get

−

∫

Qω

θ(y)(ayx)x dxdt ≤
η

2

∫

Qω

e2sαf2 dxdt+
1

η

∫

Qω

e2sαs2φ2y2 dxdt (23)

+

∫

Qω

θ(y)yt dxdt+
η

2

∫

Qω

e2sα(GTt ∗ y)2 dxdt.

Consequently following the similar estimates in [14, 23] and using Lemma 2.4, we
obtain

∫

Qω0

e2sαsφy2
x dxdt ≤ C(λ)

( ∫

Q

e2sαf2 dxdt+

∫

Qω

e2sαs3φ3y2 dxdt

)
, (24)

where we have used the assumption on the coefficient a. Thus substituting the es-
timation (24) into the inequality (20) and choosing sufficiently large enough λ ≥
λ0, s ≥ s0, one can conclude the proof of Theorem 2.2. �

Now we reduce the following observability estimate from Theorem 2.2 and it
will be the main ingredient for the proof of the controllability of the linear problem.
This inequality enables us to estimate the solutions in the entire domain by observing
them in small subdomain only.

Corollary 2.5. Suppose all the assumptions of Theorem 2.2 are satisfied. Then
there exists a constant C > 0, such that for any sufficiently large λ ≥ λ0, s ≥ s1
and for any r ∈ (0, 2), the following estimate holds:

∫

Ω

y2(0, x) dx ≤ C

∫

Qω

ersαy2 dxdt, (25)

where y is the solution to the adjoint problem (6).

P r o o f . Multiplying (6) by y and integrating on Ω and applying Young’s inequality,
we get

−
1

2

d

dt

∫

Ω

y2 dx+

∫

Ω

ay2
x dx ≤

1

2
(1 + 2‖c‖L∞(Q̄))

∫

Ω

y2 dx+
1

2

∫

Ω

(GTt ∗ y)2 dx,

whence it follows that

−
d

dt

(
eC1t

∫

Ω

y2(t, x)dx
)
≤ eC1t

∫

Ω

(GTt ∗ y)2dx, (26)

where we have used the assumption on a and C1 > 0 is a constant. Integrating over
the time interval 0 ≤ t ≤ T/4, we get

∫

Ω

y2(0, x) dx ≤ eC1T
(∫

Ω

y2(T/4, x) dx+

∫ T
4

0

∫

Ω

(GTt ∗ y)2 dxdt
)
.
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Again integrating (26) from T/4 to t with t ∈ [T/4, 3T/4] and then combining with
the preceding estimate, one can obtain that

∫

Ω

y2(0, x) dx ≤ eC1T
(∫

Ω

y2(t, x) dx +

∫

Q3T/4

(GTt ∗ y)2 dxdt
)

(27)

where Q3T/4 = (0, 3T/4)× Ω. But recalling the assumption on the coefficient b and
proceeding with the computation similar to the estimate (22), one indeed get

∫

Q3T/4

(GTt ∗ y)2 dxdt ≤ ρCbT
3

∫

Q3T/4

∣∣∣
∫ t

T
2

y2 dr
∣∣∣ dxdt ≤ C2

∫ 3T
4

T
2

∫

Ω

y2 dxdt.

Integrating with time over the interval (T/4, 3T/4), the inequality (27), now reduces
to

∫

Ω

y2(0, x) dx ≤ C3

∫ 3T
4

T
4

∫

Ω

y2 dxdt, (28)

where the constant C3 > 0 depends on Ω, T, ρ and the coefficients b, c. Now by
density, applying the Carleman estimate to the system (6), we get

∫

Q

e2sαs3φ3y2 dxdt+

∫

Q

e2sαsφy2
x dxdt ≤ C(λ)

∫

Qω

e2sαs3φ3y2 dxdt, (29)

for any s ≥ s1 = max{s0, C‖c‖
2/3

L∞(Q̄)
}.

It is easy to see that (e2sαφ3) ≥ C4 > 0 for all (t, x) ∈ [T/4, 3T/4] × Ω̄, for
sufficiently large s ≥ s1 (see, [12] for a sharp estimate). For any 0 < r < 2 and
s ≥ s1, we also have (e(2−r)sαφ3) ≤ C5 < ∞ for all (t, x) ∈ (0, T ) × Ω̄. With this
remark, combining the estimate (28) with (29), one can conclude the proof. �

3. CONTROLLABILITY RESULTS

3.1. Controllability of the Linear Diffusion Equation

In this section, we shall obtain a solution to the global exact null controllability prob-
lem for the linear model (5) as the limit of an approximation process, constructed
with the aid of a family of appropriate optimal control problems for system (5). To
derive the needed estimates for the solutions of the optimal control problems we shall
use Pontryagin’s maximum principle and the Carleman estimate (11) derived for the
backward adjoint equation of (5). Throughout this sequel we use the functions α
and φ as defined in (8).

