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Let G be a groupoid and r be a relation on G. Consider the following system of con­
ditions, 91. 
(1) If a,beG and arb, then a . crb . c for every ce G. 
(2) If a, b e G and arb, then c .arc .b for every ceG. 
(3) If a,b,ceG and a .crb . c, then arb. 
(4) If a, b, c e G and c . arc . b, then arb. 
(5) If a, b, c, d e G, a . c = b . d and crd, then arb. 
(6) If a, b, c, d 6 G, a . c = b . d and arb, then crd. 
(7) If a, b, c, d e G, arb and crd, then a .crb . d. 
(8) If a,b,c,deG, a . crb . d and crd, then arb. 
(9) If a, b, c, d e G, a .crb .d and arb, then era7. 

(10) If a, b, c e G, arb and brc, then arc (the transitivity). 
(11) If a, b e G and arb, then bra (the symmetry). 
(12) If a e G, then ara (the reflexivity). 
(13) There are a,beG such that arb (i.e., r is non-empty). 
Any relation satisfying all the above conditions is called a normal congruence relation of 
the groupoid G. The purpose of this paper is to find out all independent and full sub­
systems of the system 91 for the class of all division groupoids and for the class of all 
quasigroups. Recall, that a groupoid G is called a division groupoid (a quasigroup) if for 
all a,beG there are (uniquely determined) x,yeG such that a . x = b and y .a = b. 

The following two lemmas are obvious and the proofs may be left to the reader. 
Lemma 1. Let <2(*) be the right inverse quasigroup of a quasigroup Q and r be a 

relation on Q. Then: 
(i) r satisfies (1) on Q iff r satisfies (6) on Q(*). 
(ii) r satisfies (2) on Q iff r satisfies (4) on Q(*). 
(iii) r satisfies (3) on Q iff r satisfies (5) on Q(*). 

Lemma 2. Let Q(p) be the left inverse quasigroup of the quasigroup Q and r be a 
relation on Q. Then: 
(i) r satisfies (1) on Q iff r satisfies (3) on Q(o). 
(ii) r satisfies (2) on Q iff r satisfies (5) on Q(p). 
(iii) r satisfies (4) on Q iff r satisfies (6) on Q(p). 
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Lemma 3. Let G be a groupoid r be a relation on G. Then: 
(i) (12) implies (13). (ii) (7) and (12) imply (1) and (2). (iii) (8) and (12) imply (5) and (3). 
(iv) (9) and (12) imply (6) and (4). (v) (1), (2) and (10) imply (7). (vi) (2), (3), (10) and (11) 
imply (8). (vii) (1), (4), (10) and (11) imply (9). (viii) (2), (3) and (11) imply (5). (ix) (1), (4) 
and (11) imply (6). (x) (1), (3) and (13) imply (12). (xi) (2), (4) and (13) imply (12). (xii) (1), 
(9) and (13) imply (12). (xiii) (2,) (8) and (13) imply (12). 

Proof, (i). (ii), (iii) and (iv) are obvious. 
(v) Let a, b, c, d 6 G be such that arb and crd. By (1) and (2) we have ac r be and 
be r bd. Using (10), we get ac r bd. 
(vi) Let ac r bd and crd. The condition (2) follows be r bd and (10), (11) yield ac r be. 
From this, arb by (3). 
(viii) Let ac = bd and crd. From (2), be r bd and hence be r ac. Now (3) and (11) finish 
the proof. 
(x) By the hypothesis, there are a,beG such that arb. Let c e G b e arbitrary. Then, 
by (1), acrbe and therefore (3) implies ere. 
(xii) Similarly as for (x). 
For (vii) ((ix), (xi), (xiii)) similarly as for (vi) ((viii), (x), (xii)). 

Lemma 4. Let G be a left division groupoid and r be a relation on G. Then: 
(i) (2), (3) and (6) imply (5). (ii) (2), (3) and (6) imply (11). (iii) (2), (6) and (11) imply (1). 
(iv) (2), (3) and (6) imply (1), (5) and (11), (v) (4), (5) and (11) imply (3). (vi) 4,) (6) and 
(10) imply (9). (vii) (1), (6) and (8) imply (10). (viii) (1), (10), (11) and (13) imply (12). (ix) 
(1), (6), (8), (11) and (13) imply (12). 

