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More on κ-Ohio completeness

D. Basile

Abstract. We study closed subspaces of κ-Ohio complete spaces and, for κ un-
countable cardinal, we prove a characterization for them. We then investigate
the behaviour of products of κ-Ohio complete spaces. We prove that, if the
cardinal κ+ is endowed with either the order or the discrete topology, the space

(κ+)κ
+

is not κ-Ohio complete. As a consequence, we show that, if κ is less

than the first weakly inaccessible cardinal, then neither the space ωκ+
, nor the

space Rκ+
is κ-Ohio complete.
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1. Introduction

All spaces under discussion are Tychonoff . For all undefined notions we refer
to [6].

The property of κ-Ohio completeness was introduced in [5] and it is a natural
generalization of Ohio completeness, which was introduced by Arhangel’skii in [1]
to study remainders in compactifications of topological spaces.

Recall that a topological space X is κ-Ohio complete if for every compactifica-
tion γX of X there exists a Gκ-subset S of γX such that X ⊆ S and for every
y ∈ S \X , there is a Gκ-subset of γX that contains y and misses X .

In [5] particular attention was given to sum theorems for κ-Ohio complete
spaces. The aim of this paper is focusing on the behaviour that closed subspaces
of κ-Ohio complete spaces and products of κ-Ohio complete spaces have. Indeed
it is still an open question whether the κ-Ohio completeness property is closed-
hereditary or finitely multiplicative.

The paper is divided in two parts. In the first we investigate the behaviour
of closed subspaces. Our main result is a characterization of closed subspaces
of κ-Ohio complete spaces, for κ uncountable cardinal. In the second part we
study products of κ-Ohio complete spaces. We prove that, if the cardinal κ+ is

endowed with either the order or the discrete topology, the space (κ+)κ
+

is not
κ-Ohio complete. From this results it follows that, for a large class of cardinals κ,

neither the space ωκ+

nor the space Rκ+

is κ-Ohio complete. For more information
see [2].
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2. Preliminaries

Following the notation of [4] and [5] we say that a compactification γX of a
space X is κ-good for X if there exists a Gκ-subset S of γX such that X ⊆ S and
for every y ∈ S \X , there is a Gκ-subset of γX that contains y and misses X . We
denote with the symbol κO(X) the collection of all κ-good compactifications ofX .
Similarly, we say that a Gκ-subset of a compactification γX of X is a Gκ-good
subset for X if it contains X , and if every point of S \X can be separated from
X by a Gκ-subset of γX . If κ = ω we omit the symbol ω.

Observe that any space is κ-Ohio complete, for some large enough κ. Recall
that the Čech-number of a space X , denoted by Č(X), is the smallest cardinality
of a collection U of open subsets of γX such that X =

⋂
U, where γX is any

compactification of X . Therefore, if X is any space, it follows that X is Č(X)-
Ohio complete. On the other hand, for every infinite cardinal κ, there exist spaces
which are not κ-Ohio complete, as it is shown in the next example (see also [4,
Example 5.2]).

Example 2.1. Consider the cardinal κ+ endowed with the discrete topology and
its one point-compactification κ+ ∪ {∞}. The example is the subspace X of the
product Z = (κ+ ∪ {∞})× (κ+ ∪ {∞}) where X = (κ+ × κ+) ∪ {(∞,∞)}.

If G is a Gκ-subset of Z that contains the point (∞,∞), then G ∩ (Z \X) is
non-empty, so X is not a Gκ-subset of Z. Similarly, Z \X contains no non-empty
Gκ-subset of Z; this clearly implies that X is not κ-Ohio complete.

It is worth noting that, for a large class of cardinals κ, the space X we have
just constructed has a good compactification, even if it is not κ-Ohio complete.
Indeed, assume that κ is a non-measurable cardinal number. Then, the cardinal
κ+ is non-measurable as well, and in this case it is well-known that the discrete
space of cardinality κ+ is realcompact (see [6, Exercise 3.11.D(a)]). It follows
that, under this hypothesis, the space X is realcompact (see [6, Exercise 3.11.A]),
therefore its Čech-Stone compactification βX is good by [6, Theorem 3.11.10].

