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ON THE EXISTENCE OF A HAAR MEASURE
IN TOPOLOGICAL IP-LOOPS

Beáta Stehĺıková, Dagmar Markechová and Anna Tirpáková

In this paper, we give conditions ensuring the existence of a Haar measure in topological
IP-loops.
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Classification: 28C10, 20N05

1. INTRODUCTION

The Haar measure was introduced by Alfréd Haar, a Hungarian mathematician,
in about 1932. Haar measures are used in many parts of analysis and number theory,
and also in the estimation theory. It is known (see, e. g., [5, 6, 19]) that in every
locally compact topological group there exists at least one Haar measure. This is not
true in the case of topological quasigroups, what we illustrate by presented example.
We give conditions ensuring the existence of a Haar measure in locally compact
topological IP-loops. Our proof of the existence of a Haar measure in topological
IP-loops follows the ideas of the classical proof for locally compact topological groups
which can be found in Halmos’s book [6]. It is based analogously as in [6] on
the construction of a nonzero left-invariant content.

Note that some results on the existence of invariant measures on certain types
of bicompact semigroups can be found in [17]. But as far as we know, the existence
of invariant measures has not been studied for non-associative structures yet.

2. TOPOLOGICAL QUASIGROUPS AND TOPOLOGICAL IP-LOOPS

First, we give the definitions of some algebraic notions and some facts which will be
used in the following.

A non-empty set G is said to be a groupoid relative to a binary operation denoted
by ·, if for every ordered pair a, b of elements in G a unique element ab ∈ G is defined.
Instead of a · b we write ab. A quasigroup is a groupoid (G, ·) in which for every two
elements a, b ∈ G every of the equations ax = b and ya = b has a unique solution
in G. If a quasigroup G contains an element e such that ex = xe = x for all x in G,
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then e is called an identity element of G and G is called a loop. It is easy to verify
that every associative loop is a group.

A quasigroup (G, ·) is called an IP-quasigroup (or a quasigroup with the inverti-
bility property), if there exist mappings fP : G→ G and fL : G→ G such that, for
any x, y ∈ G, it holds

(i) (xy) fP (y) = x,

(ii) fL (x) (xy) = y.

An IP-quasigroup with an identity element is called an IP-loop (or a loop with
the invertibility property).

Let (G, ·) be a loop with an identity element e and let a ∈ G. Then every of
the equations ax = e and ya = e has a unique solution in G. The element x is called
a right inverse element to the element a and we denote it by a−1. Analogously,
the element y is called a left inverse element to the element a and we denote it
by −1a. Let (G, ·) be an IP-loop. If we put x = e in (i) and y = e in (ii), we see that
fP (y) = y−1 and fL (x) =−1 x. For every elements x, y ∈ G there holds −1x (xy) =
= y. If we put y = x−1, we get −1x =−1 x

(
xx−1

)
= x−1. This means that every

element in G has an inverse. It is easy to see that an IP-loop is a groupoid (G, ·)
with an identity element and with the following property:

(iii) for each x ∈ G there exists an element x−1 ∈ G such that (yx)x−1 = y and
x−1 (xy) = y for every y ∈ G.

We will use throughout this paper the following notations. If E is any subset
ofX, then E−1 is the set of all elements of the form x−1, where x ∈ E. If E and F are
any two subsets of X, then EF is the set of all elements of the form xy, where x ∈ E
and y ∈ F . If x ∈ X, it is customary to write xE and Ex in place of {x}E and E{x}
respectively. The set xE (or Ex) is called a left translation (or right translation)
of E.

The notions of an IP-quasigroup and an IP-loop were introduced by Bruck ([3,
4]), see also [2, 9, 15, 18]. Moufang loops ([10, 12]) are a very important case
of IP-loops. The above described structures play a fundamental role in many areas
of mathematics.

The octonions (see, e. g., [1]) are another interesting example of IP-loops.
The octonions were discovered in 1843 by John T. Graves, inspired by his friend
William Hamilton’s discovery of quaternions. They were discovered independently
by Arthur Cayley (1845). They are sometimes referred to as Cayley numbers or the
Cayley algebra. Octonions have applications in fields such as string theory, special
relativity, and quantum logic. The octonion algebra is usually represented by the
capital letter O. Because the octonions will be important for us also in the next, we
deal with them in more detail. Every octonion is a real linear combination of the
unit octonions e0, e1, e2, e3, e4, e5, e6, e7, where e0 is the scalar element. That is,
every octonion x can be written in the form

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7
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with real coefficients xi. Addition of octonions is accomplished by adding corre-
sponding coefficients, as with the complex numbers and quaternions. By linearity,
multiplication of octonions is completely determined once given a multiplication
table for the unit octonions (see, e. g., [1]). A more systematic way of defining the
octonions is via the Cayley–Dickson construction. Just as quaternions can be defined
as pairs of complex numbers, the octonions can be defined as pairs of quaternions.