Proof, (ii) Let a,beG and arb. Since G is a left division groupoid, there are 
u,veG with au = bv = a. Using (6) and (2) we get bur bv and hence bu r au. From 
this, bra by (3). 
(i) By (ii) and Lemma 3 (viii). 
(iii) Let a>b>ceG and arb. There is x e G such that ax = be and so x r c by (6). 
From (11) and (2) we can deduce ac r ax, that is, ac r be. 
(iv) By (i), (iii) and (ii). 

(v) Let ac r be. There is x e G with be = ax, and consequently ac r ax. According to 
(4), cr x and the condition (5) yields bra. Now, an application of (11) completes the 
proof. 
(vi) Let ac r bd and arb. Since G is a left division groupoid, there is x e G such that 
ac = bx. Hence cr x due to (6), and further bx r bd. Now, using (4), we get xrd and 
so crd with respect to the transitivity of r. 
(vii) Let arb and brc. There are x,yeG such that bx = ay = a. Since ay = bx 
and arb, the condition (6) gives y r x. Further, by (1), bx r ex. Hence ay r ex and it 
is enough to use (8). 

(viii) There are a,beG such that arb. Given c e G, there exists xeG with ax = c. 
Hence ax r bx due to (1), and consequently c r bx. From this, ere by (11) and (10). 
(ix) By (vii) and (viii). 
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Lemma 5. Let G be a right division groupoid and r be a relation on G. Then: 
(i) (1), (4) and (5) imply (2), (6) and (11). (ii) (1), (5) and (11) imply (2). (iii) (3), (6) and (11) 
imply (4). (iv) (3), (5) and (10) imply (8). (v) (2), (5) and (9) imply (10). (vi) (2), (10,) (11) 
and (13) imply (12). (vii) (2), (5), (9), (11) and (13) imply (12). 

Proof. The proof is similar to that of the preceding lemma. 
Lemma 6. Let G be a division groupoid and r be a relation on G. Then: 

(i) (3), (4) and (7) imply (10). (ii) (4), (8) and (13) imply (12). (iii) (3), (9) and (13) imply 
(12). (iv) (3), (10), (11) and (13) imply (12). (v) (6), (7) and (13) imply (12). (vi) (5), (7) and 
(13) imply (12). 

Proof, (i) Let arb,brc. There are JC,-y, v e G with ax = b,ay = a, vx = c. 
Then (4) and (7) yield yrx and arv. Now we can use (7) to get arc. 
(ii) There are a,beG with arb. Further, for ceG there exist y>ze G such that 
a = cy,b = cz. By (4), yrz and we can use (8). 
(iv) For ceG there are JC, y e G with ex = a^yx = b, where a,beG are such that 
arb. From this, using (3), (10), (11), cr c. 
(v) Let a, b e G be such that arb and c e G be arbitrary. There are x,y e G with 
ax = by = c. By (6) and (7), cr c. 
For (iii) ((vi)) similarly as for (ii) ((v)). 

Lemma 7. There are a quasigroup Q(*) and a relation r on Q(*) such that r satisfies 
(1), (2), (3), (5), (7), (8), (10H13) and does not satisfy (4), (6) (9). 

Proof. Let Q{+) denote the additive group of rational numbers and Z(+) that of 
integers. Define * and r on Q(+) by x*y = x + 2y and xry iff x—yeZ(+). It 
is an easy exercise to show that Q(*) is a quasigroup and r satisfies (l)-(3), (5), (7), (8), 
(10H-3). On the other hand, 

1 * 1/2 r 1 * 0 and 1/2 — 0 £ Z ( + ) , 
1 * 1/2 = 0 * 1, 1 r 0 and 1/2 — 1 £ Z ( + ) . 

Thus r does not satisfy (4), (6) and (9). 
Lemma 8. There are a quasigroup Q(*) and a relation r on Q(*) such that r satis­

fies (1), (2), (4), (6), (7), (9X13) and does not satisfy (3), (5), (8). 
Proof. The same notation as in the proof of Lemma 7. It is sufficient to put 

x *y = 2x + y and xry iff x—y e Z ( + ) . 
Lemma 9. There are a quasigroup <2(*) and a relation r on Q(*) such that r satis­

fies (3X6), (8)-(13) and does not satisfy (1), (2), (7). 
Proof. The same notation as in the proof of Lemma 7. Put x *y = (1/2) x + 

+ (1/2)-y, and xry iff x— yeZ(+). We have 

0 r 1, 1/2 r 1/2 and 3/4 — 1/4 <£ Z ( + ) , 
1/2 r 3/2 and 0 * 1/2 — 0 * 3/2 <£ Z ( + ) . 

