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Abstract. Let G1 and G2 be copies of a graph G, and let f : V (G1) → V (G2) be a
function. Then a functigraph C(G, f) = (V, E) is a generalization of a permutation graph,
where V = V (G1) ∪ V (G2) and E = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2),
v = f(u)}. In this paper, we study colorability and planarity of functigraphs.
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1. Introduction and definitions

Throughout this paper, G = (V (G), E(G)) stands for a non-empty, simple and

connected graph with order |V (G)| and size |E(G)|. For a given graph G and S ⊆

V (G), we denote by 〈S〉 the subgraph of G induced by S. The distance, d(u, v),

between two vertices u and v in G is the number of edges on a shortest path between

u and v in G.

A graph G is planar if it can be embedded in the plane. A connected graph,

with order at least 3, is outerplanar if it can be embedded in the plane so that

all its vertices lie on the exterior region [2]. A vertex v in a connected graph G is

a cut-vertex of G if G − v is disconnected. A (vertex) proper coloring of G is an

assignment of labels, traditionally called colors, to the vertices of a graph such that

no two adjacent vertices share the same color. A coloring using at most k > 1 colors

is called a (proper) k-coloring and it is equivalent to the problem of partitioning the

vertex set into k or fewer independent sets. The least number of colors needed to

properly color a graph G is the chromatic number χ(G).

Following Chartrand and Harary (see p. 434 of [2]), a permutation graph Pα con-

sists of two identical disjoint copies of a labeled graph G, say G1 and G2, along
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with |V (G)| = n additional edges joining V (G1) and V (G2) according to a given

permutation α on {1, 2, . . . , n}. As noted by the authors, the graph Pα(G) depends

not only on the choice of the permutation α but on the particular labeling of G as

well.

For additional graph theory terminology we refer to [3]. We now introduce the

study of a functigraph. We first recall that a function graph was independently in-

troduced and was studied by Stephen Hedetniemi in [4] which overlaps our definition

in a special case.

Definition 1.1. Let G1 and G2 be two copies of a graph G with disjoint vertex

sets V (G1) and V (G2), and let f be a function from V (G1) to V (G2). We define the

functigraph C(G, f) to be the graph that has the vertex set

V (C(G, f)) = V (G1) ∪ V (G2),

and the edge set

E(C(G, f)) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2), v = f(u)}.

We refer to V (G1) as the domain of the function f , to V (G2) as the codomain of f ,

and to f(V (G1)) as the range of f .

Note that we use the notation C(G, f) to refer to functigraphs for idiosyncratic

reasons. A mnemonic is that the C reminds us that we have two Copies of G with

function f mapping between them.

Observe that since G1 and G2 are copies of the same graph, the function f could

be invertible. If so, then C(G, f) is isomorphic to C(G, f−1), which is a permutation

graph. Indeed, functigraphs generalize permutation graphs [2]. That is, for any graph

G, if f is a permutation on V (G), then the functigraph C(G, f) and the permutation

graph Pα(G) coincide. The class of permutation graphs and thus the functigraphs

include several interesting families of graphs such as

(1) The prisms C(Cn, f) where f : V (G1) → V (G2) is defined by

f(x) =

{
x + k if 1 6 x + k 6 n,

x + k − n if x + k > n.

for 0 6 k 6 n − 1 (see (A) of Figure 1 when k = 1).

(2) The Petersen graph C(C5, f) where f : V (G1) → V (G2) is defined by

f(x) =

{
2x if x = 1, 2,

2x − 5 if x = 3, 4, 5.

See (B) of Figure 1.
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(3) The hypercubes Qn which are C(Qn−1, f(x) = x), n > 1.

(4) G×K2, where G is any connected graph, in particular the ladder graphs Pn×P2

which are C(Pn, f(x) = x).
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n
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G2

(A) a prism

1

1

2 2

3

3

4

4

5

5

G1 G2

(B) Petersen graph

Figure 1. A prism and the Petersen graph

In this paper, we characterize the proper colorability and planarity in C(G, f)

when G is a cycle. In addition, we study colorability and planarity in C(G, f) for an

arbitrary graph G.

2. Colorability of functigraphs

In this section we investigate the (proper) colorability of functigraphs. Clearly,

χ(C(G, f)) > χ(G), for all graphs G. Chartrand and Frechen [1] proved that, for

every graph G and every permutation graph Pα(G) of G, χ(G) 6 χ(Pα(G)) 6

⌈ 4

3
χ(G)⌉.