The conjugate of an octonion

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

is given by

x∗ = x0 − x1e1 − x2e2 − x3e3 − x4e4 − x5e5 − x6e6 − x7e7.

Conjugation is an involution of O and satisfies (xy)∗ = y∗x∗. The norm of the
octonion x is defined as

||x|| =
√
x∗x.

The square root is well-defined here as x∗x = xx∗ is always a nonnegative real
number:

||x||2 = x∗x = x2
0 + x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 + x2

7.

The norm on O satisfies
||xy|| = ||x|| ||y||.

This norm agrees with the standard Euclidean norm on R8. The existence of a norm
on O implies the existence of inverses for every nonzero element of O. The inverse
of x 6= 0 is given by

x−1 =
x∗

||x||2
.

It satisfies xx−1 = x−1x = 1.
Octonionic multiplication is neither commutative nor associative. The octonions

do satisfy a weaker form of associativity: they are alternative. This means that the
subalgebra generated by any two elements is associative. Not being associative, the
nonzero elements of O do not form a group. They do, however, form an IP-loop,
indeed a Moufang loop.

Example 2.1. Let us consider the couple (On, ·) where the operation · is defined
by

(o11, o
1
2, . . . , o

1
n) · (o21, o22, . . . , o2n) = (o11o

2
1, o

1
2o

2
2, . . . , o

1
no

2
n).

It is easy to see that the couple (On, ·) is also an IP-loop.

There are properties required for the Haar measure, which a measure has not,
in generally. These are properties associated with the measure of open and compact
sets. Then the Haar measure is built in such algebraic structures, on which some
topology is given. Let us introduce therefore the notions of a topological groupoid,
a topological quasigroup and a topological IP-loop.



On the existence of a Haar measure. . . 743

Let (G, ·) be a groupoid. It is natural to require that if an element x is “located
near” the element a (we write x ≈ a) and while y ≈ b, then xy ≈ ab. This is
a motivation for the definition of a topological groupoid.

A topological groupoid is a set G with a Hausdorff topology and a continuous
operation · : G × G → G (i. e., if a, b ∈ G, then for every neighborhood Oab there
exist neighborhoods Oa, Ob such that OaOb ⊂ Oab).

Remark 2.2. Let (G, ·) be any topological groupoid. It is evident that the mapping
La : G → G defined, for each a ∈ G, by the equality La (x) = ax, x ∈ G, is
continuous. The mapping La is called a left translation. A right translation is
defined analogously.

But we will deal in the following with quasigroups. Our requirement is as follows:
if a ≈ á and b ≈ b

′
then the solutions of the equations ax = b and áx́ = b

′
are “close

together”, i. e. x ≈ x́. A topological quasigroup is a quasigroup (G, ·) which is
a topological groupoid and the following property holds: if at → a and bt → b and
while atxt = bt and ax = b, then xt → x, where {at; t ∈ T}, {bt; t ∈ T}, {xt; t ∈ T}
are nets in G.

Remark 2.3. Translations La are in topological quasigroups continuous. It is easy
to see that they are also bijective.

Let two topological spaces X,Y be given. A mapping f : X → Y is called
continuous if the inverse image of every open set in the space Y is open in the space
X. A homeomorphism is a bijective, continuous transformation of X onto Y whose
inverse is also continuous. If f : X → Y is a homeomorphism, then the image of
every open set in the space X is open in the space Y .

Proposition 2.4. Let (G, ·) be a topological quasigroup. Then the left and right
translations of G are homeomorphisms.

P r o o f . Let a ∈ G. Define the mapping Ka : G → G as follows: if z ∈ G, then
Ka(z) is a solution of the equation ax = z. Thus it holds aKa(z) = z. From the
definition of a topological quasigroup it follows that the mapping Ka is continuous.
Since aKa(ax) = ax, we get x = Ka(ax) = Ka(La(x)) = (Ka ◦La)(x) and therefore
Ka = L−1

a . The mappings La, L
−1
a are continuous and La is bijective, so that La

is a homeomorphism. The proof for the right translation is analogous. �

Corollary 2.5. Let (G, ·) be a topological quasigroup. If U is an open subset of G,
then, for every a ∈ G, the sets aU and Ua are open, too.

Proposition 2.6. Let (G, ·) be a topological loop such that for every x ∈ G there
exists the inverse element x−1 ∈ G. Then the mapping I : G → G, defined by
I(x) = x−1 for every x ∈ G, is a homeomorphism.

P r o o f . Let e be the identity element of (G, ·) and xt → x. Since xtx
−1
t = e and

xx−1 = e, from the definition of a topological quasigroup it follows that x−1
t → x−1.

This means that the mapping I is continuous. Since I is bijective and I = I−1, the
mapping I is a homeomorphism. �
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Definition 2.7. A topological IP-loop is an IP-loop (G, ·) with a Hausdorff topology
such that the following two conditions are satisfied: the binary operation · is conti-
nuous function with respect to the topology and the inverse function
G→ G : x 7→ x−1 is continuous function with respect to the topology.

