
Czechoslovak Mathematical Journal

Xueqing Chen; Ming Ding; Jie Sheng
Bar-invariant bases of the quantum cluster algebra of type A(2)

2

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 4, 1077–1090

Persistent URL: http://dml.cz/dmlcz/141808

Terms of use:
© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/141808
http://dml.cz


Czechoslovak Mathematical Journal, 61 (136) (2011), 1077–1090

BAR-INVARIANT BASES OF THE QUANTUM CLUSTER

ALGEBRA OF TYPE A
(2)
2

Xueqing Chen, Whitewater, Ming Ding, Beijing,

Jie Sheng, Beijing

(Received October 3, 2010)

Cordially dedicated to Prof. Vlastimil Dlab on the occasion of his 80th birthday

Abstract. We construct bar-invariant Z[q±1/2]-bases of the quantum cluster algebra of

the valued quiver A
(2)
2 , one of which coincides with the quantum analogue of the basis of

the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and
canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4,
2004, 947–974.

Keywords: quantum cluster algebra, Z[q±1/2]-basis, valued quiver

MSC 2010 : 16G20, 20G42, 14M17

1. Introduction

Cluster algebras were invented by S. Fomin and A. Zelevinsky [11], [12] in order

to study total positivity in algebraic groups and canonical bases in quantum groups.

The study of Z-bases of cluster algebras has become important. There are many

results involving the construction of Z-bases of cluster algebras (for example, see [17]

and [4] for cluster algebras of rank 2, [3] for finite type, [10] for type Ã, [5] for Ã
(1)
2 ,

[6] for affine type and [13] for acyclic quivers). As the quantum analogue of cluster

algebras, quantum cluster algebras were defined by A. Berenstein and A. Zelevinsky

in [1]. A quantum cluster algebra is generated by the so-called (quantum) cluster

variables inside an ambient skew-field F . Under the specialization q = 1, quantum

cluster algebras degenerate to cluster algebras.

Recently, D. Rupel [16] defined a quantum analogue of the Caldero-Chapoton

formula [2] and conjectured that cluster variables could be expressed in terms of

1077



the refined Caldero-Chapoton formula, and then proved the conjecture for those in

almost acyclic clusters. This conjecture has been proved for acyclic equally valued

quivers in [15]. Naturally, one may hope to construct Z[q±1/2]-bases of quantum

cluster algebras. For simply-laced finite and affine quivers, the bases have been

constructed in [7] and [8].

In this paper, we deal with the quantum cluster algebra of the simplest non-

simply-laced valued quiver A
(2)
2 and construct various bar-invariant Z[q±1/2]-bases

by applying the quantum analogue of the Caldero-Chapoton formula defined in [16].

Under the specialization q = 1, one of these Z[q±1/2]-bases is exactly the canonical

basis of the cluster algebra of the valued quiver A
(2)
2 discussed in [17]. Moreover,

the elements {sn : n ∈ N} in the basis S (see Definition 3.4) possess representation-

theoretic interpretations.

2. Preliminaries

2.1. Quantum cluster algebras

In what follows, we will give a short review on quantum cluster algebras, for

details one can refer to [1]. Let L be a lattice of rank m and Λ: L× L → Z a skew-

symmetric bilinear form. Let q be a formal variable and let us consider the ring

of integer Laurent polynomials Z[q±1/2]. The based quantum torus associated with

a pair (L, Λ) is a Z[q±1/2]-algebraT with a distinguished Z[q±1/2]-basis {Xe : e ∈ L}

and the multiplication given by

XeXf = q
1
2
Λ(e,f)Xe+f .

Obviously T is associative and the basis elements satisfy the relations

XeXf = qΛ(e,f)XfXe, X0 = 1, (Xe)−1 = X−e.

It is well known that T is an Ore domain, i.e., it is contained in its skew-field of

fractions F .