This means that, for a fixed cardinal κ, if the Čech-Stone compactification of
a space X is κ-good for X , the space X need not be κ-Ohio complete. On the
other hand, if a space X has a κ-good compactification γX , then the Čech-Stone
compactification βX of X is always κ-good for X , as it is shown in the next
proposition.

Proposition 2.2. LetX be a space and let γX ∈ κO(X). Then {δX : δX ∈ C(X)
and δX ≥ γX} ⊆ κO(X).

For the simple proof see [3, Proposition 4.3].

3. A characterization of closed subspaces of κ-Ohio complete spaces

In [3] we asked whether closed subspaces of Ohio complete spaces are again
Ohio complete. Unfortunately we do not know the answer, as we do not know
whether closed subspaces of κ-Ohio complete spaces are again κ-Ohio complete.
However, there are some positive results; we will prove them in this section.
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Proposition 2.2 asserts that if a space X has a κ-good compactification γX ,
then every compactification greater than or equal to γX (with respect to the
order ≤) is κ-good for X . However, if a space is a closed subspace of a κ-Ohio
complete space, then a sort of complementary property holds, as we are going to
show. The formulation of the result is new, but it has actually been proved in [3].
We include the proof for completeness sake.

Lemma 3.1. Let Y be a closed subspace of X . Fix a compactification αX of X

and let γY = Y
αX

. Then, for every compactification δY of Y such that δY ≤ γY ,

there exists some compactification ̺X of X such that δY = Y
̺X

and ̺X ≤ αX .

Proof: Fix a compactification δY of Y such that δY ≤ γY . Hence, there exists
a continuous map f : γY → δY such that f(y) = y, for every y ∈ Y . Consider
the adjunction space Z = αX ∪f δY . Clearly Z is a compact Hausdorff space,
since it is the image of the compact space αX ⊕ δY under a closed continuous
function, that is, the natural quotient mapping π. Observe that π is closed since
f is closed (see for instance [6, p. 94]).

First we shall prove that X , considered as a subspace of Z, has the original
topology, by showing that π↾X : X → π(X) is a homeomorphism. To verify that
π↾X is one-to-one, pick two different points x, y ∈ X . Observe that, since Y is
closed in X , we have (γY \Y )∩X = ∅. There are three different cases to consider.
If x, y ∈ X \Y we have x, y ∈ αX \γY and then, by construction, the equivalence
classes of x and y are {x} and {y} respectively. If x ∈ X \ Y and y ∈ Y , the
equivalence classes of x and y are {x} and {y} ∪ f−1(y), respectively. Finally, if
x, y ∈ Y , the equivalence classes of x and y are {x} ∪ f−1(x) and {y} ∪ f−1(y),
respectively. In all cases we have π(x) 6= π(y). This proves that π↾X is one-to-one.

We will now prove that π↾X is closed. As we observed before π is closed. Let
D be a closed subspace of X , then we may find a closed subset C of αX ⊕ δY ,
such that D = C ∩X . It follows that π(D) = π(C ∩X) = π(C) ∩ X is a closed
subset of X . This shows that π↾X is a homeomorphism.

In a similar way we can prove that δY as a subspace of Z has the original

topology. It follows that Y
Z
= δY .

Since the space Z is clearly a compactification of X such that Z ≤ αX , we are
done. �

Given a space X we say that a compactification γX of X is very κ-good if
{δX : δX ∈ C(X) and δX ≤ γX} ⊆ κO(X). In particular, if γX is a very κ-good
compactification for X , then every compactification δX of X such that δX ≤ γX ,
is very κ-good for X .