In this section, we generalize the result by Chartrand and Frechen for an arbitrary

function f : V (G1) → V (G2). We begin our study by letting G = Cn and then we

proceed to arbitrary graphs. Let Cn : v1, v2, . . . , vn, v1 be a cycle of length n. For

simplicity, we refer to a vertex by the index i of its label vi (1 6 i 6 n).

Proposition 2.1. Let G = Cn for n even. Then 2 6 χ(C(G, f)) 6 3. Moreover,

for all i, j ∈ V (G1), d(i, j) and d(f(i), f(j)) have the same parity if and only if

χ(C(G, f)) = 2.

P r o o f. Let G = Cn be an n-cycle for n even. Then χ(G1) = χ(G2) = 2, so the

lower bound follows.

Now we consider the upper bound. Since G2 is an even cycle, there is a 2-coloring

of G2, say c, using colors 1 and 2. Let St = {x ∈ V (G1) : c(f(x)) = t} for t = 1, 2.

We next present a coloring of G, where vertices in S1 are only colored 2 or 3, and
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vertices in S2 are colored 1 or 3. Let every other vertex in G1 be colored 3, say these

vertices form the set S. For x ∈ S1 − S let the color of x be 2, and if x ∈ S2 − S let

the color of x be 1. Thus χ(C(G, f)) = 3, giving the upper bound.

To see the characterization, note that if for all i, j ∈ V (G1), d(i, j) and d(f(i), f(j))

have the same parity, then all cycles in C(Cn, f) are even. This is the case if and

only if C(G, f) is bipartite, i.e. χ(C(G, f)) = 2. For the converse, if there exist

i, j ∈ V (G1) with d(i, j) and d(f(i), f(j)) having different parities, then C(G, f)

contains an odd cycle, and so χ(C(G, f)) > 3. �

For an odd cycle Cn, we have the following:

Proposition 2.2. Let G = Cn for n odd. Then 3 6 χ(C(G, f)) 6 4. Moreover,

χ(C(G, f)) = 4 if and only if f is a constant function.

P r o o f. Since C(G, f) contains an odd cycle, χ(C(G, f)) > 3. To obtain

the upper bound, we show that a coloring with at most 4 colors can be found, by

considering two cases.

C a s e 1. f is a constant function. Say f : V (G1) → V (G2) given by f(x) = a

for all x ∈ V (G1) and for some a ∈ V (G2) with 1 6 a 6 n. Define a coloring

c1 : V (C(G, f)) → {1, 2, 3, 4} by 3-coloring G1 with colors 1, 2, and 3, color the

vertex labeled a by 4, and properly color the rest of G2 with two colors 1 and 2.

Thus χ(C(G, f)) 6 4.

C a s e 2. f is not a constant function. Since G2 is an odd cycle, there exists a 3-

coloring of V (G2), say c, using colors 1, 2, and 3. Without loss of generality, color G2

so that color 3 is only used once, and it is used on a vertex of G2 of minimum degree

in C(G, f). Let St = {x ∈ V (G1) : c(f(x)) = t} for t = 1, 2, 3. Thus |S3| ∈ {0, 1}.

We consider two subcases.

S u b c a s e 2.1. |S3| = 0. First we assume that either S1 = ∅ or S2 = ∅, say the

former. Then V (G1) = S2 and one can properly color G1 with colors 1, 3, and 4.

Thus χ(C(G, f)) 6 4. Next we assume that S1 6= ∅ and S2 6= ∅. Then find two

consecutive vertices in G1, say k and k + 1 such that k ∈ S1 and k + 1 ∈ S2, or

k ∈ S2 and k + 1 ∈ S1, say the former. Then complete the 3-coloring c2 of C(G, f)

by coloring every other vertex of the cycle G1 starting with k + 2 with color 3, say

these vertices form the set S. For i ∈ V (G1) − S let the color of i be

c2(i) =

{
2 if i ∈ S1,

1 if i ∈ S2.

And so χ(C(G, f)) = 3 in this case.

S u b c a s e 2.2. |S3| = 1. Then let V (G1) ∩ S3 = {k}. Then either k + 1 ∈ S1

or k + 1 ∈ S2, say the former. Now define a coloring c2 : V (C(G, f)) → {1, 2, 3} by
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letting every other vertex in G1 be colored 3 starting with k + 1, say these vertices

form the set S. For x ∈ S1 − S let the color of x be 2, if x ∈ S2 − S let the color of

x be 1, and the color of k is

c2(k) =

{
1 if k − 1 ∈ S1,

2 if k − 1 ∈ S2.