Remark 2.8. Let (G, ·) be a topological IP-loop. It is easy to see that the two
conditions given in the definition above are equivalent to the condition that the
transformation (from G×G onto G) (x, y) 7→ x−1y is continuous. As a corollary of
the preceding proposition we obtain the following result: the mapping I : G → G,
defined by I(x) = x−1 for every x ∈ G, is a homeomorphism also in the case that
(G, ·) is a topological IP-loop. Therefore, if U is an open set in a topological IP-loop,
then the set U−1 is open, too. A topological IP-loop is said to be connected, totally
disconnected, compact, locally compact, etc., if the corresponding property holds
for its underlying topological space. The above described topological structures are
studied, e. g., in [7, 8, 13, 14].

Definition 2.9. (Halmos [6]) The σ-algebra generated by compact sets in a topo-
logical space X is called a Borel σ-algebra on X. A set from the Borel σ-algebra is
called Borel.

It is known that in a topological space X homeomorphisms preserve Borel sets.
Let (G, ·) be a topological quasigroup. If B is a Borel set of the topological space G
and a ∈ G, then the sets aB and Ba are Borel, too.

3. HAAR MEASURE

Let (G, ·) be a locally compact topological quasigroup. A non-negative measure m
defined on the Borel σ-algebra on G is called Borel, if m(K) <∞ for every compact
set K ⊂ G.

Definition 3.1. (Halmos [6]) A Haar measure is a Borel measure m such that
m(U) > 0 for every non-empty Borel open set U and m(aB) = m(B) for every
Borel set B and every a ∈ G.

Remark 3.2. (Halmos [6]) The Haar measure from the preceding definition is
called more precisely a left Haar measure. Analogously is defined a right Haar
measure. It is easy to verify that if m is a left Haar measure in a topological IP-
loop, and if the set function µ is defined, for every Borel set E, by µ (E) = m

(
E−1

)
,

then µ is a right Haar measure, and conversely. The second defining property of
a Haar measure is called left invariance (or invariance under left translation). We
observe that the first property is equivalent to the assertion that m is not identically
zero. Indeed, if m(U) = 0 for some non-empty Borel open set U and if C is compact,
then the class {xU ; x ∈ C } is an open covering of C. Since C is compact, there
exists a finite subset {x1, . . . , xn} of C such that C ⊂

⋃n
i=1 xiU . The monotonicity,

the subaditivity and the left invariance of m imply that

m(C) ≤ m

(
n⋃

i=1

xiU

)
≤

n∑
i=1

m(xiU) =
n∑

i=1

m(U) = nm(U) = 0.
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Since the vanishing of m on the class of all compact sets implies its vanishing on the
class of all Borel sets, we obtain the desired result: a Haar measure is a left-invariant
Borel measure which is not identically zero.

It is known that in every locally compact topological group there exists at least
one left Haar measure. In the case of quasigroups this is not so, as is illustrated by
the following example.

Example 3.3. Let R be the set of all real numbers with the simple topology, ◦ be
a binary operation on R defined by the prescription a ◦ b = a+b

2 , a, b ∈ R. The
couple (R, ◦) is a locally compact topological quasigroup. Let m be a left-invariant
Borel measure in (R, ◦). Let us consider the compact set 〈0, h〉, where h ∈ R+.
Since m is left-invariant, for any c ∈ R it holds

m (〈0, h〉) = m (c ◦ 〈0, h〉) = m
(〈

c
2 ,

h
2 + c

2

〉)
= m

(
c ◦
〈

c
2 ,

h
2 + c

2

〉)
= m

(〈
c
2 + c

22 ,
h
22 + c

2 + c
22

〉)
= . . .

= m
(〈
c
(

1
2 + 1

22 + . . .+ 1
2n

)
, h

2n + c
(

1
2 + 1

22 + . . .+ 1
2n

)〉)
= . . . = m ({c}) .

The arbitrariness of c implies that the measure of every one-point set is constant.
At the same time it is less than ∞, because the set 〈0, h〉 is compact and m is a
Borel measure. Moreover, from the additivity and the monotonicity of measure m
we obtain

m({c}) +m({c}) = m({0}) +m({c}) = m({0, c}) ≤ m (〈0, c〉) = m({c}).

Hence m({c}) = 0. Then also m(〈0, c〉) = m({c}) = 0. From the monotonicity
of measure m it follows that m ((0, c)) ≤ m (〈0, c〉) = 0. Since m is non-negative,
m((0, c)) = 0. Thus the measure of an open set is zero. But this means that in
(R, ◦) there exists no Haar measure.

4. THE CONSTRUCTION OF A HAAR MEASURE IN A TOPOLOGICAL
IP-LOOP

Let (G, ·) be a topological IP-loop. Our aim is to prove the existence of at least
one left Haar measure in (G, ·) . In the following, we show that, based on results
of Halmos ([6]), it is sufficient to this to construct a left-invariant content in (G, ·)
which is not identically zero.