Theorem 3.2. Let Y be a closed subspace of a space X . Assume that X has a
very κ-good compactification αX . Then γY = Y (closure in αX) is a very κ-good
compactification for Y .

Proof: Fix a compactification δY of Y such that δY ≤ γY . By Lemma 3.1,

there exists a compactification ̺X of X such that δY = Y
̺X

and ̺X ≤ αX .
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Since αX is a very κ-good compactification for X , the compactification ̺X is
κ-good for X . Let S be a Gκ-subset of ̺X that is κ-good for X . Then the set
S ∩ δY is Gκ-good for Y . This completes the proof. �

An application of Theorem 3.2 is the following result, which shows that κ-Ohio
completeness is hereditary with respect to closed and C∗-embedded subspaces
(see also [3]).

Corollary 3.3. Let Y be a closed C∗-embedded subspace of a κ-Ohio complete
space X . Then Y is κ-Ohio complete.

Proof: Closures are taken in βX . It follows from Theorem 3.2 that Y is a very
κ-good compactification for Y . But Y = βY , by [6, Corollary 3.6.7]. This proves
that Y is κ-Ohio complete. �
Corollary 3.4. Let Y be a closed subspace of a κ-Ohio complete normal spaceX .
Then Y is κ-Ohio complete.

If A ⊆ X , a continuous function f : X → A is called a retraction of X onto A,
if f(x) = x for all x ∈ A. In this case A is called a retract of X .

Corollary 3.5. (1) Every clopen subspace of a κ-Ohio complete space is κ-
Ohio complete.

(2) Every retract of a κ-Ohio complete space is κ-Ohio complete.

Proof: This follows from the fact that clopen subspaces and retracts are closed
and C∗-embedded subspaces. �

Unfortunately this does not answer to the following:

Question 3.6. Is κ-Ohio completeness a closed-hereditary property?

Theorem 3.2 implies in particular that a closed subspace of a κ-Ohio complete
space has some very κ-good compactification. It is pretty natural to ask whether
the converse is true, that is, whether, given a space having a very κ-good com-
pactification, it can be embedded as a closed subspace in some κ-Ohio complete
space.

The following theorem shows that, if κ is an uncountable cardinal number, the
answer is yes.

Theorem 3.7. Let κ be an uncountable cardinal number. The following state-
ments are equivalent.

(1) Y is a closed subspace of a κ-Ohio complete space X .
(2) There exists a very κ-good compactification γY of Y .

Proof: (1) ⇒ (2) follows from Theorem 3.2.
(2) ⇒ (1). Fix a very κ-good compactification γY of Y . Consider the ordinal

space ω1+1 and let Z be the space (ω1+1)× γY , and let X be the subspace of Z
given by

(
ω1 × γY

)
∪ {ω1} × Y.
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Then Y is clearly a closed subspace of X , so to prove the theorem it suffices to
show that X is κ-Ohio complete.

First observe that βX = Z. Indeed, note that β(ω1×γY ) = (ω1+1)×γY = Z.
This can be found in [6, Problem 3.12.20(c)]. Since ω1 × γY ⊆ X ⊆ Z, it follows
that βX = Z by [6, Corollary 3.6.9].

To show that X is κ-Ohio complete, fix a compactification αX of X . Then
αX ≤ βX = Z. So we may fix a continuous function f : Z → αX such that
f ↾ X is the identity on X . We let g be the restriction of f to the set {ω1}× γY .
Note that since the remainder βX \X is contained in the domain of g, it follows
that the remainder αX \ X is contained in the range of g. So the range of g is
given by

W = (ω1 × Y ) ∪ (αX \X).

Clearly, the function g witnesses the fact that W ≤ γY . By assumption it follows
that W is a κ-good compactification for {ω1}×Y , so we may fix a Gκ-subset S of
αX such that every point in (W ∩S)\ ({ω1}×Y ) can be separated from {ω1}×Y
by a Gκ-subset of W .