Thus r does not satisfy (7), (1) and (2). The rest is obvious. 
Lemma 10. There are a quasigroup Q(*) and a relation r on Q(*) such that r satis­

fies (1), (3), (4), (6), (9X13) and does not satisfy (2), (5), (7), (8). 
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Proof. The same notation as in the proof of Lemma 7. Set x * y = x + (1/2)3;,anc* 
xry iff x — y e Z(+) . In this case, 

0 r 1 and 1 * 0 — 1 * 1 <£ Z(+) , 
0 * 1 = 1/2 * 0,1 r 0 and 0 — 1/2 £ Z ( + ) , 

0 r 1, 2 r 1 and 0 * 2 — 1 * 1 £ Z(+) . 

From this we see that r does not satisfy (2), (5), (8), and (7). 
Lemma 11. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (2)-(5), (8), (10)-(13) and does not satisfy (1), (6), (7), (9). 
Proof. The proof is similar to that of Lemma 10. 
Lemma 12. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (1), (2), (5)-(7), (10)-(13) and does not satisfy (3), (4), (8), (9). 
Proof. The same notation as in the proof of Lemma 7. Set x * y = 2x + 2-y, and 

xry iff x —y e Z(+) . As is it easy to see, 

0 * 1 r 1 * 1/2, 0 r 1 and 1 — 1/2 ^ Z(+) . 

Hence r does not satisfy (3), (4), (8), (9) (since Q(*) is commutative and r is reflexive). 
Lemma 13. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (7)-(ll), (13) and does not satisfy (l)-(6)3 (12). 
Proof. Take the additive group of integers Z(+) for Q(*) and put x ry iff x and y 

are even numbers. 
Lemma 14. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (l)-(6), (11)-(13) and does not satisfy (7)-(10). 
Proof. Consider the group Z(+) (as Q(*)) and set xry iff x —y = 0, — 1 or 1. 
Lemma 15. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (l)-(4), (7), (10), (12), (13) and does not satisfy (5), (6), (8), (9), (11). 
Proof. Put, for all x,y eZ(+),xry iff x —y > 0. 
Lemma 16. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (2), (4)-(6), (9), (10), (12), (13) and does not satisfy (1), (3), (7), (8), (11). 
Proof. It sufficies to define x * y = y — x and xry iff x —y > 0, x>y e Z(+) . 
Lemma 17. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (1), (3), (5), (6), (8), (10), (12), (13) and does not satisfy (2), (4), (7), (9), (11). 
Proof. The proof is similar to that of Lemma 16. 
Lemma 18. There are a quasigroup Q(*) and a relation r on Q(*) such that r 

satisfies (l)-(ll) and does not satisfy (12), (13). 
Proof. Obvious. 
Lemma 19. Let 8 ^ % be a subsystem which is full for the class of all quasi-

groups. Then 2 contains at least one of the following independent subsystems: 

{(1), (3), (4)} , {(1), (3), (6)} , {(1), (3), (9)}, 
{(1), (4), (5)} , {(1), (4), (8)} , {(1), (5), (6)}, 
{(!)> (5), (9)} , {(1), (6), (8)} , {(1), (8), (9)} , 
{(2), (3), (4)} , {(2), (3), (6)} , {(2), (3), (9)} , 
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{(2), (4), (5)} , {(2), (4), (8)}, {(2), (5), (6)}, 
{(2), (5), (9)} , {(2), (6), (8)}, {(2), (8), (9)}, 
{(3), (4), (7)} , {(3), (6), (7)} , {(3), (7), (9)}, 
{(4), (5), (7)} , {(4), (7), (8)}, {(5), (6), (7)}, 
{(5), (7), (9)} , {(6), (7), (8)} , {(7), (8), (9)} . 

Proof. The lemma follows immediately from Lemma 7, Lemma 8 and Lemma 9. 
Lemma 20. Let 2 £ 91 be a subsystem which is full for the class of all quasi-

groups. Then 2 contains at least one of the following independent subsystems: 

{(1), (4), (5)} , {(1), (4), (8)}, {(1), (3), (5), (6)}, 
{(1), (5), (9)}, {(1), (6), (8)} , {(1), (8), (9)}, 

{(1), (2), (3), (4)}, {(2), (3), (6)}, {(2), (3), (9)} , 
{(2), (4), (5), (6)} , {(2), (5), (9)}, {(2), (6), (8)}, 

{(2), (8), (9)}, {(3), (4), (7)}, {(3), (6), (7)} , 
{(3), (7), (9)} , {(4), (5), (7)}, {(4), (7), (8)}, 
{(5), (7), (9)}, {(6), (7), (8)}, {(7), (8), (9)} . 