A toric frame in F is a mapping M : Z
m → F \ {0} of the form

M(c) = ϕ(Xη(c)) =: Xc

where c ∈ Z
m, ϕ is an automorphism of F and η : Z

m → L is an isomorphism of

lattices. By the definition, the elements M(c) form a Z[q±1/2]-basis of the based
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quantum torus TM := ϕ(T ) and satisfy the relations

M(c)M(d) = q
1
2
ΛM (c,d)M(c + d),

M(c)M(d) = qΛM (c,d)M(d)M(c),

M(0) = 1,

M(c)−1 = M(−c),

where the skew-symmetric bilinear form ΛM on Z
m is obtained by transferring the

form Λ from L via the lattice isomorphism η. Note that ΛM can also be identified

with a skew-symmetric m× m matrix given by λij = ΛM (ei, ej) where {e1, . . . , em}

is the standard basis of Zm.

Given a toric frame M , write Xi = M(ei); then

TM = Z[q±1/2]〈X±1
1 , . . . , X±1

m : XiXj = qλij XjXi〉.

Let A be an m × m skew-symmetric matrix and B̃ an m × n matrix with n 6 m.

The pair (A, B̃) is called compatible if B̃trA = (D | 0) is an n × m matrix with

D = diag(d1, . . . , dn) where di ∈ N for 1 6 i 6 n. For a toric frame M , we

call the pair (M, B̃) a quantum seed if the pair (ΛM , B̃) is compatible. Define the

m × m matrix E = (eij)m×m as follows:

eij =











δij if j 6= k;

−1 if i = j = k;

max(0,−bik) if i 6= j = k.

For n, k ∈ Z, k > 0, denote
[

n
k

]

q
= (qn − q−n) . . . (qn−r+1 − q−n+r−1)/(qr − q−r) . . .

(q − q−1). Let c = (c1, . . . , cm) ∈ Z
m with ck > 0. We can define the toric frame

M ′ : Z
m → F \ {0} as

(2.1) M ′(c) =

ck
∑

p=0

[

ck

p

]

qdk/2

M(Ec + pbk), M ′(−c) = M ′(c)−1

where the vector bk ∈ Z
m is the k-th column of B̃.

Let B̃′ = µk(B̃) be the mutation of B̃ at k (see [11] for details). Then the quantum

seed (M ′, B̃′) is called the mutation of (M, B̃) in the direction k. Two quantum seeds

are mutation-equivalent if each can be obtained from the other by a sequence of mu-

tations. Let C = {M ′(ei) : 1 6 i 6 n, (M ′, B̃′) is mutation-equivalent to (M, B̃)}.

The elements of C are called cluster variables. Let P = {M(ei) : n + 1 6 i 6 m};

the elements inP are called coefficients. The quantum cluster algebra Aq(ΛM , B̃) is
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the Z[q±1/2]-subalgebra of F generated by the elements in C ∪P. We can associate

with (M, B̃) the Z-linear bar-involution on TM as follows:

qr/2M(c) = q−r/2M(c), where r ∈ Z, c ∈ Z
n.

Then we can see that XY = Y X for all X, Y ∈ Aq(ΛM , B̃) and the elements in

C ∪ P are bar-invariant.

2.2. The valued quiver A
(2)
2

We can associate a valued quiver (see [16, Section 2] for more details) with a given

compatible pair (A, B). Now we set A =

(

0 1

−1 0

)

and B =

(

0 1

−4 0

)

. Thus we

have BtrA =

(

4 0

0 1

)

denoted by D. The valued quiver Q associated with this pair

is of type A
(2)
2 :

1
(4,1)

// 2 .

Let S be a reduced Fq-species of type Q, see [9] for details. The category rep(S)

of finite dimensional representations of S over Fq is equivalent to the category of

finite dimensional modules over a finite-dimensional hereditary Fq-algebra ∆, where

∆ is the tensor algebra of S. In the rest of the paper, we will not distinguish the

representation of the valued quiver and the module of the corresponding algebra.