Definition 4.1. (Halmos [6]) Let X be a topological space. A content is a non-
negative, finite, monotone, subadditive and additive set function defined on the class
of all compact subsets of X.

Definition 4.2. (Halmos [6]) The inner content induced by a content λ is the set
function λ∗ defined for every Borel open set U by

λ∗(U) = sup{λ(C); U ⊃ C, C is compact}.
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In the following, we assume that X is a locally compact topological space. By
means of the set function λ∗ an outer measure is defined on the system of all
σ-bounded subsets of X.

Definition 4.3. (Halmos [6]) Let λ be a content in a locally compact topological
spaceX and let λ∗ be the inner content induced by λ. Define a set functionm∗ on the
σ-ring of all σ-bounded sets of X by

m∗(E) = inf{λ∗(U); E ⊂ U, U is openBorel}.

The set function m∗ is an outer measure, it is called an outer measure induced by
λ. The following lemma gives an answer to the question of the relationship between
the set functions m∗, λ∗ and λ.

Lemma 4.4. (Halmos [6]) Let λ be a content in a locally compact topological space
X. Let λ∗ be the inner content and let m∗ be the outer measure induced by λ. Then
m∗(U) = λ∗(U) for every open Borel set U and m∗(C◦) ≤ λ(C) ≤ m∗(C) for every
compact set C, where C◦ denotes the interior of the set C.

Lemma 4.5. (Halmos [6]) Let λ be a content in a locally compact topological space
X. If m∗ is an outer measure induced by λ, then the set function m, defined for
every Borel set E by m(E) = m∗(E), is a regular Borel measure.

The Borel measure m from the preceding lemma is called a Borel measure induced
by λ.

Lemma 4.6. (Halmos [6]) Suppose that T is a homeomorphism of a locally com-
pact topological space X onto itself and that λ is a content in X. Put λ̂(C) =
λ(T (C)) for every compact set C. If m and m̂ are the Borel measures induced by λ
and λ̂ respectively, then m̂(E) = m(T (E)) for every Borel set E. If, in particular,
the content λ is invariant under T , then the measure m is invariant under T , too.

A left translation La on topological quasigroups is a homeomorphism. When a
content λ is left-invariant (i. e. invariant under T = La), then the Borel measure
induced by λ is also left-invariant. Therefore, based on Lemma 4.5 and Lemma
4.6, to the construction of a left Haar measure in a locally compact topological
IP-loop (G, ·) it is sufficient to construct a left-invariant content in (G, ·) which is
not identically zero. Lemma 4.4 implies that the induced measure is not identically
zero and hence (in accordance with Remark 3.2) is a regular Haar measure.

Let (G, ·) be a locally compact topological IP-loop. Denote by Ue the system of
all open neighborhoods of the identity element e ∈ G. Let U ∈ Ue. If C ⊂ G, then
C ⊂

⋃
x∈C xU . Since the set xU is for every x ∈ G open, the system {xU ;x ∈ C} is

an open covering of the set C. If C is compact, then it holds the property

(∗) there exists a finite set {x1, x2, . . . , xm} ⊂ C such that C ⊂
m⋃

i=1

xiU .
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Definition 4.7. Let A be a fixed compact set with a non-empty interior. For each
set U ∈ Ue we construct a set function λU defined on the class of all compact sets
in the following way: if C is a compact set, then

λU (C) =
C : U
A : U

,

where C : U is defined as the least non-negative integer with the property (∗).

It is easy to prove the following lemma.

Lemma 4.8. The set function λU is non-negative, finite, subadditive, monotone
and not identically zero.

Lemma 4.9. Let C,D be any compact subsets of G and U ∈ Ue. If CU−1 ∩
∩DU−1 = ∅, then λU (C ∪D) = λU (C) + λU (D).

P r o o f . Let U be an open set such that CU−1 ∩DU−1 = ∅. Let x ∈ G. Suppose
that xU ∩ C 6= ∅, i. e. there exists c ∈ C such that c = xy, where y ∈ U . Multiply
this equality by the element y−1. We obtain (xy) y−1 = cy−1, whence it follows that
x = cy−1. Thus x ∈ Cy−1, what means that x ∈ CU−1.

Let xU ∩D 6= ∅. Hence there exists d ∈ D such that d = xy, where y ∈ U . Then
(xy) y−1 = dy−1. We get that x = dy−1, i. e. x ∈ DU−1. But this is a contradiction
with the assumption CU−1 ∩DU−1 = ∅. Hence, for any x ∈ G, it holds xU ∩C = ∅
or xU ∩D = ∅.