Theorem 3.1. Let Ω be an open bounded set in R. Suppose assumptions (4) on the
coefficients a, b and c are satisfied and also assume that ‖w‖L∞(Q) ≤ ρ. Then there
exist λ ≥ λ0 and s ≥ s1 as defined in Corollary 2.5, such that for any z0 ∈ H1

0 (Ω),
there exist (u, z) satisfying (5) and the terminal condition z(T, x) ≡ 0 a. e. x ∈ Ω.
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P r o o f . Let T > 0 be fixed and z0 ∈ H1
0 (Ω). For any ǫ > 0 and r ∈ (0, 2), consider

the optimal control problem subject to (5) with

J(u, z) =

∫

Q

e−rsαu2 dxdt +
1

ǫ

∫

Ω

z2(T, x) dx→ inf . (30)

It is well known that by the classical arguments, this minimization problem has a
unique solution (uǫ, zǫ) for every ǫ > 0. Next we shall show that (uǫ, zǫ) converges
(on a subsequence of {ǫ}) to (u, z) and this will be proved to be a solution of the
control problem (5). By Pontryagin’s maximum principle (see, [10, 13]), the control
uǫ is characterized as uǫ = 1ωe

rsαyǫ a. e. in Q, where r ∈ (0, 2) and yǫ is a solution
of the following backward adjoint equation






−(yǫ)t − (a(yǫ)x)x +GTt ∗ yǫ + cyǫ = 0, in Q

yǫ = 0, on Σ

yǫ(T, x) = − 1
ǫ zǫ(T, x), in Ω.

(31)

Next, we obtain an a priori estimate for the solution z of (5). First, we multiply (5)
by zǫ and integrate over Ω. Then applying Young’s inequality and Hölder’s inequality,
we get

1

2

d

dt

∫

Ω

z2
ǫ dx+

∫

Ω

a(t, x)(zǫ)
2
x dx

≤ (1 + ‖c‖L∞(Q̄))

∫

Ω

z2
ǫ dx+

ρ2CbT

2

∫ t

0

∫

Ω

z2
ǫ dxdr +

1

2

∫

Ω

12
ωu

2
ǫ dx.

Integrating from 0 to t, for t ∈ (0, T ), we get

∫

Ω

z2
ǫ (t, x) dx + 2

∫ t

0

∫

Ω

a(t, x)(zǫ)
2
x dxdr

≤ C1

( ∫ t

0

‖zǫ‖
2
L2((0,r)×Ω) dr + ‖z0‖

2
L2(Ω) + ‖e−rsα/2uǫ‖

2
L2(Qω)

)
,

where C1 > 0 is a constant. We note that ersα ≤ C̄ < +∞, ∀ (t, x) ∈ Q and by
duality argument, the last control integral can be bounded by the L2 norm of z0
(see, [23]). Now making use of the assumption on the coefficient a and the Poincaré
inequality, it is clear that

∫ t

0

∫

Ω

(zǫ)
2
x dxdr ≤ C2‖z0‖

2
L2(Ω) ∀t ∈ (0, T ), (32)

where the constant C2 > 0 depends on Ω, T and the coefficients amin, b, c and ρ.
Moreover, the system (5) can equivalently be written as





(zǫ)t − a(zǫ)xx = 1ωuǫ + ax(zǫ)x − g

∫ t

0

zǫ(r, x) dr − czǫ, in Q

zǫ = 0, on Σ

zǫ(0, x) = z0(x), in Ω.

(33)
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Now squaring both sides of the equation (33) and integrating on (0, t) × Ω, one can
get

∫

Ω

a(t, x)(zǫ)
2
x dx+

1

2

∫ t

0

∫

Ω

(
(zǫ)

2
t + 2a2(t, x)(zǫ)

2
xx

)
dxdr

≤

∫

Ω

a(0, x)(z0(x))
2
x dx+ 4

∫ t

0

∫

Ω

12
ωu

2
ǫ dxdr + Ca

∫ t

0

∫

Ω

(zǫ)
2
x dxdr

+4
(
‖c‖2

L∞(Q̄) + ρ2CbT
2
) ∫ T

0

∫

Ω

z2
ǫ dxdt.

Once again with the assumption on a together with the Poincaré inequality and the
estimate (32), we arrive at

∫

Ω

(zǫ)
2
x dx+

∫ T

0

∫

Ω

((zǫ)
2
t + (zǫ)

2
xx) dxdt ≤ C3

(
‖z0‖

2
H1

0
(Ω) + ‖z0‖

2
L2(Ω)

)
, (34)

where the constant C3 > 0 depends only on Ω, T and the coefficients amin, b, c and
ρ. Making use of the above a priori estimates and following the similar arguments
in [23, 24], one can conclude the proof. �

For the proof of controllability of the nonlinear system, we are further in need of
some regularity on the control.