It is well known (see [9]) that indecomposable ∆-modules are divided into three

families up to isomorphism: the indecomposable regular modules with dimension

vector (ndp, 2ndp) for p ∈ P
1
k of degree dp and n ∈ N (in particular, denote by Rp(n)

the indecomposable regular module with dimension vector (n, 2n) for dp = 1), the

preprojective modules, and the preinjective modules. Define

R =

(

0 4

0 0

)

, R′ =

(

0 0

1 0

)

.

It is well known that the Euler form on rep(S) is given by

〈V, N〉 = m(I − R)Dntr

where m and n are the dimension vectors of V and N , respectively. Now, let T =

Z[q±1/2]〈X±1
1 , X±1

2 : X1X2 = qX2X1〉 and let F be the skew field of fractions of T .

Thus the quantum cluster algebra of the valued quiver A
(2)
2 denoted by Aq(1, 4) in

the sequel is the Z[q±1/2]-subalgebra of F generated by the cluster variables Xk,

k ∈ Z, defined recursively by

Xm−1Xm+1 =

{

q1/2Xm + 1 if m is odd;

q2X4
m + 1 if m is even.
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The quantum Laurent phenomenon [1] implies that each Xk belongs to the sub-

ring T of F . Let V be a representation of the valued quiver A
(2)
2 with dimension

vector dimV = (v1, v2). For e = (e1, e2) ∈ Z
2
>0, denote by Gre(V ) the set of all sub-

representations U of V with dimU = e. In [16], the author defined the element XV

of the quantum torus T by

(2.2) XV =
∑

e

q−
1
2
dV
e Gre(V )|X(−v1+v2−e2,4e1−v2)

where dV
e = 4e1(v1 − e1) − (4e1 − e2)(v2 − e2). This formula is called the quantum

analogue of the Caldero-Chapoton formula [2].

Let C =

(

2 −1

−4 2

)

be the Cartan matrix and Φ the associated root system

with simple roots {α1, α2}. Then all negative real roots of Φ can be labeled by

m ∈ Z \ {1, 2} as follows:

αm−1 + αm+1 =

{

αm if m is odd,

4αm if m is even,

where we set α0 = −α2, α3 = −α1.

Recall the following result from [16]:

Theorem 2.1 ([16]). For any m ∈ Z \ {1, 2}, let V (m) be the unique indecom-

posable valued representation of A
(2)
2 with dimension vector −αm. Then the m-th

cluster variable Xm of Aq(1, 4) is equal to XV (m).

3. Bases of the quantum cluster algebra Aq(1, 4)

In this section, we will construct various bar-invariant Z[q±1/2]-bases of the quan-

tum cluster algebra Aq(1, 4). Under the specialization q = 1, these bases are just the

Z-bases of the cluster algebra of the valued quiver A
(2)
2 .

Definition 3.1. For any (r1, r2) and (s1, s2) ∈ Z
2, we write (r1, r2) � (s1, s2) if

ri 6 si for 1 6 i 6 2. Moreover, if there exists i such that ri < si, then we write

(r1, r2) ≺ (s1, s2).

Lemma 3.2. The Laurent expansion inXV (m) has a minimal non-zero termXαm .

P r o o f. It is obvious that the module V (m) with dimension vector (v1, v2)

has a submodule with dimension vector (0, v2). Thus by the definition of the q-

deformation of the Caldero-Chapoton formula and the partial order in Definition 3.1,

we obtain that the expansion in XV (m) has a minimal non-zero term Xαm . �
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Lemma 3.3. Let Rp(1) be an indecomposable regular module of degree 1. Then

XRp(1) = X(−1,−2) + X(−1,2) + X(1,−2) + (q1/2 + q−1/2)X(0,−2).