Now let S′ = (ω1 × γY ) ∪ S. Since ω1 × γY is locally compact, it is an open
subset of αX and therefore S′ is aGκ-subset of αX . We claim that S′ is aGκ-good
subset for X .

So pick an arbitrary point p ∈ S′ \X . Then p ∈ S \ ({ω1}× Y ). By the choice
of S, there is a Gκ-subset T of W such that p ∈ T and T ∩ ({ω1} × Y ) = ∅.
Now note that ω1× γY is the union of ω1-many compact subspaces and therefore
αX \ (ω1 × γY ) = W is a Gω1-subset and hence a Gκ-subset of αX . But then
T is also a Gκ-subset of αX . Since T is disjoint from X , this set separates the
point p from X . This completes the proof. �

Question 3.8. Does the equivalence of Theorem 3.7 also hold for κ = ω?

4. Products of κ-Ohio complete spaces

As we said in the introduction we do not know whether κ-Ohio completeness is
finitely multiplicative. Actually, we do not know if even the product of a κ-Ohio
complete space with a compact space is again κ-Ohio complete. However, there
is some relation between these questions and Question 3.6, as the next theorem
shows (see also [3, Theorem 3.4]):

Theorem 4.1. Let κ be an infinite cardinal number. Consider the following
statements.

(1) Preimages of κ-Ohio complete spaces under perfect mappings are κ-Ohio
complete.

(2) The product of a κ-Ohio complete space and a compact space is always
κ-Ohio complete.

(3) Every closed subspace of a κ-Ohio complete space is κ-Ohio complete.

Then (1) ⇔ (2) ⇒ (3).
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Proof: To prove that (1) ⇒ (2), let X be a κ-Ohio complete space and K be a
compact space. Then πX : X ×K → X is a perfect mapping, so the hypothesis
implies that X ×K is κ-Ohio complete.

For (2) ⇒ (3), let Y be a closed subspace of a κ-Ohio complete space X .
Consider the product Z = X×βY and its subspace ∆(Y ). By [6, Theorem 3.6.1],
Y is C∗-embedded in βY . From this fact it easily follows that ∆(Y ) is a C∗-
embedded copy of Y in Z. Since ∆(Y ) is also closed in Z, by Corollary 3.3 it
follows that if Z is κ-Ohio complete then so is Y .

We finally prove that (2) ⇒ (1). Since (2) ⇒ (3), it follows from [6, Theo-
rem 3.7.26] that (1) holds. �

Therefore, if Question 4.2 below has a positive answer, then Question 3.6 has
a positive answer as well.

Question 4.2. Is the product of a κ-Ohio complete space with a compact space
again κ-Ohio complete?

On the other hand, it is straightforward to see that if a product space is κ-Ohio
complete, then each of its factors is κ-Ohio complete as well.

Proposition 4.3. Let X =
∏

α<τ Xα be a κ-Ohio complete space. Then, for
every α < τ , the space Xα is κ-Ohio complete.

Proof: Note that every Xα is a retract of X . Now it suffices to apply Corol-
lary 3.5(2). �

The following results show that the product of κ-many κ-Ohio complete spaces
has many κ-good compactifications.

Lemma 4.4. Let {Xα : α < κ} be a family of spaces. For every α < κ, let Sα

be a Gκ-subset of Xα. Then
∏

α<κ Sα is a Gκ-subset of X =
∏

α<κ Xα.

Proposition 4.5. Let {Xα : α < κ} be a family of spaces. For every α < κ, let
γαXα ∈ κO(Xα). Then

∏
α<κ γαXα ∈ κO(

∏
α<κXα).

Proof: Since γαXα ∈ κO(Xα), for every α < κ there exists a Gκ-subset Sα of
γαXα which is κ-good with respect to Xα. By Lemma 4.4, the set

∏
α<κ Sα is

a Gκ-subset of
∏

α<κ γαXα that clearly contains
∏

α<κ Xα. We will show that∏
α<κ Sα is κ-good with respect to

∏
α<κ Xα.

