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GENERALIZED LOGISTIC MODEL
AND ITS ORTHANT TAIL DEPENDENCE

Helena Ferreira and Luisa Pereira

The Multivariate Extreme Value distributions have shown their usefulness in environ-
mental studies, financial and insurance mathematics. The Logistic or Gumbel–Hougaard
distribution is one of the oldest multivariate extreme value models and it has been extended
to asymmetric models. In this paper we introduce generalized logistic multivariate distribu-
tions. Our tools are mixtures of copulas and stable mixing variables, extending approaches
in Tawn [14], Joe and Hu [6] and Fougères et al. [3]. The parametric family of multivari-
ate extreme value distributions considered presents a flexible dependence structure and we
compute for it the multivariate tail dependence coefficients considered in Li [7].

Keywords: multivariate extreme value distribution, tail dependence, logistic model, mix-
ture

Classification: 60G70

1. INTRODUCTION

In multivariate extreme value theory, the main interest has been in building mul-
tivariate extreme value distributions. Joe [5] and McNeil et al. [9], among others,
provide a source of multivariate dependence models turned into its copulas func-
tions. Extreme value copulas arise naturally in the extreme value theory but they
are also itself a suitable choice to model dependence structures (Capéraà et al. [1]).

Recently several authors proposed construction schemes of d-variate copulas and
some of them can be seen as transformations of given copulas, enlarging the number
of parameters and allowing tail asymmetries. The probabilistic representations of the
transformations, not always available, allows the understanding and interpretation
of the dependence structure and can suggest a sampling strategy for the new copulas.

In this paper we start from a q-variate random vector S which margins Sj are
standard positive α-stable variables and q d-variate random vectors Xj , j = 1, . . . , q,
that conditionally on each Sj have dependence structure regulated by given copulas
Cj . We then study the componentwise maxima model from the Xj ’s. From this
model we derive a new family of copulas and analyze its orthant tail dependence by
computing the multivariate tail dependence coefficients considered in Li [7].

In section 2 we introduce the model and the resulting copula as the main result
and discuss several special cases. It is shown how several copulas of the literature
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arise as special cases of the present construction. In section 3 we investigate how
the proposed construction affects the multivariate tail dependence. It allows tail
dependence and different dependence coefficients between each variable pair. Finally
we apply the results to the particular case of Cj being the copula arising from the
distribution of the variables in a M4 process (Smith and Weissman [13]).

2. THE MODEL

Let L (Z|W ) denotes the conditional distribution of a random variable or vector Z
given another random variable or vector W . For the vectors Xj = (Xj,1, . . . , Xj,d),
j = 1, . . . , q, and S = (S1, . . . , Sq), defined on the same probability space, we shall
assume that:

(a) L ((X1, . . . ,Xq) |S) =
∏q

j=1 L (Xj |S),

(b) L (Xj |S) = L (Xj |Sj),

(c) P
(⋂d

i=1 Xji ≤ xi|Sj

)
= Cj

(
e
−

“
x1
βj1

”−1/αj
Sj

, . . . , e
−

“
xd
βjd

”−1/αj
Sj

)
, xj > 0,

j = 1, . . . , q, where Cj ’s are max-stable copulas and {βji, j = 1, . . . , q, i = 1, . . . , d}
are non-negative constants such that

∑q
j=1 βji = 1, i = 1, . . . , d,

(d) E
(
e−tSj

)
= e−tαj , t ≥ 0, j = 1, . . . , q, where αj ’s are constants in (0, 1]

and

(e) L (S) =
∏q

j=1 L (Sj).

Thus every Xji is a scale mixture with mixing variable βjiS
αj

j and Xj , j =
1, . . . , q, are conditionally independent given S.

Scale mixtures have been studied and used in a variety of applications (Marshall
and Olkin [8], Joe and Hu [6] and Fougères et al. [3], Li [7]).

We shall consider here a componentwise maxima model from the Xj ’s and we
present in the next result its distribution.