P r o o f. Note that Rp(1) contains four submodules with dimension vectors (0, 0),

(0, 1), (0, 2) and (1, 2). Therefore the lemma immediately follows from the q-

deformation of the Caldero-Chapoton formula. �

By Lemma 3.3, the expression of XRp(1) is independent of the choice of p ∈ P
1
k of

degree 1. So we set

Xδ := XRp(1).

Definition 3.4 (Chebyshev polynomials).

(1) The n-th Chebyshev polynomial of the first kind is the polynomial Fn(x) ∈ Z[x]

defined recursively by

{

F0(x) = 1, F1(x) = x, F2(x) = x2 − 2,

Fn+1(x) = Fn(x)F1(x) − Fn−1(x) for n > 2.

(2) The n-th Chebyshev polynomial of the second kind is the polynomial Sn(x) ∈

Z[x] defined recursively by

{

S0(x) = 1, S1(x) = x, S2(x) = x2 − 1,

Sn+1(x) = Sn(x)S1(x) − Sn−1(x) for n > 2.

It is obvious that Fn(x) = Sn(x) − Sn−2(x). We denote z = Xδ, zn = Fn(z),

sn = Sn(z) for n > 0 and zn = sn = 0 for n < 0. Set

B
′ = {Xa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} ∪ {zn : n ∈ N},

S
′ = {Xa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} ∪ {sn : n ∈ N},

G
′ = {Xa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} ∪ {zn : n ∈ N}.

Remark 3.5. It is easy to check that X(r,2r)X(s,2s) = X(r+s,2r+2s) for any

r, s ∈ Z, and thus the expansions of zn, sn and zn have a minimal non-zero term

X−(n,2n) according to the partial order in Definition 3.1.

We have the following immediate result.
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Lemma 3.6. Xδ = qX2
0X3 − q2(qX1 + q−1/2 + q1/2)X2

2 .

P r o o f. By X0X2 = q1/2X1 + 1, we have X0 = X(1,−1) + X(0,−1). By X1X3 =

q2X4
2 + 1, we have X3 = X(−1,4) + X(−1,0). Then we can prove the lemma by direct

computation. �

The following lemma is straightforward but important.

Lemma 3.7. Xδ = Xδ.

P r o o f. Note that

Xδ = q−1X2
0X3 − q−2(qX1 + q−1/2 + q1/2)X2

2

= q−1X3X
2
0 − q−2X2

2 (q−1X1 + q−1/2 + q1/2) = Xδ.

�

Remark 3.8. By Lemma 3.7, we can verify that zn = zn, sn = sn.

For any d ∈ Z
2, define d+ = (d+

1 , d+
2 ) such that d+

i = di if di > 0 and d+
i = 0 if

di 6 0 for any 1 6 i 6 2. Dually, we set d− = d+ − d.

The proposition below is a special case of [1, Theorem 7.3].

Proposition 3.9 ([1]). Let Q be the valued quiver A
(2)
2 . Then the set

{X
d−

1

1 X
d−

2

2 X
d+

1

S1
X

d+

2

S2
: (d1, d2) ∈ Z

2}

is a Z[q±1/2]-basis of Aq(1, 4).

P r o o f. It is easy to check that the sets {X1, XS2
} and {X2, XS1

} are clusters

obtained by the mutation in the direction 2 and 1, respectively, from the cluster

{X1, X2}. Therefore the proposition immediately follows from [1, Theorem 7.3]. �

The following result is an immediate consequence of the above proposition.

Corollary 3.10. The sets B′, S ′ and G ′ are Z[q±1/2]-bases of the quantum

cluster algebra Aq(1, 4).