So, pick a point p = (pα)α<κ ∈ ∏
α<κ Sα \∏α<κ Xα. Then, for some β < κ,

we have pβ ∈ Sβ \Xβ. Therefore, there exists a Gκ-subset Tβ of γβXβ containing

pβ and missing Xβ. The set Z = π−1
β (Tβ) is a Gκ-subset of

∏
α<κ γαXα that

contains p and misses
∏

α<κ Xα. This proves the proposition. �
The proof of the preceding proposition is based on the fact that the intersection

of κ-many Gκ-subsets is again a Gκ-subset. Since this property may fail for larger
intersections, we might expect that Proposition 4.5 does not generalize to products
with κ+-many factors. The next proposition shows that in fact this is the case.
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Proposition 4.6. Let Y be the cardinal κ+ endowed with either the discrete or
the order topology, and consider its one-point compactification ωY = Y ∪ {∞}.
Then (ωY )κ

+

is not a κ-good compactification for Y κ+

.

Proof: Observe that the point ∞ is not a Gκ-subset of ωY . Hence, Y κ+

is

Gκ-dense in (ωY )κ
+

. But its remainder (ωY )κ
+ \ Y κ+

is Gκ-dense in (ωY )κ
+

as

well. So (ωY )κ
+

cannot be a κ-good compactification for Y κ+

. �

Corollary 4.7. If the cardinal κ+ is endowed with either the order or the discrete

topology, the space (κ+)κ
+

is not κ-Ohio complete.

An application of this result is that the limit of an inverse system of κ-Ohio
complete spaces need not be κ-Ohio complete.

Proposition 4.8. The limit of an inverse system of κ-Ohio complete spaces need
not be κ-Ohio complete.

Proof: If α < κ+, then it follows from [9, Proposition 1.10] that Č((κ+)α) ≤
|α| ≤ κ. So it is clear that (κ+)α is κ-Ohio complete. Now observe that (κ+)κ

+

can be seen as the inverse limit of the system {(κ+)α, πα
β , κ

+}, where πα
β : (κ+)α →

(κ+)β is the usual projection. �

Remark 4.9. Let us remark that the behaviour of the space (κ+)κ
+

can be dif-
ferent if we consider κ+ endowed with the discrete or with the order topology.
Indeed, if κ+ has the discrete topology, then, for a large class of cardinals (namely

all non-measurable cardinals κ, see [6, Exercise 3.11.D(a)]), the space (κ+)κ
+

is
realcompact and then it has a κ-good compactification.

If we now consider κ+ with the order topology and we assume that κ = ω,
then the space ωω1

1 is pseudocompact (see, for example [6, Exercise 3.12.21.(e)]).
By a well-known result of Glicksberg ([7]), we have β(ωω1

1 ) = (βω1)
ω1 . Since

βω1 = ω1+1, Proposition 4.6 implies that β(ωω1
1 ) is not a good compactification

for ωω1
1 . Therefore, it follows by Proposition 2.2, that ωω1

1 does not have any good
compactification.

A natural question is then whether the space ωκ+

is or is not κ-Ohio complete.

Observe that the argument used in Proposition 4.6 cannot be applied to ωκ+

:

every product compactification of ωκ+

is indeed even good. This is a consequence
of the next proposition. We will however answer our question in Corollary 4.16
below.

Recall that the compact covering number of a space X , denoted by kcov(X),
is the smallest cardinality of a collection K of compact subsets of X such that
X =

⋃
K. It is well-known and easy to show that for a space X and for any

compactification γX of X , we have kcov(γX \X) = Č(X).

Proposition 4.10. Let X =
∏

α<κ Xα, where kcov(Xα) ≤ λ for every α < κ,
and let γαXα ∈ C(Xα), for every α < κ. Then

∏
α<κ γαXα ∈ λO(X).
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Proof: Let Z =
∏

α<κ γαXα. We will show that Z itself is the good Gλ-subset
we are looking for. Note that, since kcov(Xα) ≤ λ, the remainder γαXα \Xα is
a Gλ-subset of γαXα, for every α < κ.

