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MirosLAv NosiL

Dopartment of Mathematioal Statistios at the Charles University, Praha

" [Received 17. VIIL. 1981

"

In this paper the special type of sta.tlonsry non-ergodic sources ig ‘studied and funda-
mental theorems on transmission for this type of sources are proved. This work proceed
from Winkelbauer’s work [5]. .

INFORMATION SOURCES

Throug out the whole paper the set of all natural numbers will be denoted
by N and the set of all integers will be denoted by I. If § is a finite non-empty
set then the symbol S? designates the set of all mappings of I into 8, i. e. the
set of all sequences of elements in 8 which are infinite to both sides; if z € 87
then we shall write z; instead of z(s) for any ¢ e I. The a-algebra. of subsets of
ST generated by the class of all sets of the form

{z.xeS{, 2 =a},i€l,ael

will be denoted by F,; If 4 is a probability measure on the o-algebra Fg, then
the couple [8, 4] will be called a information source or shortly source. Let T
be the transformation of 87 defined by the equation

(Tsx); = x4y, x€8, 1€ 1 '

If w(TsE) = u(E) holds for every E €F;, then the source [8, u] is said to be
stationary. If further

E€F¥s, TsE = E, y(B) > 0 = u(E) =1

holds, then the source [, u] is said to be. ergodic.

Levma 1. Let [S, u»], 4 =1, 2, ».., k be k different ergodm sources. Then
the measures u® and p (f, # y) are smgula.r and there exists the mea.sm'able
partition & = (E,, E,, ..., E;) of 87 such that '

pO(E) =84 1,5 =1,2,...,k (Krone’cker’s symbol).

Note: The sources [3, u] and [S, ] are said to be different if there existe
a set K €F, such that u(¥) = »(E).
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Proof: It follows from Birkhoff’s ergodic theorem, that the following
relation holds for any u"-integrable, ¢ = 1, 2, .. ., k, function f(x) on S:

n—1!

'
(1) uo {a: xel, %Ef(rﬂ;) — jfd,u("} =1 +=12...,k.
i=o

Since the sources [S, u®] are different, there exist the sets E;; € Fg, ¢,j =1, 2,
.«., k, 2 < j such that .
/‘Q(Eii) # u(By).

Now we put in (1) fy = xx,; (characteristic function of the set Ey).

Then [ £t = poED), | fedur = poiti
Further, the sets
o n—1
. . k l 3
Fy ={z rzell, ;zf"(T“‘;) — #“’(Eﬁ)}
=0
) . ln—l
. 1
Fy =,{x rzell, j’;‘zfii(TS’) - H‘”(EG)}
=0

aredisjointforanypa.iri,j =1,2 ...,k i<jand
”(‘)(Fii) =8jl’ ”m(Fil) =0’ "’j = 1"23 ) k: i #j
If now we put '
k
E,=NFy, t1=12 ...,k

=1
. J#E
then it is clear that
uth(Ey) =1, 1 =12, ...,k

Further , ¢
) k
”G((Ez) ==l“”(n Fa) g"m(Fw‘) = 0, irj = l: 2, s ooy k: ) :/;j
[
and _ , )
ek t .
EnE; = (\ Fun \ Fin C FynF; =0 (emptyset), 1,5 =1,2, ...,k ¢ #)
1 e .
If we put

—1
'E{-—-’E¢,i=l,2,...,k—l, Ek=SI——-UE|',

i=1
.

then the partition & = (H,, E,, ..., E;) has the property from the assertion of
LeMmMa 1. : " qeed.
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_ -Lzmma 2. Let [8, u9], s =1, 2, k(h>l)i>ekd1ﬂ'erentergodlcsomes
"Letay, ag ... ,akbekrealnumberssuchthat

Further we put

"“Then the source [S, 4] is stationary but non-ergodm
Proof: If £ € Fs then obviously ;

. k T
w(TsE) =2 «sO(TsE) = ) 2 (E) = )

i=1 =1

In accordance with LEMma 1 there exists the partition & = (E,, E,, ..., E'.)
such that
”(‘)(E’) = 6“, ‘,] = l, 2, .e .,‘k. '

Now we shall investigate the set £ = ) T4E,.

f=—00

HO(B) = u(( Q:ml) Zu0(E) = W) =1

o) uo(0 T4E) szuwuw —Epwwl) =0, j=23 ...,k

fm=—a0 fm—a0
It is clear that
.‘ . TsE = E.
But . .
k B
‘ w(E) =2 a«#“’(m Tu - q.e.d.

i=1 .
Let [8, u] be a source. For any n € N, let S* be the set of all “ordered n-tuples”
of the elements from 8. We define the probabihty measure on the g-algebra of
all subsets of S* by the relation .
Un(B) =pfr -z 81, (xo, Zy, ..., %ey) €K}, E'CS"
For every n € N we denote _ R '
Hy = — ) in(x) og pu(x)

‘ x€s"
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where logaljibilm is taken to the base 2. If a real number A exists, such that
sequence : - .

r»l—H,‘, n=12, ...
n

converges to %, then the number 4 is called the entropy of the source [S, u]
and is denoted by H[S, u] . (It is easy to show that the entropy of a stationary
source exists.) :

Let [8, 4] be an information source and for every z € N let x, be the mapping
of theset {1, 2, ..., s*} (where s is the number of elements in Si. e. 8 = card 8)
on S* so that )

Hn(n(5)) = pn(7en(j + 1))

If ¢ is a real number, 0 <'¢ <1, then the number L,([.8, 4], ¢), where
k

LS. o) = min fE: ) nlm(i) > 1 — o]

i=1

is called the n-dimensional e-length of the source [, u].

Lemma 3. Let [S, u%],5 = 1,2, ..., kbe k sources. Let. a;, as, . . ., a be k real
numbers quch ‘that : , _

a,-_>_0,i=l,2,,...,k,

& .
y’ =Z a"‘(i).

i=1

a,-=l.

IQ.MR‘
-

Further let

Then for every ne N, 0 < ¢ < 1 the following inequality holds

LMMMSEMWWML

f=1

Proof:Letmj.,j =1,2, ..., k,n € N be the mapping of the set {1,2,...,s%}
(where s = card S) on 8" such $hat-

9 nll) = pPn(l + 1)).
Then for any ne N, 0 <& <1

i

m

L.[(8, u2], €) = min{m :ng’(n,-,.(l)) >1— e},j =12 ...,k

=1
- Now we form the sets
M; ={x:x€8" mm(l) =x, 1 =1,2, ..., LS, u?),¢)}, =12, ...,k
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