Proof. The lemma is an easy consequence of Lemma 19, Lemma 10, Lemma 11 
and Lemma 12. 

Lemma 21. Let £ c 91 be a subsystem which is full for the class of all quasi-
groups. Then 2 contains at least one of the following independent subsystems: 

{(1), (4), (5)}, {(1), (4), (8)}, {(1), (3), (5), (6), (11)}, 
{(1), (5), 9)}, {(1), (6), (8), (11)}, {(1), (8), (9)}, 

{(1), (2), (3), (4), (11)}, {(2), (3), (6)}, {(2), (3), (9)}, 
{(2), (4), (5), (6), (11){ , {(2), (5), (9), (11)} , {(2), (6), (8)}, 

{(2), (8), (9)}, {(3), (4), (7), (11)}, {(3), (6), (7)} , 
{(3), (7), 9)}, {(4), (5), (7)}, {(4), (7), (8)}, 
{(5), (7), (9)} , {(6), (7), (8)}, {(7), (8), (9)} . 

Proof. The lemma can be deduced from Lemma 20, Lemma 15, Lemma 16, 
Lemma 17. 

Lemma 22. Let 2 £ 91 be a subsystem which is full for the class of all quasi-
groups. Then 91 contains at least one of the following independent subsystems: 

{(1), (4), (5), (10)} , {(1), (4), (8)} , {(1), (3), (5), (6), (10), (11)}, 
{(1), (5), (9)} , {(1), (6), (8), (11)}, {(1), (8), (9)}, {(1), (2), (3), (4), (10), (11)}, 

{(2), (3), (6), (10)} , {(2), (3), (9){, {(2), (4), (5), (6), (10), (11)}, 
{(2), (5), (9), (11)} , {(2), (6), (8)} , {(2), (8), (9)} , {(3), (4), (7), (11)} , {(3), (6), (7)} , 

{(3), (7), (9)}, {(4), (5), (7)} , {(4), (7), (8)}, 
{(5), (7), (9)}, {(6), (7), (8)}, {(7), (8), (9), (12)} . 

Proof. By Lemma 21, Lemma 13 and Lemma 14. 
Theorem 1. The independent and full subsystems of the system % for the class of 

all division groupoids (and also for the class of all quasigroups) are the following: 
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(i) 
(ü) 
(iü) 
(iv) 
(v) 
(vi) 

{(1),(2), 
{(1),(2), 
{(1),(3), 
{(1),(3), 
{(2), (4), 
{(2), (4), 

(vii) {(1),(6), 
(viii){(l),(6), 
(ix) {(2), (5), 
(x) {(2), (5), 
(xi) {(3), (4), 
(ai) {(3), (4), 
(xiii){(l),(4), 
(xiv) {(1),(4), 
(xv) {(2), (3), 
(xvi) {(2), (3), 
(xvii) {(1), 

(xi-) {(1), 
(xxi) {(1), 
(xxiii) {(2), 
(xxv) 
(xxvii) 
(xxix) 
(xxxi) 
(xxxiii) 
(xxxv) 
(xxxvii) 
(xxxix) 
(xli) 

{(2), 
{(2), 
{(3), 
{(3), 
{(4), 
{(4), 
{(5), 
{(6), 
{(7), 

(3), (4), (10), (11), (12)}: 

(3), (4), (10), (11), (13)}. 
(5), (6), (10), (11), (12)}, 
(5), (6), (10), (11), (13)}, 
(5), (6), (10), (11), (12)}, 
(5), (6), (10), (11), (13)}, 
(8), (11), (12)}, 
(8), (11), (13)}, 
(9), (11), (12)}, 
(9), (11), (13)}, 
(7), (11), (12)}, 
(7), (11), (13)}, 
(5), (10), (12)}, 
(5), (10), (13)}, 
(6), (10), (12)}, 
(6), (10), (13)}, 
(4), (8), (12)}, 
(5), (9), (12)}, 
(8), (9), (12)}, 
(3),(9),(12)}, 
(6), (8), (12)}, 
(8), (9), (12)}, 
(б),(7),(12ì}, 
(7), (9), (12)}, 
(5), (7), (12)}, 
(7), (8), (12)}, 
(7), (9), (12)}, 
(7), (8), (12)}, 
(8), (9), (12)}. 