Theorem 2.1. If the random vectors Xj , j = 1, . . . , q, and S satisfy the condi-
tions (a) – (e) then Y = (Y1, . . . , Yd) defined by Yi =

∨q
j=1 Xji, i = 1, . . . , d, has

multivariate extreme value distribution with unit Fréchet margins and copula

CY (u1, . . . , ud) (1)

= exp

−
q∑

j=1

(
− lnCj

(
e−(−βj1 ln u1)

1/αj
, . . . , e−(−βjd ln ud)1/αj

))αj

 .

P r o o f . To obtain CY we just apply the conditional independence of the Xj ’s
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followed by the max-stability of Cj ’s and the αj-stability of each Sj , as follows:

P

(
d⋂

i=1

{Yi ≤ xi}

)
=
∫

P

 q⋂
j=1

d⋂
i=1

{Xjieqxi} |S = s

dS (s1, . . . , sq)

=
∫ q∏

j=1

Cj

(
e
−

“
x1
βj1

”−1/αj
sj

, . . . , e
−

“
xd
βjd

”−1/αj
sj

)
dS (s1, . . . , sq)

=
q∏

j=1

exp

{
−
(
− lnCj

(
e
−

“
x1
βj1

”−1/αj

, . . . , e
−

“
xd
βjd

”−1/αj
))αj

}
.

For each j and i, Xji is a positive αj-stable size mixture of a Fréchet distribution
with location βji, scale βjiαj and shape parameter αj and has itself Fréchet distri-
bution with same location and the same right end point, but scale βji and shape
parameter 1. Since

∑q
j=1 βji = 1, i = 1, . . . , d, each Yi has unit Fréchet distribution.

The max-stability of CY follows from its expression and the max-stability of the
Cj ’s. �

We now discuss some particular cases of (1) that has been explored.

(I) If q = 1 then β1i = 1, i = 1, . . . d, and

CY (u1, . . . , ud) = exp
{
−
(
− lnC1

(
e−(− ln u1)

1/α1
, . . . , e−(− ln ud)1/α1

))α1
}

is a generalisation of the Archimedean copula (Joe [5]), which for the particular case
of the product copula C1 = Π leads to the Gumbel–Hougaard or logistic copula.

The above copula is a particular case of the copula Cϕ considered in Morillas [10]
with ϕ(x) = exp

(
−(− lnx)1/α1

)
.

The dependence properties of the special case of

C1(u1, . . . , ud) =
∏

1≤s<t≤d

C{s,t}(ups
s , upt

t )
d∏

i=1

upiνi

i ,

where C{s,t}, 1 ≤ s < t ≤ d, are bivariate copulas and (d − 1)pi + piνi = 1,
i = 1, . . . , d, were analysed in Joe and Hu [6].

(II) If Cj = Π, j = 1, . . . , q, then
q∏

j=1

exp

{
−
(
− lnCj

(
e
−

“
x1
βj1

”−1/αj

, . . . , e
−

“
xd
βjd

”−1/αj
))αj

}

= exp

−
q∑

j=1

(
d∑

i=1

(
xi

βji

)−1/αj
)αj

 ,

which leads to an asymmetric logistic copula

CY (u1, . . . , ud) = exp

−
q∑

j=1

(
d∑

i=1

(−βji lnui)
−1/αj

)αj
 . (2)
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In (2), if we take αj = α, j = 1, . . . , q ≤ +∞, we find an analogous mixture of ex-
treme value distributions to those considered in Fougeres et al. [3] by departing just
from a random vector X = (X1, . . . , Xd) satisfying L (Xj |S) =

∏d
i=1 L (Xi|S) and

P (Xi ≤ x|S) = exp
{
−
(∑q

j=1 cjiSj

)(
1 + γi

x−µi

σi

)−1/γi
}

, i = 1, . . . , d. In other

words, in this different approach, conditionally on S, the vector X has independent
margins and each margin is a power mixture of an extreme value distribution with
mixing variable

∑q
j=1 cjiSj , where the cji are non-negative constants.