And so, χ(C(G, f)) = 3.

We now prove the characterization. Assume that f(x) = a for all x ∈ V (G1) and

for some a with 1 6 a 6 n. Since the vertex labeled a in G2 is adjacent to every

vertex of the odd cycle G1, we have that χ(C(G, f)) > 4, and by the proof above we

have that χ(C(G, f)) 6 4, thus χ(C(G, f)) = 4.

For the converse, assume to the contrary that f is not a constant function. Then

the coloring c2 above proves that χ(C(G, f)) = 3, a contradiction. �

We now give bounds for the chromatic number of the functigraph C(G, f) in terms

of the chromatic number of the graph G, for any graph G and for all functions f .

The upper bound of the theorem below is a special case of a result independently

proved by Hedetniemi in [4].

Theorem 2.3. If χ(G) = α, then α 6 χ(C(G, f)) 6 α + ⌈ 1

2
α⌉. Both bounds are

sharp.

P r o o f. Since C(G, f) contains a copy of G, χ(C(G, f)) > α. For the upper

bound let G1 and G2 be the two copies of G in C(G, f). Let c∗ be a coloring of

G2 with the color classes 1, 2, . . . , α such that Wi = {w ∈ V (G2) : c∗(w) = i} for

1 6 i 6 α with V (G2) =
α⋃

i=1

Wi. And let Si = {v ∈ V (G1) : c∗(f(v)) = i} for

1 6 i 6 α. Since G1 is also α-partite, it follows that V (G1) =
α⋃

i=1

Ui, where Ui is

the independent set corresponding to Wi (1 6 i 6 α). We construct the coloring c

of C(G, f) by c : V (C(G, f)) → {1, 2, . . . , ⌈ 3

2
α⌉}, where

c(v) =






i if v ∈ Wi (1 6 i 6 α),

j + ⌈ 1

2
α⌉ if v ∈ Uj ∩ Sj (1 6 j 6 ⌊ 1

2
α⌋),

j if v ∈ Uj − Sj (1 6 j 6 ⌊ 1

2
α⌋),

2α + 1 − k if v ∈ Uk (⌊ 1

2
α⌋ + 1 6 k 6 α).

And so χ(C(G, f)) 6 α + ⌈ 1

2
α⌉.

To see the sharpness of the lower bound, let G be an a-partite graph with V (G) =

{V1, V2, . . . , Va} being a partition of V (G) into independent sets, and f be the identity
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function. Let G1 and G2 be the two copies of G, with V (G1) = {V 1
1 , V 1

2 , . . . , V 1
a } and

V (G2) = {V 2
1 , V 2

2 , . . . , V 2
a } be the corresponding partitions into independent sets of

V (G1) and V (G2). Then define a coloring c : V (C(G, f)) → {1, 2, . . . , a} given by

c(v) =





i if v ∈ V 1
i (1 6 i 6 a),

j + 1 if v ∈ V 2
j (1 6 j 6 a − 1),

1 if v ∈ V 2
a .

Thus χ(C(G, f)) = χ(G) = a.

To see the sharpness of the upper bound, let (1) G be a complete a-partite graph

Ka,a,...,a, (2) G1 be a copy of G with the partition of V (G1) into independent classes

as V (G1) =
a⋃

i=1

Ui, where Ui = {ui1, ui2, . . . , uia}, (3) G2 be another copy of G

with the partition of V (G2) into independent classes as V (G2) =
a⋃

j=1

Wj , where

Wj = {wj1, wj2, . . . , wja}, and (4) f(uij) = wjj , for all i, j, 1 6 i, j 6 a.

Then define the coloring c : V (C(G, f)) → {1, 2, . . . , ⌈ 3

2
a⌉} given by

c(v) =





j if v ∈ Wj (1 6 j 6 a),

i + ⌈ 1

2
a⌉ if v = uij (i = j, 1 6 i 6 ⌊ 1

2
a⌋),

i if v = uij (i 6= j, 1 6 i 6 ⌊ 1

2
a⌋),

2a + 1 − i if v ∈ Ui (⌊ 1

2
a⌋ + 1 6 i 6 a).