Lemma 3.2. Suppose all the assumptions of Theorem 3.1 are satisfied. Then for
any z0 ∈ H1

0 (Ω), there exist (u, z) satisfying (5) such that z(T, x) ≡ 0 a. e. x ∈ Ω
and

‖u‖2
Lk(Q) ≤ Ck‖z0‖

2
L2(Ω), for any k ∈ (2,+∞). (35)

P r o o f . Let us start by setting ỹǫ = ersαyǫ, to have from (6) that





(ỹǫ)t + a(ỹǫ)xx = gyǫ in Q

ỹǫ = 0 on Σ

ỹǫ(T, x) = 0 in Ω,

(36)

where

gyǫ = ersαGTt ∗ yǫ +
[
2a(ersα)x − axe

rsα
]
(yǫ)x +

[
cersα + (ersα)t + a(ersα)xx

]
yǫ

= I1 + I2 + I3.

Now from the parabolic regularity (see, [17]) and the estimate (29), we obtain the
following estimates: First, we note that

‖ỹǫ‖W 2,1
2

(Q) ≤ C‖gyǫ‖L2(Q).

Next we proceed estimating the integrals Ii, i = 1, 2, 3 one by one. By Lemma 2.4,
it is clear that

‖I1‖
2
L2(Q) ≤ C(Ω, T )ρCb‖e

2(r−1)sαφ−3‖L∞(Q)

∫

Q

e2sαφ3y2
ǫ dxdt ≤ C

∫

Qω

ersαy2
ǫ dxdt,
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for the proper choice of r ≥ 1. Simple calculation shows that

‖I2‖
2
L2(Q) ≤ C(Ω)Ca‖e

2(r−1)sα(φ−1+φ)‖L∞(Q)

∫

Q

e2sαφ(yǫ)
2
x dxdt ≤ C

∫

Qω

ersαy2
ǫ dxdt.

Moreover, we have

‖I3‖
2
L2(Q) ≤ C(Ω, T )Ca‖e

2(r−1)sα(φ−1 + φ−3 + φ)‖L∞(Q)

∫

Q

e2sαφ3y2
ǫ dxdt

≤ C

∫

Qω

ersαy2
ǫ dxdt.

In view of the preceding estimates, one indeed get

‖ỹǫ‖
2
W 2,1

2
(Q)

≤ C4

∫

Qω

ersαy2
ǫ dxdt, (37)

where the constant C4 > 0 depends on Ω, T, ρ and the coefficients a, b, c. Recalling
the regularity result W 2,1

2 (Q) ⊂ Lk(Q), for all k ∈ (2,+∞) and going back to the
definition of the control in Theorem 3.1, we then obtain that

‖uǫ‖
2
Lk(Q) = ‖1ωỹǫ‖

2
Lk(Q) ≤ Ck

∫

Qω

ersαy2
ǫ dxdt ≤ Ck‖z0‖

2
L2(Ω). (38)

Thus, from the existence theory of parabolic boundary value problems in Lk(Q)
(see, [17]), it follows at least for a subsequence of ǫ, that for ǫ→ 0

uǫ → u weakly in Lk(Q),

zǫ → z weakly in W 2,1
k (Q) ∩ L2(0, T ;H1

0 (Ω))

and (u, z) satisfy the system (5) with z(T, x) ≡ 0, a. e. in Ω. The estimate for the
control follows from (38). The proof is thus completed. �

3.2. Controllability of the Nonlinear Diffusion Equation

For the study of controllability of the nonlinear problem, it is well known that
the fixed point method is the most effective one and it has been effectively used by
several authors (see, for instance, [2, 3, 14] and the recent survey paper [11]), in which
the controllability problem is transferred to a fixed point problem for an appropriate
nonlinear operator in a suitable function space. In this context, we apply Kakutani’s
fixed point theorem along with the exact null controllability results of the associated
linear problem to discuss the null controllability of the nonlinear model (3).