(III) Assume now, in (2), that each j corresponds to an element A of the set S,
the class of all nonempty subsets of D = {1, . . . , d}. If βAi = 0 for each i 6∈ A then
the copula (2) becomes

CY (u1, . . . , ud) = exp

{
−
∑
A⊂S

(
d∑

i∈A

(−βAi lnui)
−1/αA

)αA}
, (3)

with
∑

A⊂S βAi = 1, i = 1, . . . , d. This is the asymmetric logistic model considered
in Tawn [14], by following a different probabilistic approach. More generally, by
applying the same interpretation of the constants βji in (1), we obtain

CY (u1, . . . , ud) (4)

= exp

{∑
A⊂S

(
− lnCA

(
e−(−βAi1(A) ln u1)1/αA

, . . . , e−(−βAis(A) ln ud)1/αA
))αA

}
,

where CA’s are copulas with different dimensions and we denote by (i1(A), . . . , is(A))
the sub-vector of (1, . . . , d) corresponding to indices in A. In particular, if we begin
with one copula Cj = C, j = 1, . . . , q, then CA, A ⊂ S, are all the sub-copulas of C.

(IV) Finally, let us suppose that βji = βj , i = 1, . . . , d, in (1). Then

CY (u1, . . . , ud) =
q∏

j=1

exp
{
−
(
lnCj

(
e−(− ln u1)

1/αj
, . . . , e−(− ln ud)1/αj

))αj

βj

}
, (5)

with
∑q

j=1 βj = 1, that is, CY is a geometric mean of mixtures of powers of multi-
variate extreme value distributions. The particular case of the weighted geometric
mean CY(u1, u2) = (u1 ∧ u2)β1(u1u2)1−β1 is due to Cuadras and Augé [2].

3. ORTHANT TAIL DEPENDENCE

For a random vector Y = (Y1, . . . , Yd) with continuos margins F1, . . . , Fd and copula
C, the bivariate (upper) tail dependence coefficients are defined by

λ
(Y)
{s,t} ≡ λ

(C)
{s,t} = lim

u↑1
P
(
Fs (Ys) > u|Ft (Yt) > u

)
, 1 ≤ s < t ≤ d. (6)

The tail dependence is a copula based measure and it holds

λ
(C)
{s,t} = 2− lim

u↑1

lnC{s,t} (u, u)
lnu

, (7)
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where C{s,t} is the copula of the sub-vector (Ys, Yt) (Joe [5], Nelsen [11]).
To characterise the relative strength of extremal dependence with respect to a

particular subset of random variables of Y one can use conditional orthant tail prob-
abilities of Y given that the components with indices in the subset J are extreme.
The tail dependence of bivariate copulas can be extended as done in Schmid and
Schmidt [12] and Li [7].

For ∅ 6= J ⊂ D = {1, . . . , d}, let

λ
(Y)
J ≡ λ

(C)
J = lim

u↑1
P

⋂
j /∈J

{Fj (Yj) > u} |
⋂
j∈J

{Fj (Yj) > u}

 . (8)

If for some ∅ 6= J ⊂ {1, . . . , d} the coefficient λ
(C)
J exists and is positive then we

say that Y is (upper) orthant tail dependent.

We have λ
(C)
J =

λ
(C)
{s}

λ
(CJ )
{s}

, if λ
(CJ )
{s} 6= 0 and the relation (7) between the tail depen-

dence coefficient and the bivariate copula can also be generalized by

λ
(C)
J = lim

u↑1

∑
∅6=A⊂D(−1)|A|−1 lnCA (uA)∑
∅6=A⊂J(−1)|A|−1 lnCA (uA)

, (9)

where CA denotes the sub-copula of C corresponding to margins with indices in A
and and uA the |A|-dimensional vector (u, . . . , u). By applying this relation and the
max-stability of the copulas Cj , we get the following result.