Let further m1 = C : U and m2 = D : U , i. e. m1,m2 be the least integers such
that C ⊂

⋃m1
i=1 xiU and D ⊂

⋃m2
i=1 yiU , where xi ∈ C for i = 1, 2, . . . ,m1 and yi ∈ D

for i = 1, 2, . . . ,m2. Then C ∪D ⊂ (
⋃m1

i=1 xiU)∪ (
⋃m2

i=1 yiU). Since xiU ∩D = ∅ for
i = 1, 2, . . . ,m1 and yiU ∩C = ∅ for i = 1, 2, . . . ,m2, we have

⋃m1
i=1 xiU ∩D = ∅ and⋃m2

i=1 yiU ∩ C = ∅. Therefore

(C ∪D) : U = m1 +m2 = (C : U) + (D : U)

and consequently
λU (C ∪D) = λU (C) + λU (D).

�

Remark 4.10. Note that while the associativity plays its role in the standard Hal-
mos’s proof of the above property of the set function λU , it is replaced in our proof
by the property (iii) of an IP-loop.

We will prove in the following that in every locally compact topological IP-loop,
whose topology is induced by a left-invariant uniformity, there exists at least one left
Haar measure. First, we will recall the definition of a uniform topology and remind
the facts which will be further used.

A uniformity of a set X is a non-empty system W of subsets of the Cartesian
product X ×X which satisfies the following conditions:
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(i) Every element of W contains the diagonal ∆ = {(x, x); x ∈ X}.

(ii) If U ∈W , then {(y, x); (x, y) ∈ U} ∈W .

(iii) If U ∈ W , then there exists V ∈ W such that, whenever (x, y) and (y, z) are
in V , then (x, z) is in U .

(iv) If U, V ∈W , then U ∩ V ∈W .

(v) If U ∈W and U ⊂ V ⊂ X ×X then V ∈W .

The elements of the uniformity are called entourages and the above described
couple (X,W ) is called a uniform space. Let x ∈ X. Put U [x] = {y ∈ X; (x, y) ∈
U} for any U ∈W . Every uniform space X becomes a topological space by defining
a subset U of X to be open if and only if for every x ∈ U there exists an entourage
V such that V [x] is a subset of U . The topology defined by a uniform structure is
said to be induced by the uniformity.

A base of a uniformity W is any system B of entourages of W such that every
entourage of W contains a set belonging to B. Thus, by property (v) above, a base
B is enough to specify the uniformity W unambiguously: W is the set of subsets
of X × X that contain a set of B. Every uniform space has a base of entourages
consisting of symmetric entourages. A uniformity of a groupoid (X, ·) is called
left-invariant, if it has a left-invariant base B, i. e. (a, a)B = B for every a ∈ X,
where (a, a)(x, y) = (ax, ay). A right-invariant uniformity is defined analogously.

A uniform topology is a generalization of a metric topology because if (X, ρ) is a
metric space, then the system B = {Uε; ε > 0}, where Uε = {(x, y); ρ(x, y) < ε},
is a base of some uniformity of X. This uniformity is called a uniformity induced
by the metric ρ. If a metric ρ of a quasigroup (X, ·) is left-invariant (i. e., for every
a, x, y ∈ X, ρ(ax, ay) = ρ(x, y)), then the uniformity induced by the metric ρ is
left-invariant, too. Indeed, for every a ∈ X and every Uε ∈ B, we have

Uε = {(x, y); ρ(x, y) < ε} = {(at, av); ρ(at, av) < ε} = {(at, av); ρ(t, v) < ε}
= (a, a){(t, v); ρ(t, v) < ε} = (a, a)Uε.

Analogously, if a metric ρ of a quasigroup (X, ·) is right-invariant, then the uniformity
induced by the metric ρ is also right-invariant.

Proposition 4.11. Let O be the set of all octonions with a unit norm. Then in the
IP-loop (O, ·) there exists a left-invariant metric.

P r o o f . Let x, y, a be octonions with a unit norm,

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7,

y = y0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7,

a = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7.
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Put ρ(x, y) =
√∑7

k=0 (xk − yk)2. Then ρ is a metric. Since

ρ(ax, ay) =

√√√√ 7∑
i=0

(a2
i

7∑
k=0

(xk − yk)2) =

√√√√ 7∑
i=0

a2
i ·

7∑
k=0

(xk − yk)2

=

√√√√ 7∑
i=0

a2
i ·

√√√√ 7∑
k=0

(xk − yk)2 =

√√√√ 7∑
k=0

(xk − yk)2 = ρ(x, y),

it is left-invariant. �

Proposition 4.12. Let O be the set of all octonions with a unit norm. Then in the
IP-loop (On, ·) there exists a left-invariant metric.

P r o o f . Let O be the set of all octonions with a unit norm and x, y, a ∈ On,
x = (x1, . . . , xn), y = (y1, . . . , yn), a = (a1, . . . , an).

Put ρ̄(x, y) =
√∑n

i=1 ρ(xi, yi) =
√∑n

i=1

∑7
k=0 (xik

− yik
)2. ρ is the metric from

the preceding proposition. It is easy to verify that ρ̄ is a metric. Since ρ is left-
invariant, we obtain

ρ̄(ax, ay) =

√√√√ n∑
i=1

ρ(aixi, aiyi) =

√√√√ n∑
i=1

ρ(xi, yi) = ρ̄(x, y).