Thus χ(C(G, f)) 6 ⌈ 3

2
a⌉. We claim that χ(C(G, f)) = ⌈ 3

2
a⌉. Assume, to the

contrary, that χ(C(G, f)) = l < ⌈ 3

2
a⌉. Then l < 3

2
a. Since we have that

〈{w11, w22, . . . , waa}〉 ∼= Ka, we then obtain χ(〈{w11, w22, . . . , waa}〉) = a. Without

loss of generality, we assign c(wjj) = j for 1 6 j 6 a. Suppose that r of the sets

Ui have the same color assigned to each vertex of set. Since each vertex of Ui

(1 6 i 6 a) is adjacent to a different vertex of the clique {w11, w22, . . . , waa},

it follows that the r colors must be distinct from the a colors already used.

Then χ(C(G, f)) > a + r. Since at least two colors are used for each of the

remaining a − r sets of Ui, r + 2(a − r) 6 l, and so r > 2a − l. Therefore,

χ(C(G, f)) > a + r > a + 2a − l = 3a − l > 3a − 3

2
a = 3

2
a > l = χ(C(G, f)), which

is a contradiction. �

Below is an example that shows the construction of the coloring of C(G, f) for

G = K3,3,3 for the sharpness of the the upper bound above.
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w11

u11

w12

u12

w13

u13

w21

u21

w22

u22

w23

u23

w31

u31

w32

u32

w33

u33

c(W1) = 1

c(u11) = 3, c(u12) = c(u13) = 1

c(W2) = 2

c(U2) = 5

c(W3) = 3

c(U3) = 4

V (G1)

V (G2)

f

Figure 2. An example of χ(C(K3,3,3, f)) = 5

2. Planarity of functigraphs

Chartrand and Harary [2] proved a result analogous to Kuratowski’s theorem for

outerplanar graphs: a connected graph G is outerplanar if and only if it contains

no subgraph which is homeomorphic to K4 or K2,3. Further, Chartrand and Harary

characterized planar permutation graphs that contain no cut-vertices. The result

states that the permutation graph Pα(G) of a nonseparable graph G is planar if and

only if G is outerplanar and α is dihedral. (See Ch. 4 of [5] for the dihedral groups.)

We begin this section with a characterization of planar functigraphs C(Cn, f). We

further characterize planar functigraphs C(G, f) for an arbitrary graph G, and thus

generalize the results obtained by Chartrand and Harary on permutation graphs to

functigraphs.

We first consider G = Cn. Let Cn : v1, v2, . . . , vn, v1 be a cycle of length n. For

simplicity, we refer to each vertex of the cycle by its index i of its label vi (1 6 i 6 n).

Let G1 and G2 be already embedded in the plane, with both labeled counterclockwise

as in (A) of Figure 3. Let f : V (G1) → V (G2) be a function and let σ : V (G2) →

V (G′

2) be an identity function, where G′

2 is a copy of G2 with clockwise orientation.

Then the composition g := σ ◦ f maps (B) of Figure 3 to (A) of Figure 3. Thus we

only need to consider when V (G1) and V (G2) are labeled counterclockwise as in (A)

of Figure 3.

For the rest of the paper, the function f such that f(i) = ai for all i = 1, 2, . . . , n

will be denoted by f = (a1, a2, . . . , an). Note that if all ai’s are distinct and
n⋃

i=1

{ai} =
n⋃

j=1

{j}, then f : V (G1) → V (G2) is a bijection and thus C(G, f) is a permutation

graph.

E x am p l e. Let G = C5 be a cycle of length 5. Let G1 and G2 be copies of

G with labelings of vertices assigned as in Figure 4. Then f = (2, 2, 3, 3, 1) means
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Figure 3. Labelings of V (G1) and V (G2)

that f(1) = 2, f(2) = 2, f(3) = 3, f(4) = 3, and f(5) = 1. Note that C(G, f) is

isomorphic to C(G, f̃) for f̃ = (1, 1, 2, 2, 5).

1

1

2

2

3

3

4

4

5

5

G1

G2

Figure 4. f1 : V (G1)→ V (G2) as in Example

Notice that, by allowing relabeling, we can assume that there exists a vertex in

G1 that is mapped to vertex n in G2. If f(n) = an 6= n then there exists an

automorphism σ : i → i + n − an such that σ ◦ f(n) = n.

We next characterize planar functigraphs when G is a cycle. One can easily check

that C(C3, f) is planar for any function f : there are three distinct (non-isomorphic)

cases. Thus, we consider G = Cn for n > 4.

