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STATIONARY NON-ERGODIO SOURCES 

MHíOSiiAv NosÁi. 

Department of Mathematical Statistics at the Charles University, Praha 

{Received 17. VHI. 1081 

In this paper the special type of stationary noh-ergodic sources is studied and funda­
mental theorems on transmission for this type of sources are proved. This work proceed 
from Winkelbauer's work [5]. 

INFORMATION SOURCES 

Throughput the whole paper the set of all natural numbers will be denoted 
by N and the set of all integers will be denoted by J. US is a finite non-empty 
set then the symbol S1 designates the set of all mappings of / into S, i. e. the 
set of all sequences of elements in S which are infinite to both sides; if x e S1 

then we shall write xt instead of x(i) for any i el. The a-algebra of subsets of 
S1 generated by the class of all sets of the form 

{x : x e S1, Xi = a)9 i e I, a e S 

will be denoted by F5. If p is a probability measure on the or-algebra F8, then 
the couple [S9 ft] will be called a information source or shortly source. Let Ts 
be the transformation of S1 defined by the equation 

(T8x)i = xi+l9 xeSz,ieI 

If p(T8E) = [A(E) holds for every E e Fs, then the source [S, fi] is said to be 
stationary. If further 

EeFS9 T8E = E9 p(E) > 0 =» p(E) = 1 

holds, then the source [S9 p] is said to be.ergodic. 
LEMMA 1. Let [S, fi(i)]9 i = 1, 2, f.., k be k different ergodio sources. Then 

the measures fi(i) and p® (i -?-= j) are singular and there exists the measurable 
partition & = (El9 E2, . . . , Ek) of S1 such that 

p{i)(Ej) = 5ij, i, j == 1, 2, . . . , k (Kronecker's symbol). 

Note: The sources [S9 p] and [S, v] are said to be different if there exists 
a set E e Fs, such that fi(E) ^ v(E). 
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Proof: It follows from Birkhoff's ergodic theorem, that the following 
relation holds for any /j^-integrable, i = 1, 2, . . . , fc, function f(x) on S1: 

(i) 

n—-11 

,1* {* : xe&, ^^ftтj) -* $&*} = 1, » =» 1, 2, ..., *. 
1=0 

Since the sources [S, /*<*>] are different, there exist the sets Ey e P5, i, j = 1, 2, 
. . . , k, i < j such that 

l&'(Ev) *i&(EM). 

Now we put in (1) /# = xS{j (characteristic function of the set Ey). 

Then f A V 1 «^(-*«)» I7«*»w = /*{i)(Ey) 
Further, the sets 

n—1 

^ = { 3 ; : . r e s ' , ^MTjx) -> .«»(-*«)} 
i=o 

n—1 

#« =.{* :a;es', - L ^ / ^ ) -̂  /*«>&«)} 
1=0 

are disjoint for any pair i, j = 1, 2, . . . , k, i < j and 

J W « ) = « h , . 0»(-*W = 0 , i,j = 1,2, .,.,*,» # j . 

If now we put 

-®i = n * « , » = 1,2, ...,fc 

then it is clear that 
/i«(«) = 1, » = 1,2, ...,-* 

Further 
* * ' 

ffii{Ei) = l&( n *u) ^ /*<»(-**) = 0 , i, j = 1, 2, . . . , k, i * j 
1=1 
l # i 

and , 

-«in*S = n *Vn n FimCFynFji = 8 (empty set), i, j = 1, 2, . . . , k, i ^j 
1 = 1 OT--1 

If we put 
&—1 

Ei = Ei9i = 1 , 2, . . . , A — 1, Ejc^S1— \jEif 

*=* 
then the partition ^ = (l^, .S2, • • • > -̂ a) has the property from the assertion of 
LEMMA 1. q.e.d. 

40 



LEMMA 2. Let [&, /jf% i = 1, 2, . . . , k (k > 1) be k different ergodic sources. 
Let«!, a* . . . , »* be fc real numbers such that 

fc 

^ = 1, « i > 0 , i = l , 2, .. .,fc 
i = l 

Further we put 

fJL = > dc<u<*> 

• 6 - J 

Then the source [S, ji] is stationary but non-ergodic. 
Proof: If EGF8 then obviously / 

fi(T8E) = V aifito(TsE) = y « ^ ( . 0 ) = p{E) 

І-=I i - i 

•»-»*; In accordance with LEMMA 1 there exists the partition £? = (Et, Etf 
such that 

/.«>(#,) =a«, * , j = i , 2 , ...,*. 
00 

Now we shall investigate the set E = U T ^ . 
i——oo 

oo 

^>(£) =/ i< 1 >(U^i) .>^ 1 , (^ 1 ) => *»(.«) - 1 
i-»—oo 

' 00 00 

^(E) = rnvjyvi) ̂ fiT^i) =2 ̂ ^ = °« ' = 2> » » • • • » - -
i——oo' i——-oo 

It is dear that 
ItiJB = E. 

But 
fc 

fA(E) = V «^«)(B) = *! q. e. d. 
i - l 

Let [/S,/LC] be a source. For any n€N , let ^ be the set of all "ordered n-tuples,> 

of the elements from 8. We define the probability measure on the <r-algebra of 
.all subsets of Sn by the relation N • 

pn(E) = /*{*: a €/SM^/*i> ...9-x^1)ei\9- EcS* 

For every neiVwe denote 

Sn = — V Ain(x) log-/i»(x) 
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where logarithm is taken to the base 2. If a real number h exists, such that 
sequence • • . . 

* Hn, n = 1,2, . . . 
n 

converges to h, then the number h is called the entropy of the source [S, p] 
and is denoted by H[S, p]. (It is easy to show that the entropy of a stationary 
source exists.) 

Let [S,p] be an information source and for every n e N let nn be the mapping 
of the set {1, 2, . . . , sn} (where s is the number of elements in S i. e. 8 -= card S) 
on Sn so that 

PnfanU)) >Lin(nn(j + 1)K 

If e is a real number, 0 < e < 1, then the number Ln([,S, p], e), where 

k 

Ln([S, p], e) = min Ik : \pn(nn(j)) > 1 — e\ 
i=l 

is called the n-dimensional i-length of the source [S, p]. 

LEMMA 3. Let [S, p{i)], i = 1, 2, . . . , k be k sources. Let. aly og, . . . , a* be k real 
numbers such that 

* ' k 

*i > 0, i = I, 2, ...,&, \ «i = 1. 

Further let 

ЙЦU<*>. ^=2 
t - i 

Then for every n e N, 0 < e < 1 the following inequality holds 

i„([s, A*], e) < ^ Ln{[S, /.<«], e). «- l 

Proof: Let #,„, j = 1,2, . . . , k, n e N be the mapping of the set {1, 2 , . . . , $»} 
(where 8 = card S) on Sn such that- ^ 

^^(l))^^(^n(l+l)h 

Then for any n e . i V , 0 < f i < l 

m 

Ln[(S, /&], e) = minjm :S^'(^.(0) > 1 — e}, j = 1, 2, . . . , k. 

Now we form the sets 

Mf = {x : xes", ^(J) = x, Z = 1, 2, ..., £„([£, M«], «)}, j = 1, 2, . . . , k. 
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