The proof is complete. �

Remark 4.13. The structures from the preceding propositions are examples of
topological IP-loops with a left-invariant uniformity, and they are not groups.

Proposition 4.14. Let (G, ·) be a topological IP-loop. Its topology is induced by a
left-invariant uniformityW ofG if and only if there exists a base Be of neighborhoods
of the identity element e of G such that for any neighborhood U ∈ Be and any
elements x, y ∈ G it holds x (yU) = (xy)U .

P r o o f . Let the topology of (G, ·) be induced by a left-invariant uniformity W of G.
Let B be a left-invariant base of the uniformity W . Then the system V [e], V ∈ B,
is a base of neighborhoods of the identity element e of G. We have to prove that for
every x, y ∈ G and every neighborhood V [e], V ∈ B, it holds x(yV [e]) = (xy)V [e].
First, we will prove some auxiliary equalities.

xV [e] = {xz; z ∈ V [e]} = {xz; (e, z) ∈ V } = {xz; (x, xz) = (x, x)(e, z) ∈ V },

because B is a left-invariant base, and thus (x, x)V = V . So that

xV [e] = {xz; (x, xz) ∈ V } = {t; (x, t) ∈ V } = V [x],
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xV [y] = {xz; z ∈ V [y]} = {xz; (y, z) ∈ V } = {xz; (xy, xz) = (x, x)(y, z) ∈ V }
= {t; (xy, t) ∈ V } = V [xy].

Our results above imply the desired equality:

x(yV [e]) = xV [y] = V [xy] = (xy)V [e].

Let us prove the reverse implication. Put WU = {(x, y); x−1y ∈ U}. Then the
system {WU ;U ∈ Be} is a base of some uniformity of the set G. We will prove that
this base is left-invariant, i. e. that, for every a ∈ G, it holds (a, a)WU = WU . Let
(x, y) ∈ WU , i. e. x−1y ∈ U , what means that x−1y = z, where z ∈ U . Multiply
this equality from the left by the element x. We obtain x

(
x−1y

)
= xz. Since G is

an IP-loop, it holds x
(
x−1y

)
= y. Hence y = xz, where z ∈ U . Then, for every

a ∈ G, it holds ay = a (xz), where z ∈ U . This means that ay ∈ a (xU). Since by
the assumption a (xU) = (ax)U , we obtain that ay = (ax) z, where z ∈ U . When
multiplied this equality from the left by the element (ax)−1, we get (ax)−1(ay) =
= (ax)−1((ax)z) = z, where z ∈ U , what means that (ax, ay) ∈ WU . Indeed, for
every a ∈ G,

(a, a)WU = WU .

�

In the following, we prove that the set function λU is left-invariant. Unlike Hal-
mos’s proof where the associativity plays its role, we use an assumption of the
existence of a left uniformity and the property (iii) of any IP-loop in our proof.

Lemma 4.15. Let the topology of a topological IP-loop (G, ·) be induced by a
left-invariant uniformity. Then the function λU is left-invariant.

P r o o f . Let C ⊂ G be a compact set and n = C : U . Thus it holds C ⊂
⋃n

i=1 xiU ,
where xi ∈ C for i = 1, 2, . . . , n. This means that for any y ∈ C there exists
i ∈ {1, 2, . . . , n} such that y ∈ xiU , i. e. y = xiz, where z ∈ U . Multiply this
equality from the left by any element x ∈ G. We obtain xy = x (xiz), where z ∈ U ,
i. e. xy ∈ x (xiU). By the preceding proposition x(xiU) = (xxi)U . Therefore, for
every y ∈ C, xy ∈

⋃n
i=1 (xxi)U , where xxi ∈ xC for i = 1, 2, . . . , n. This means that

xC ⊂
⋃n

i=1 (xxi)U . From this it follows that xC : U ≤ n, i. e. xC : U ≤ C : U . We
have thereby proved that λU (xC) ≤ λU (C) for every x ∈ G and every compact set
C ⊂ G.

We will prove the reverse inequality. Let C ⊂ G be a compact set and
m = xC : U . So that xC ⊂

⋃m
j=1 yjU . From this it follows that

x−1(xC) ⊂
m⋃

j=1

x−1(yjU) =
m⋃

j=1

x−1((xxj)U) =
m⋃

j=1

x−1(x(xjU)) =
m⋃

j=1

xjU,

where xj ∈ C for j = 1, 2, . . . ,m.
Since (G, ·) is an IP-loop, for any z ∈ G it holds x−1(xz) = z, so that x−1(xC) =

= C. We have proved that C ⊂
⋃m

j=1 xjU , where xj ∈ C for j = 1, 2, . . . ,m. From
this we obtain the inequality C : U ≤ m, i. e. C : U ≤ xC : U .
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Consequently λU (C) ≤ λU (xC) for every x ∈ G and every compact set C ⊂ G. �

The set function λU differs from a content only in that it may not be additive,
in generally. By means of the function λU we will define a function λ that has all
properties of a content, thus also the additivity. Our construction of a content λ is
analogous to the Halmos construction provided in [6], 58.B.