Theorem 3.1. For a copula C defined by (1), it holds

(a)

λ
(C)
J =

q∑
j=1

∑
∅6=A⊂D

(−1)|A|−1

(
− lnCj,A

(
e−β

1/αj
j1 , . . . , e−β

1/αj
jd

)
A

)αj

q∑
j=1

∑
∅6=A⊂J

(−1)|A|−1

(
− lnCj,A

(
e−β

1/αj
j1 , . . . , e−β

1/αj
jd

)
A

)αj
, (10)

where Cj,A denotes the sub-copula of Cj corresponding to the margins with
indices in A.

(b) If Cj = Π, for each j = 1, . . . , q, then

λ
(C)
J =

q∑
j=1

∑
∅6=A⊂D

(−1)|A|−1

(∑
i∈A

β
1/αj

ji

)αj

q∑
j=1

∑
∅6=A⊂J

(−1)|A|−1

(∑
i∈A

β
1/αj

ji

)αj
. (11)
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The tail dependence result in (10) depends on the mixing variables through the
parameters αj , even for the case of q = 1, that is the global dependence added by
the mixing variables doesn’t vanish in extremes of maxima. This contrast with the
result in Li [7], where the scale mixture of MEV distributions (RX1, . . . , RXd) is
considered with the mixing variable R satisfying E(e−ctR)

E(e−tR)
→ c−α, as t tends to ∞,

and c ≥ 1, α > 0. In this case the upper tail dependence coefficients are exactly the
same as the coefficients of the MEV distribution without mixing.

We remark that, for βji = βj , i = 1, . . . , d, the numerator in (10) is, for each
A ⊂ D,

λ
(CA)
{s} =

q∑
j=1

βjλ
(Cj,A)

{s}

that is, the tail dependence coefficient λ
(CA)
{s} is a linear convex combination of the cor-

responding tail dependence coefficients for the sub-copulas Cj,A of Cj , j = 1, . . . , q.
The result in (11) leads to

λ
(C)
{s,t} = 2−

q∑
j=1

(
β

1/αj

js + β
1/αj

jt

)αj

,

extending the the known result

λ
(C)
{s,t} = 2− 2α, (12)

corresponding to q = 1 (Joe [5], Nelsen [11]). The result in (10) enables to extend
the equation (12) for other copulae C1 than the product copula as

λ
(C)
{s,t} = 2− (2− λ

(C1)
{s,t})

α. (13)

The above results include a large number of possibilities for the tail dependence.
We now illustrate the results with an example.

Example 3.2. We will suppose that Cj = C, j = 1, . . . , d, with

C(u1, . . . , ud) =
∞∏

l=1

∞∏
k=−∞

(
d∧

i=1

ualki
i

)
, uj ∈ [0, 1], j = 1, . . . , d,

where {alkj , l ≥ 1, −∞ < k < ∞, 1 ≤ j ≤ d}, are nonnegative constants satisfying

∞∑
l=1

∞∑
k=−∞

alkj = 1 for j = 1, . . . , d.

That copula arises from the common distribution of the variables of an M4 process
(Smith and Weissman [13]).
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Then the copula in (1) becomes

CY (u1, . . . , ud) = exp

−
q∑

j=1

( ∞∑
l=1

∞∑
k=−∞

d∨
i=1

(
−βjia

αj

lki lnui

)1/αj

)αj
 . (14)

By applying the result in Proposition 2.1. (a), we obtain for the numerator in (10)

λ
(CY)
{s} =

q∑
j=1

∑
∅6=A⊂D

(−1)|A|−1

( ∞∑
l=1

∞∑
k=−∞

∨
i∈A

(
alkiβ

1/αj

ji

))αj

.

For the bivariate tail dependence it holds

λ
(CY)
{s,t} = 2−

∞∑
l=1

∞∑
k=−∞

q∑
j=1

(
alksβ

1/αj

js ∨ alktβ
1/αj

jt

)αj

,

which, for the case q = 1 leads to the result λ
(CY)
{s,t} = 2−

∑∞
l=1

∑∞
k=−∞ (alks ∨ alkt)

in Heffernan et al. [4].
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