Now, fix a point x = (xα)α<κ ∈ Z \X . So, there exists some α < κ such that
xα ∈ γαXα \Xα. The set W = π−1

α (γαXα \Xα), is a Gλ-subset of Z that misses
X . This completes the proof. �
Corollary 4.11. If a product space has σ-compact factors, then any compactifi-
cation of its product is good.

This raises the question whether spaces like ωκ+

or Rκ+

are κ-Ohio complete
or not. Furthermore it turns out that finding a non κ-good compactification for
such spaces is not trivial.

Nevertheless, using Proposition 4.6, which is a very simple but very useful
result, we will be able to prove that, if κ is less than the first weakly inaccessible

cardinal, neither ωκ+

nor Rκ+

is κ-Ohio complete.

Theorem 4.12. If X contains a closed copy of the space κ+, endowed either

with the discrete or the order topology, then Xκ+

is not κ-Ohio complete.

Proof: Let us prove the theorem assuming that X contains a closed copy of the
discrete space of cardinality κ+. The other case is analogous. Since X contains

a closed copy of κ+, the space Xκ+

contains a closed copy of (κ+)κ
+

. Assume,

striving for a contradiction, that Xκ+

is κ-Ohio complete and let Z = (γX)κ
+

,
where γX is any compactification of X . Closures are taken in Z.

Our hypothesis, combined with Theorem 3.2, imply that (κ+)κ+ is a very κ-

good compactification for (κ+)κ
+

. Since (κ+)κ+ ≥ (ωκ+)κ
+

, the latter product

is a κ-good compactification for (κ+)κ
+

, which is a contradiction with Proposi-
tion 4.6. �

From the proof of Theorem 4.12 we get the following:

Corollary 4.13. If X contains a closed copy of the space κ+, endowed either

with the discrete or the order topology, then no compactification of Xκ+

of the

form (γX)κ
+

can be very κ-good for Xκ+

.

Recall that an uncountable cardinal is called weakly inaccessible if it is a regular
limit cardinal. We denote by θ the first weakly inaccessible cardinal.

Corollary 4.14. Assume that κ < θ. If Xκ+

is κ-Ohio complete, then X is
countably compact.

Proof: Observe at first that if κ < θ, then κ+ < θ. If X were not countably

compact, then Xκ+

would contain a closed copy of ωκ+

. Since κ+ < θ, the power

ωκ+

contains a closed copy of the discrete space κ+, by [8]. Then Xκ+

would
contain a closed copy of κ+, which is a contradiction with Theorem 4.12. �
Question 4.15. Can we improve Corollary 4.14 substituting ‘countably compact’
by ‘compact’?
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In [3] we showed that the answer is yes for κ = ω.

Corollary 4.16. If κ < θ, then neither ωκ+

nor Rκ+

is κ-Ohio complete.

Corollary 4.17. If κ < θ, then no compactification of ωκ+

(resp. Rκ+

) of the

form Zκ+

is very κ-good for ωκ+

(resp. Rκ+

).

Question 4.18. Let κ < θ. Does exist some very κ-good compactification for

ωκ+

(resp. Rκ+

)?

By Theorem 3.7 this question is equivalent to the question whether, if κ+ is

strictly less than the first weakly inaccessible cardinal, the space ωκ+

(resp. Rκ+

)
can be embedded as a closed subspace in some κ-Ohio complete space. Moreover,
let us point out that if Question 4.15 has a positive answer, then Question 4.18
has a negative answer.

Actually, to answer in the negative to Question 4.18 it would be enough to

show that the space (κ+)κ
+

, where κ+ is endowed with the discrete topology does
not have any very κ-good compactification. Unfortunately we do not know the
answer to this.
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