Lemma 4.16. Let (G, ·) be a topological IP-loop with the topology induced by a
left-invariant uniformity. Then on the system of all compact subsets of G there
exists a left-invariant content λ that is not identically zero.

P r o o f . If E is any bounded set and F is any set with a non-empty interior, then
the “ratio” E : F is defined as the least non-negative integer n with the following
property: there exists a set {x1, x2, . . . , xn} ⊂ G such that E ⊂

⋃n
i=1 xiF . It is

easy to verify that E : F is always finite, and that, if A is a bounded set with
a non-empty interior, then E : F ≤ (E : A)(A : F ). Let A ⊂ G be a fixed
compact set with a non-empty interior. Assign to each compact set C ⊂ G the closed
interval 〈0, C : A〉. Denote by Φ the Cartesian product (in the topological sense)
of all these intervals. By Tychonoff’s theorem the space Φ is a compact Hausdorff
topological space. Its elements are real functions ϕ defined on the class of all compact
subsets of the set G. For each compact set C ⊂ G it holds ϕ(C) ∈ 〈0, C : A〉, i. e.
0 ≤ ϕ(C) ≤ C : A. Since for every U ∈ Ue, C : U ≤ (C : A)(A : U), it follows
that 0 ≤ λU (C) ≤ C : A, and therefore the set function λU is a point in the
space Φ for every fixed neighborhood U ∈ Ue. Define for every U ∈ Ue the set
Λ(U) = {λV ; U ⊃ V ∈ Ue}.

If {U1, . . . , Un} is any system of neighborhoods of the identity element e, i. e.
any subsystem of Ue, then

⋂n
i=1 Ui is also a neighborhood of the identity element

e and, moreover,
⋂n

i=1 Ui ⊂ Uj for j = 1, 2, . . . , n. Hence λTn
i=1 Ui

∈ Λ(Uj) =
= {λV ; Uj ⊃ V ∈Ue} for j = 1, 2, . . . , n. From this it follows that
λTn

i=1 Ui
∈
⋂n

j=1 Λ(Uj) =
⋂n

i=1 Λ(Ui), i. e.
⋂n

i=1 Λ(Ui) is non-empty. This means
that the system {Λ(U); U ∈ Ue} has the finite intersection property. Because the
space Φ is compact, there exists a point λ in the intersection of the closures of all
Λ(U) : λ ∈ ∩

{
Λ(U);U ∈ Ue

}
.

We shall prove that the set function λ is the desired content. It is clear that
0 ≤ λ(C) ≤ C : A < ∞ for every compact set C ⊂ G. Thus λ is a non-negative
finite set function. We show that it is monotone. The projection ξC defined for
each fixed compact set C by ξC(ψ) = ψ(C), ψ ∈ Φ, is a continuous function on
Φ. Hence, for any two compact sets C,D ⊂ G, the set ∆ = {ψ; ψ(C) ≤ ψ(D)}
is closed. If C ⊂ D and U ∈ Ue, then according to Lemma 4.8 λU ∈ ∆, and
therefore Λ(U) ⊂ ∆. Because ∆ is closed, it holds Λ(U) ⊂ ∆. Hence λ ∈ ∆,
and thus λ is monotone. Analogously we shall prove that it is subadditive. The
set ∆′ = {ψ; ψ(C ∪D) ≤ ψ(C) + ψ(D)} ⊂ Φ is closed for any two compact sets
C,D ⊂ G. By Lemma 4.8 λU ∈ ∆′ for all U ∈ Ue, and therefore Λ(U) ⊂ ∆′.
Since ∆′ is closed, it holds Λ(U) ⊂ ∆′. Hence we get that λ ∈ ∆′, i. e. λ
is a subadditive set function. According to preceding lemma the function λU is
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left-invariant, whence it follows by continuity that the function λ is left-invariant,
too. It remains to prove that λ is additive. Let C, D ⊂ G be any disjoint com-
pact sets. Then there exists a neighborhood U of the identity element e such that
CU−1 ∩DU−1 = ∅. If V ∈ Ue and V ⊂ U then CV −1 ∩DV −1 = ∅ and hence by
Lemma 4.9 λV (C∪D) = λV (C)+λV (D). But this means that, whenever V ⊂ U , the
function λV belongs to the closed set ∆′′ = {ψ; ψ(C ∪D) = ψ(C) + ψ(D)} ⊂ Φ.
Hence Λ(U) ⊂ ∆′′. Because ∆′′ is closed, we have Λ(U) ⊂ ∆′′. From this it fo-
llows that λ ∈ ∆′′, and therefore λ is additive. We have thereby constructed a
left-invariant content λ.