Moreover, as far as the exact controllability of the parabolic equation is concerned,
the fixed point approach can be applied whenever, among other things, the way the
constants arising in Carleman estimates depend on the coefficients of the linearized
systems is known in detail. We remark that the existence of u is again equivalent
to deriving a suitable observability inequality for the adjoint system. Thus, the idea
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is to find a fixed point of the mapping z̃ → z, where z is, with the initial data
z0 ∈ H1

0 (Ω) together with some control u, a solution to the linearized system






zt − (azx)x + bz̃

∫ t

0

z(r, x) dr + cz = 1ωu, in Q

z = 0, on Σ

z(0, x) = z0(x), in Ω,

(39)

satisfying the final condition z(T, x) ≡ 0, a. e. in Ω, for each z̃ ∈ N, which is the set
defined by

N = {w ∈ L∞(Q) : ‖w‖L∞(Q) ≤ ρ},

where ρ is an arbitrary but fixed positive constant. It can be seen that the set is
closed and the fact that ‖w‖L∞(Q) is bounded ensures its precompactness. Indeed
there is a classical result (see, [25]), which states the following:

Theorem 3.3. Let X,Y and B be Banach spaces such that X ⊂ B ⊂ Y with
compact imbedding X →֒ B. Let 1 ≤ p ≤ ∞. If F is a bounded subset of Lp(0, T ;X)
and

‖τhf − f‖Lp(0, T − h;Y ) → 0, as h→ 0, uniformly for f ∈ F ,

where τhf is the translated function of f with (τh)f(t) = f(t+ h) for h > 0, then F
is relatively compact in Lp(0, T ;B) (and in C([0, T ];B) if p = ∞).

Now we are ready to state and prove the main result of this section.

Theorem 3.4. Let Ω be an open bounded interval in R. Suppose assumptions (4)
on the coefficients a, b and c are satisfied. Then for each z0 ∈ H1

0 (Ω), there exist
(u, z) ∈ L2(Q)×W 2,1

2 (Q)∩L2(0, T ;H1
0 (Ω)) satisfying (3) such that z(T, x) ≡ 0 a. e.

in Ω.

P r o o f . For each z̃ ∈ N, let us define the set valued mapping Φ : N → 2N such
that

Φ(z̃) =
{
z ∈ W 2,1

k (Q) ∩ L2(0, T ;H1
0 (Ω)), for any k ∈ (2,+∞)

and z(T, x) ≡ 0 a. e. x ∈ Ω with ‖u‖2
Lk(Q) ≤ Ck‖z0‖

2
L2(Ω)

}
.

Let us observe that, if the solution z to (3) lies in N , then it also solves (39). Hence
in order to prove this theorem, it suffices to show that Φ has a fixed point in N . In
this context, we now prove that all the conditions to apply the Kakutani fixed point
theorem in L2 topology are satisfied.

Let us first look at for any z0 ∈ H1
0 (Ω), the solution z to (39) satisfies the estimate

∫

Ω

z2
x dx +

∫

Q

(z2
t + z2

xx) dxdt ≤ C
(
‖z0‖

2
H1

0
(Ω) + ‖z0‖

2
L2(Ω)

)
,
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and therefore by the Sobolev imbeddings, we have

∫

Ω

z2
x dx+

∫

Q

(z2
t + z2

xx) dxdt ≤ C‖z0‖
2
H1

0
(Ω). (40)

For each z̃ ∈ N, by Lemma 3.2 and the estimate (40), it is clear that Φ(z̃) is a
closed nonempty and convex subset of L2(Q). Further from the existence theory of
parabolic boundary value problems (see, [17]), we also get

‖z‖2
L∞(Q) ≤ C̃‖z0‖

2
H1

0
(Ω). (41)

Thus if the initial data is sufficiently small (for instance ‖z0‖H1

0
(Ω) ≤ ρ/C̃), one

can obtain from the definition of N that, Φ(N) ⊂ N. Besides, it follows from the
estimate (40) that, there exists a compact set N ⊂ L2(Q), such that for each z̃ ∈ N,
Φ(z̃) ⊂ N and by the boundedness of Φ in W 2,1

2 (Q)∩L2(0, T ;H1
0 (Ω)), which injects

compactly in L2(Q).

It remains to show that Φ is upper semicontinuous and that can be shown from
the fact that it has a closed graph. Indeed, let z̃n ∈ N , z̃n → z̃ in L2(Q) and
zn ∈ Φ(z̃n) → z in L2(Q) and let un be the corresponding controls. Then by
Lemma 3.2, we infer that the following convergence holds on a subsequence:

un → u weakly in L2(Q),

zn → z weakly in W 2,1
2 (Q) ∩ L2(0, T ;H1

0(Ω)).

Since (un, zn) is a solution of the linearized system






(zn)t − (a(zn)x)x + bz̃n

∫ t

0

zn(r, x) dr + czn = 1ωun, in Q

zn = 0, on Σ

zn(0, x) = z0(x), in Ω,

(42)

and therefore passing to weak limit, we can conclude that z ∈ Φ(z̃). Eventually
using the Kakutani fixed point theorem in the L2(Q) topology for the mapping Φ,
we obtain that there is at least one z ∈ N, such that z ∈ Φ(z). It is clear that such
z is a solution to the system (3) satisfying z(T, x) ≡ 0, a. e. in Ω. �
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