P r o o f. Note that if B′ is a Z[q±1/2]-basis of the quantum cluster alge-

bra Aq(1, 4), then S ′ and G ′ are naturally Z[q±1/2]-bases of Aq(1, 4) because

there exist unipotent transformations between {zn : n ∈ N}, {sn : n ∈ N} and

{zn : n ∈ N}. In what follows, we will only focus on the set B′.
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By Lemma 3.6, we obtain that Xδ is in Aq(1, 4). Thus {zn : n ∈ N} is contained

in Aq(1, 4). Note that for any v = (v1, v2) ∈ Z
2, there exists only one object XV

in B′ such that dimV = (v1, v2) ∈ Z
2. Then by Proposition 3.9 we have

XV = bvX
v−

1

1 X
v−

2

2 X
v+

1

S1
X

v+

2

S2
+

∑

v≻l

blX
l−
1

1 X
l−
2

2 X
l+
1

S1
X

l+
2

S2

where bv, bl ∈ Z[q±1/2]. Then by Lemma 3.2, Remark 3.5, we know that bm must be

a nonzero monomial in q±1/2. Thus we obtain thatB′ is a Z[q±1/2]-basis of Aq(1, 4).

�

Set

B = {q−
1
2
abXa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} ∪ {zn : n ∈ N},

S = {q−
1
2
abXa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} ∪ {sn : n ∈ N},

G = {q−
1
2
abXa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} ∪ {zn : n ∈ N}.

Then we can obtain the following main result of the paper.

Theorem 3.11. The sets B, S and G are bar-invariant Z[q±1/2]-bases of the

quantum cluster algebra Aq(1, 4).

P r o o f. By Lemma 3.7 and Remark 3.8 and the fact that every element in the

set {q−
1
2
abXa

mXb
m+1 : m ∈ Z, (a, b) ∈ Z

2
>0} is bar-invariant, the theorem follows

immediately. �

4. Some multiplication formulas

In this section, we prove somemultiplication formulas and then give representation-

theoretic interpretations of the elements {sn : n ∈ N} in the basis S .

First, we define a ring homomorphism of the quantum cluster algebra Aq(1, 4):

σ2 : Aq(1, 4) −→ Aq(1, 4)

by sending Xm to Xm+2 and q±1/2 to q±1/2. It is obviously an automorphism which

preserves the defining relations.

We have the following result.
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Lemma 4.1. σ2(Xδ) = Xδ.

P r o o f. By direct computation, we have

X3 = X(−1,4) + X(−1,0),

X4 = X(−1,3) + X(0,−1) + (q + q−1)X(−1,−1).

Thus we obtain the identity

qX2
4 + q−1X2

2 = X3Xδ.

By Lemma 3.6, we have:

Xδ = qX2
0X3 − q2(qX1 + q−1/2 + q1/2)X2

2 .

Therefore, we have

σ2(Xδ) = σ2(qX
2
0X3 − q2(qX1 + q−1/2 + q1/2)X2

2 )

= qX2
2X5 − q2(qX3 + q−1/2 + q1/2)X2

4

= q3X2
2X−1

3 X4
4 + qX2

2X−1
3 − q2(qX3 + q−1/2 + q1/2)X2

4

= qX−1
3 X2

2X4
4 + q−1X−1

3 X2
2 − q2(qX3 + q−1/2 + q1/2)X2

4

= qX−1
3 X2(q

1/2X3 + 1)X3
4 + q−1X−1

3 X2
2 − q2(qX3 + q−1/2 + q1/2)X2

4

= q3/2X−1
3 X2X3X

3
4 + qX−1

3 (q1/2X3 + 1)X2
4

+ q−1X−1
3 X2

2 − q2(qX3 + q−1/2 + q1/2)X2
4

= q5/2X2X
3
4 + q3/2X2

4 + qX−1
3 X2

4 + q−1X−1
3 X2

2

− q2(qX3 + q−1/2 + q1/2)X2
4

= q5/2(q1/2X3 + 1)X2
4 + q3/2X2

4 + Xδ − q2(qX3 + q−1/2 + q1/2)X2
4

= Xδ.