Finally, we show that this constructed content λ is not identically zero. Put
∆′′′ = {ψ; ψ(A) = 1} ⊂ Φ. Since λU (A) = 1 for every U ∈ Ue, λU ∈ ∆′′′ for every
U ∈ Ue, and therefore Λ(U) ⊂ ∆′′′. The set ∆′′′ is closed, and hence Λ(U) ⊂ ∆′′′.
But this means that λ ∈ ∆′′′, i. e. λ(A) = 1 and hence λ is not identically zero. The
proof is complete. �

In view of the preceding results we obtain immediately the final theorem of this
paper.

Theorem 4.17. In every locally compact topological IP-loop whose topology is
induced by a left-invariant uniformity there exists at least one regular left Haar
measure.

Corollary 4.18. In every locally compact topological IP-loop whose topology is
induced by a left-invariant metric there exists at least one regular left Haar measure.

Remark 4.19. From Proposition 4.11 it follows that in the topological IP-loop of
all octonions with a unit norm there exists at least one regular left Haar measure.
Analogously, from Proposition 4.12 it follows that in the topological IP-loop (On, ·)
where O is the set of all octonions with a unit norm, there exists at least one regular
left Haar measure. Since every associative IP-loop is a group, the associativity
of the operation · ensures the existence of a regular left Haar measure in every
locally compact topological IP-loop (G, ·). The previous conditions imposed on
quasigroups are sufficient to the existence of a left Haar measure. They are not,
however, necessary. This follows from the fact that in every finite or countable
quasigroup with discrete topology (i. e. all singletons are open) there exists a Haar
measure. It is defined as the number of elements of the set.

If (G, ·) is any topological IP-loop, one can consider the topological IP-loop
(
Ĝ, ◦

)
dual to G. The topological IP-loop Ĝ has, by definition, the same elements and the
same topology as G, the product ◦ in Ĝ is defined by x ◦ y = y ·x for every x, y ∈ Ĝ.
Since, for every x, y ∈ Ĝ, x−1 ◦ (x ◦ y) = x−1 ◦ (y · x) = (y · x) · x−1 = y and
(x ◦ y) ◦ y−1 = (y · x) ◦ y−1 = y−1 · (y · x) = x, we see that

(
Ĝ, ◦

)
is in fact an

IP-loop.

Let (G, ·) be any locally compact topological IP-loop with a topology induced by
a right-invariant uniformity W . Consider the topological IP-loop

(
Ĝ, ◦

)
dual to G.
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If B is a right-invariant base of the uniformity W of (G, ·) then B is a left-invariant
base of a uniformity W of the groupoid

(
Ĝ, ◦

)
. Indeed, if U is any element of B,

then for every a ∈ Ĝ and every (x, y) ∈ U we have

(a, a) ◦ (x, y) = (a ◦ x, a ◦ y) = (x · a, y · a) = (x, y) · (a, a) = (x, y) .

Thus the locally compact topological IP-loop
(
Ĝ, ◦

)
has a topology induced by a

left-invariant uniformity. Therefore in
(
Ĝ, ◦

)
there exists a regular left Haar measure

m. Since, for every x ∈ G and every Borel set E, it holds

m (E · x) = m (x ◦ E) = m (E) ,

m is a right Haar measure in (G, ·).

5. CONCLUSION

In this paper we have proved that in every locally compact topological IP-loop,
whose topology is induced by a left-invariant uniformity, there exists at least one
left Haar measure. We have showed that the existence of a right Haar measure in
every locally compact topological IP-loop, whose topology is induced by a right-
invariant uniformity, follows from the existence of a regular left Haar measure by
consideration of the topological IP-loop Ĝ dual to G. Haar measure is obviously
not unique, since, for any Haar measure m and any positive number c, the product
cm is also a Haar measure. In [11], we have proved that the left Haar measure in
a locally compact topological IP-loop is unique up to multiplication by a positive
constant. Note that the existence of an invariant uniformity is not necessary in the
proof of the uniqueness of Haar measure.

(Received January 12, 2011)
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[8] S. N. Hudson: Topological loops with invariant uniformities. Trans. Amer. Math.
Soc. 109 (1963), 1, 181–190.

[9] O. Chein, H.O. Pflugfelder, and J. D. H. Smith: Quasigroups and Loops. Theory and
Application. Heldermann Verlag, 1990.

[10] M. K. Kinyon, K. Kunen, and J. D. Phillips: Every diassociative A-loop is Moufang.
Proc. Amer. Math. Soc. 130 (2002), 619–624.
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Anna Tirpáková, Department of Mathematics, Faculty of Natural Science, Constantine the

Philosopher University in Nitra, SK-949 74 Nitra. Slovak Republic.

e-mail: atirpakova@ukf.sk


		webmaster@dml.cz
	2013-09-22T21:45:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