We define a function f of a functigraph C(Cn, f) to be semi-monotonic, and we

denote it by f ∈ SMn, if and only if f = (a1, a2, . . . , an) satisfies

(1) there exists k ∈ V (G1) (1 6 k 6 n) such that

1 6 ak 6 ak+1 6 . . . 6 an−1 6 an 6 a1 6 a2 6 . . . 6 ak−1 6 n

or
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(2) there exists k ∈ V (G1) (1 6 k 6 n) such that

1 6 ak 6 ak−1 6 . . . 6 a2 6 a1 6 an 6 an−1 6 . . . 6 ak+1 6 n.

A graphH is called a subdivision of a graphG if one or more vertices of degree 2 are

inserted into one or more edges of G (see p. 236 of [3]). Now we recall Kuratowski’s

Theorem: a graph G is planar if and only if G does not contain K5, K3,3, or a

subdivision of K5 or K3,3 as a subgraph.

Proposition 3.1. Let G = Cn be a cycle of length n > 4. Let G1 and G2

be copies of G with cyclic labelings. Without loss of generality, we assume that

f(n) = n. Further, by relabeling the vertices so that two adjacent vertices 1 and n

in G1 get mapped to two different vertices in G2, we may assume that f(1) 6= n if f

is not a constant function. Then C(G, f) is planar if and only if f is semi-monotonic

(f could be a constant function).

P r o o f. (⇐) It is easy to check.

(⇒) Let C(G, f) be planar for G = Cn with n > 4. Assume, to the contrary,

that f is not semi-monotonic. Then, without loss of generality, we may assume

that there exist vertices r, s, t, u in G1 such that 1 6 r < s < t < u 6 n and

1 6 ar 6 at < as 6 au 6 n. We consider three cases.

C a s e 1. |f(V (G1))| = 2: Note that C(G, f) contains a subdivision of H1
∼= K3,3

(see Figure 5) as a subgraph.

au ar

u

r

s

t

G1

G2

H1

Figure 5

C a s e 2. |f(V (G1))| = 3: Notice that C(G, f) contains a subdivision of either

H1, H2, or H∗

2 as a subgraph. Moreover, H2 also contains a subdivision of K3,3 as

a subgraph, where the two bipartite sets are {r, t, as} and {s, u, ar}. Also note that

H∗

2 contains a subdivision of K3,3 as a subgraph, where the two bipartite sets are

{r, t, au} and {s, u, at} (see Figure 6).
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au ar

as

u

r

s

t

G1

G2

H2

au ar

at

u

r

s

t

G1

G2

H∗

2

Figure 6

C a s e 3. |f(V (G1))| > 4: Notice that C(G, f) contains a subdivision of either H1,

H2, H
∗

2 , or H3 as a subgraph. Moreover H3 contains a subdivision of H
′

3
∼= K3,3 as

a subgraph, where the two bipartite sets are {t, ar, as} and {s, at, au} (see Figure 7).

au

ar

at

as

u

r s

t

G1 G2

H3

au

ar at

as

s

t

H ′

3

Figure 7

Thus, by Kuratowski’s Theorem, C(G, f) is not planar, which is a contradiction

to the planarity hypothesis. �

The following is an immediate result of Proposition 3.1. The sufficient direction

of the corollary below, for any graph G, was independently proved by Hedetniemi in

the study of function graph in [4].

Corollary 3.2. Let G be a graph without cut-vertices. Then the functigraph

C(G, f) is planar if and only if G is outerplanar and f is semi-monotonic (f could

be a constant function).

P r o o f. (⇐) It is easy to check.

(⇒) Assume, to the contrary, that either G is not outerplanar or f is not semi-

monotonic. If G is not outerplanar, then there is a vertex v ∈ V (G) such that v

doesn’t lie on the exterior region. Then the edge vf(v) will cross one of the edges

of G, a contradiction to the planarity hypothesis of C(G, f). Thus G is outerplanar,

and we can assume that every nonseparable outerplanar graphG is cyclically labeled.

If f 6∈ SMn, then C(G, f) is not planar, a contradiction. �
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R em a r k. The condition of G having no cut-vertex is necessary. To see this, let

G = P6 be a path of length 5, with cut-vertices, as in Figure 8. Define f : V (G1) →

V (G2) by

f(x) =





x + 6

2
if x is even,

x + 1

2
if x is odd.

Then C(G, f) is planar and G is outerplanar, but f = (1, 4, 2, 5, 3, 6) is not semi-

monotonic.

1

3

5

6

2

4

1

2

3

6

4

5

P6 P6
f

Figure 8. C(P6, f) for the Remark above
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