�

Proposition 4.2. We have

(1) for m > n > 1,
znzm = zm+n + zm−n,

znzn = z2n + 2,

(2) for any n ∈ Z,

X2nXδ = q−1/2X2n−2 + q1/2X2n+2,

X2n+1Xδ = q−1X2
2n + qX2

2n+2.
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P r o o f. (1) It follows from the definition of Chebyshev polynomials.

(2) By Lemma 4.1, we only need to prove the equations

X2Xδ = q−1/2X0 + q1/2X4,

X1Xδ = q−1X2
0 + qX2

2 .

By the defining relations, we have

X0 = X(1,−1) + X(0,−1), X4 = X(−1,3) + X(0,−1) + X(−1,−1).

Then we can prove the above equations by Lemma 3.3 and direct computation. �

Note that for any ∆-module V , the quantum analogue of the Caldero-Chapton

map of the valued quiver Q = A
(2)
2 defined in [16] can be rewritten as

XV =
∑

e

|Gre V |q−1/2〈e,v−e〉X−eBtr−v(I−R′).

Lemma 4.3. For any dimension vector m, e, f ∈ Z
n
>0, we have

(1) Λ(m(I − R′), eBtr) = −〈e, m〉;

(2) Λ(eBtr, fBtr) = 〈f, e〉 − 〈e, f〉.

P r o o f. It is easy to check that

Λ(m(I − R′), eBtr) = m(I − R′)ΛBetr = −m(I − R′)Dtretr

= − eD(I − R′)trmtr = −e(I − R)Dmtr = −〈e, m〉

and

Λ(eBtr, fBtr) = eBtrΛB̃f tr = −eBtrDf tr = e(R − R′)Df tr

= e((I − R′) − (I − R))Df tr = e(I − R′)Df tr − e(I − R)Df tr

= 〈f, e〉 − 〈e, f〉.

�

Corollary 4.4. For any dimension vector m, l, e, f ∈ Z
n
>0, we have

Λ(m(I − R′) + eBtr, l(I − R′) + fBtr)

= Λ(m(I − R′), l(I − R′)) + 〈f, e〉 − 〈e, f〉 + 〈e, l〉 − 〈f, m〉.
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For ∆-modules V , T and N , we denote by FV
TN the number of submodules U

of V such that U is isomorphic to N and V/U is isomorphic to T . The following

proposition gives representation-theoretic interpretations of elements sn, n ∈ N in

the basis S . By abuse of language, we still denote by V the dimension vector of the

∆-module V in the bilinear forms involved.

Proposition 4.5. For any n ∈ N, we have

XRp(n)XRp(1) = XRp(n+1) + XRp(n−1).

P r o o f. We have the exact sequences

0 −→ Rp(1) −→ Rp(n + 1) −→ Rp(n) −→ 0

and

0 // Rp(1)
ε

// τRp(n) = Rp(n)
p

// Rp(n − 1) // 0 .

The term on the left-hand side is

XRp(n)XRp(1)

=
∑

d

|Grd Rp(n)|q−1/2〈d,nδ−d〉X−dBtr−nδ(I−R′)

×
∑

b

|Grb Rp(1)|q−1/2〈b,δ−b〉X−bBtr−δ(I−R′)

=
∑

b,d

|Grd Rp(n)||Grb Rp(1)|q−1/2〈d,nδ−d〉−1/2〈b,δ−b〉

× q1/2Λ(−dBtr−nδ(I−R′),−bBtr−δ(I−R′))X−(b+d)Btr−(n+1)δ(I−R′).

Then by Corollary 4.4, the above equation is equal to

∑

b,d

|Grd Rp(n)||Grb Rp(1)|q−1/2〈d+b,(n+1)δ−b−d〉q〈d,δ−b〉X−(b+d)Btr−(n+1)δ(I−R′)

=
∑

N,Q

F
Rp(n)
PQ F

Rp(1)
TN q−1/2〈d+b,(n+1)δ−b−d〉q〈Q,T 〉X−(b+d)Btr−(n+1)δ(I−R′).