(xviii) {(1),(4),(8),(13)}, 
(xx) {(1),(5),(9),(13)}, 
(xxii) {(1),(8),(9),(13)}, 
(xxiv) {(2),(3),(9),(13)}, 
(xxvi) {(2), (6), (8), (13)}, 
(xxviii) {(2), (8), (9), (13)}, 
(xxx) {(3),(6),(7),(13)}, 
(xxxii) {(3),(7),(9),(13)}, 
(xxxiv) {(4), (5), (7), (13)}, 
(xxxvi) {(4), (7), (8), (13)}, 
(xxxviii){(5),(7),(9),(13)}, 
(xl) {(6), (7), (8), (13)}, 

Proof, First we show that (i)-(xli) are full systems of axioms of the normal con­
gruence relation for the class of all division groupoids. 

(i) By Lemma 3 (i), (vi), (vii), (iii), (iv, (v). 
(ii) By Lemma 3 (x), (vi), (vii), (iii), (iv), (v). 
(iii) By Lemma 5 (iii), (i) and Lemma 3 (v), (vi), (vii). 
(iv) By Lemma 4 (viii) and by (iii) of this proof. 
(v) By Lemma 4 (v), (iv) and Lemma 3 (v), (vi), (vii). 
(vi) By Lemma 5 (vi) and by the preceding. 
(vii) By Lemma 4 (vii), Lemma 3 (iii), Lemma 5 (ii), (iii) and by Lemma 3 (v), (vii). 
(viii) By Lemma 4 (ix) and by the preceding. 
(ix) By Lemma 5 (v), Lemma 3 (iv), Lemma 4 (v), (iii) and by Lemma 3 (v), (vi). 
(x) By Lemma 5 (vii) and by the preceding. 
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(xi) By Lemma 3 (ii), Lemma 6 (i) and by (i) of this proof. 
(xii) By Lemma 6 (i), (iv) and by the preceding. 
(xiii) By Lemma 5 (i), Lemma 4 (v), Lemma 3 (v), (vi), (vii). 
(xiv) By Lemma 5 (i), Lemma 3 (xi) and by the preceding. 
(xv) By Lemma 4 (iv) and by (iii) of this proof. 
(xvi) By Lemma 4 (iv) and by (iv) of this proof. 
(xvii) By Lemma 3 (iii), Lemma 5 (i), Lemma 4 (vii) and by Lemma 3 (v), (vii). 
(xviii) By Lemma 6 (ii) and by the preceding. 
(xix) By Lemma 3 (iv), Lemma 5 (i) and by (ix) of this proof. 
(xx) By Lemma 3 (xii) and by the preceding. 
(xxi) By Lemma 3 (iv) and by (xvii) of this proof. 
(xxii) By Lemma 3 (xii) and by the preceding. 
(xxiii) By Lemma 3 (iv), Lemma 4 (iv) and by (xix) of this proof. 
(xxiv) By Lemma 6 (iii) and by the preceding. 
(xxv) By Lemma 3 (iii), Lemma 4 (iv) and by (vii) of this proof. 
(xxvi) By Lemma 3 (xiii) and by the preceding. 
(xxvii) By Lemma 3 (iii) and by (xxiii) of this proof. 
(xxviii) By Lemma 3 (xiii) and by the preceding. 
(xxix) By Lemma 3 (ii), Lemma 4 (iv), Lemma 5 (iii) and by (xi) of this proof. 
(xxx) By Lemma 6 (v) and by the preceding. 
(xxxi) By Lemma 3 (ii) and by (xxiii) of this proof. 
(xxxii) By Lemma 6 (iii) and by the preceding. 
(xxxiii) By Lemma 3 (ii), Lemma 5 (i), Lemma 4 (v) and by (xi) of this proof. 
(xxxiv) By Lemma 6 (vi) and by the preceding. 
(xxxv) By Lemma 3 (ii), (iii), Lemma 5 (i) and by (xxv) of this proof. 
(xxxvi) By Lemma 6 (ii) and by the preceding. 
(xxxvii) By Lemma 3 (iv) and by (xxxiii) of this proof. 
(xxxviii) By Lemma 6 (vi) and by the preceding. 
(xxxix) By Lemma 3 (iii) and by (xxix) of this proof. 
(xl) By Lemma 6 (v) and by the preceding. 
(xii) By Lemma 3 (ii), (iii), (iv) and Lemma 4 (ii), (vii). 

The systems (i)—(xii) are independent, as it follows from Lemma 7, Lemma 8, ..., 
Lemma 18, and hence these systems are full and independent. On the other hand, if 
S is full and independent, then, with respect to Lemma 22 and Lemma 18, S contains 
one of the systems (i)-(xli) and we are through. 
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