The first term on the right-hand side is

τ1 := XRp(n+1) =
∑

H

F
Rp(n+1)
GH q−1/2〈h,g〉X−hBtr−(n+1)δ(I−R′).
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According to [14, Lemma 14], we have

τ1 =
∑

N,Q

q〈Q,T 〉 q − qdimk Ext1(Q,T )

q − 1
F

Rp(n)
PQ F

Rp(1)
TN q−1/2〈N+Q,(n+1)δ−N−Q〉

× X−(b+d)Btr−(n+1)δ(I−R′).

Now we consider the term

τ2 :=
∑

Y

q〈nδ−W,δ〉F
Rp(n−1)
WY q−1/2〈Y +δ,nδ−Y 〉X−yBtr−(n−1)δ(I−R′).

Any submodule Y of Rp(n − 1) induces the submodule Q = p−1(Y ) and N = 0

of Rp(n) and Rp(1) respectively as the following commutative diagram shows:

0 // Rp(1) // p−1(Y ) //

��

Y //

��

0

��

Rp(n)
p

// Rp(n − 1)
0

// Rp(1)
ε

// Rp(n) // 0

Thus y = b + d − δ and

−yBtr − (n − 1)δ(I − R′)

= − (b + d − δ)Btr − (n − 1)δ(I − R′)

= − (b + d)Btr + δBtr − (n − 1)δ(I − R′)

= − (b + d)Btr + δ(R′ − R) − (n − 1)δ(I − R′)

= − (b + d)Btr − δ(I − R′) + δ(I − R) − (n − 1)δ(I − R′)

= − (b + d)Btr − 2δ(I − R′) − (n − 1)δ(I − R′)

= − (b + d)Btr − (n + 1)δ(I − R′).

Then by [14, Lemma 16], we have

τ2 =
∑

N,Q

q〈Q,T 〉 q
dimk Ext1(Q,T ) − 1

q − 1
F

Rp(n)
PQ F

Rp(1)
TN q−1/2〈b+d,(n+1)δ−b−d〉

× X−(b+d)Btr−(n+1)δ(I−R′).

Therefore

τ1 + τ2 =
∑

N,Q

F
Rp(n)
PQ F

Rp(1)
TN q−1/2〈d+b,(n+1)δ−b−d〉q〈Q,T 〉X−(b+d)Btr−(n+1)δ(I−R′)

= XRp(n)XRp(1).
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Note that the second term on the right-hand side of the desired equation is

τ3 := XRp(n−1) =
∑

Y

F
Rp(n−1)
WY q−1/2〈Y,(n−1)δ−Y 〉X−yBtr−(n+1)δ(I−R′).

So it remains to prove τ2 = τ3, i.e., the equation

〈nδ − W, δ〉 −
1

2
〈Y + δ, nδ − Y 〉 = −

1

2
〈Y, (n − 1)δ − Y 〉.

Note that

〈nδ − W, δ〉 −
1

2
〈Y + δ, nδ − Y 〉

= 〈δ + Y, δ〉 −
1

2
〈Y, nδ − Y 〉 −

1

2
〈δ, nδ − Y 〉

= 〈Y, δ〉 −
1

2
〈Y, (n − 1)δ − Y 〉 −

1

2
〈Y, δ〉 +

1

2
〈δ, Y 〉

= −
1

2
〈Y, (n − 1)δ − Y 〉.

Here we use the fact thet

〈δ,−〉 = −〈−, τδ〉 = −〈−, δ〉.

�

By Lemma 3.3 and Proposition 4.5, we know that the expression of XRp(n) is

independent of the choice of p ∈ P
1
k with degree 1. Hence, we set

Xnδ := XRp(n).

The following corollary gives representation-theoretic interpretations of the elements

{sn : n ∈ N} in the basis S .

Corollary 4.6. Xnδ = sn for every n ∈ N.

P r o o f. It follows from Proposition 4.5 and the definition of sn. �
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