Acta Universitatis Carolinae. Mathematica et Physica

R. Zezula; J. Rocek; A. Miasnikov

On relations between right and left eigenvectors of nonselfadjoint matrix pencils

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 18 (1977), No. 1, 37--45

Persistent URL: http://dml.cz/dmlcz/142394

Terms of use:

© Univerzita Karlova v Praze, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142394
http://project.dml.cz

1977 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 18, NO. 1, Pag. 3745

On Relations Between Right and Left Eigenvectors
of Nonselfadjoint Matrix Pencils

R. ZEZULAY¥)
Mathematical Institute of the Charles University, Prague

J. ROCEK and A. MIASNIKOV**)
Institute of Nuclear Research, Rez

Received 30 October 1975

The authors consider (from the reactor physicist viewpoint) some useful relations between
right and left eigenvectors of nonselfadjoint generalized matrix eigenvalue problems via their
equivalence to properly constructed ordinary eigenvalue problems, and their use for the de-
termination of the perturbed dominant eigenvalue.

ABTOpBI 3aHUMAIOTCSI, C TOYKU 3PeHUsI (HU3HKH PEaKTOPOB, HEKOTOPBLIMHU YaCTO MCIIOJIB3YE -
MBIMM COOTHOLICHUSIMH MEX/AY IPaBbIMU M JICBBIMM COOCTBEHHBIMM BEKTODaMH B HECAMOCO-
TIPSHKEHHBIX 00001IEHHBIX MAaTPUYHBIX 32[jauaX Ha COOCTBEHHBIE 3HAUEHWSI C TIOMOIIIO HX S9KBHBa~
JIEHTHOCTH C HA[JIe)KAlUM O00pa3oM IOCTPOEHBIMH OOBLIKHOBEHHBLIMH 33jayaMM Ha COOCTBEHHBbIE
3HAUEHHUsI U MX HCIOJIb30BaHUEM JUIS BBIUMCIICHUSI BO3MYILEHHOIO JOMUHAHTHOTO COOCTBEHHOTO
3HAYEHUS.

Autofi studuji, s hlediska reaktorové fyziky, nékteré uzite¢né vztahy mezi pravymi a levymi
vlastnimi vektory zobecnéného nesamoadjungovaného maticového problému vlastnich hodnot
pomoci vhodné sestrojeného ekvivalentniho oby&ejného problému vlastnich hodnot, a jejich uziti
pfi vypoltu porudeného dominantniho vlastniho ¢isla.

Introduction

In this note, there are summarized and discussed in detail the problems con-
cerning the equivalence question of the generalized nonselfadjoint eigenvalue
problem Px = AQx for the right eigenvector and also of the corresponding eigen-
value problem y°*P = 13*Q for the left eigenvector in the Ex space. There
is accepted a reactor physicist’s notation and point of view, i.e., the matrix Q is
assumed to be nonsingular and the matrix M = Q1P e« (En) of Perron —
Frobenius type i.e., with 4 as positive dominant eigenvalue and x, z* resp. as the
corresponding positive neutron flux vector or neutron importance vector resp. [1]).
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There are also discussed the relations between these eigenvectors and their use
for the determination of the perturbed dominant eigenvalue, needed in some
reactor criticality calculations [2].

I. Equivalence problems for matrix pencils

Let Ex be a real N-dimensional Euclidean space with <{x, y)>, x,y € Ex as
scalar product. Let .«Z/(En) denote the algebra of linear endomorphisms on Ey
with the involution A« A%, A, A* € /(ExN), A* transposed. Let A4 be the
neutron absorbtion matrix, P the neutron production matrix (both in the sense
of the heterogeneous method of reactor physics) and let I be the identity matrix
in Ey. Further, let us suppose that the matrix

(1.1) Q=1+ Ae A (En)
is nonsingular, i.e.
(1.1a) QO1le.Z/(En)

It is well known [2] that the matrices P and A, and thereforealso Q = I + A4
are nonselfadjoint, i.e.

(L.2) P#P, Q#0Q% O1#(QN) =(Q)*
so that we have in general
(1.3) M=Q1P+£ M, N=PQ1l+£N"*

and the matrix N is similar to the matrix M
(1.32) OMQO™1 = Q(Q'P)Q! = PO =N

Now, let us make following Assumption I for have a reactor criticality mathe-
matical model in Ey (N denoting the number of fuel, safety and control rods
in the reactor core):

(I) The matrix M =Q-1P is of Perron — Frobenius type, with A as dominant
simple positive eigenvalue.

Clearly, A is also a dominant simple positive eigenvalue of N, N being similar
to M in virtue of (1.3a).

We shall consider both the following eigenvalue problems for the nonself-
adjoint matrix pencil P — AQ € &Z(E ) and its adjoint pencil P* — 1Q* € 2/(En):
(1.4) Px = 10x
(1.5) Py =10y

Clearly, in virtue of the assumption (1.1a), the generalized eigenvalue problem

(1.4) is equivalent to the following non-selfadjoint matrix eigenvalue problem for
the matrix M = Q1P

(1.6) Mx = Ax
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and the corresponding adjoint matrix eigenvalue problem (1.5) is equivalent to the
following nonselfadjoint matrix eigenvalue problem for the matrix
N* =[PO" = (Q)'P" = (Q)*'P*
am Ny =4y
Because the matrices M, N € o/(Ey) are in general nonselfadjoint, i.e.,
M#£EM =P QY =P(Q),N'"=N= PO+ N*, we have, for using
the perturbation theory, to solve both the adjoint eigenvalue problems for (1.6)

(1.6a) Mz = Az
and for (1.7)
(1.7a) Nw = Aw

Using the well known relations [3]
(1.8) Q)" =(@Q)L001=010=10"(Q")=(0)1Q" =1
we obtain from (1.6a) and (1.5) the following useful relation between the left eigen-
vectors z,y resp. of M, N e «/(Ey) resp.:
(1.9 A0°[(Q") 2] = P(Q") 2] = az = Q"y

Similarly, from (1.7a) and (1.4) using (1.8), there follows the following useful
relation between the right eigenvectors x, w resp. of M, N € o/(Exn) resp.:

(1.10) AQ[Ow] = P[Ow] = fw = Ox

Remark 1.1: o, 8 £ 0 resp. in (1.9), (1.10) resp. are suitable real numbers
(norming constants).

2.Biorthogonality relations, perturbed dominant eigenvalue

It is well known [3], that, if assuming both the matrices M, N* € «/(En),
with eigenvalues u;€o(M) < C,v;€o(N°) = C resp, 1=1,2,..., N have
the complete (i.e. forming a base in Ey) system of normalized eigenvectors
x; = x(us) # 0, yi = y(¥7) # 0, llxsll = [lyill = 1, then the vectors z;, w; of the
corresponding biorthogonal (with respect to the usual scalar product <{x,y> in
Ey) bases

0,77
2.1 zi = 2u) €En, {2, %) = dyj S iy
(v}, u¥ resp. denotes the complex conjugate to

ui€o(M) < C, vieo(N)<C resp,, i, =1,2,...,N)

0,07
(2.2) w; = w() €EEN, {(yi,wjy = 05 = \\ L .
. yi=]
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are just the normalized eigenvectors of the adjoint matrices M*, N € &(Eyn) resp.,
i.e., they fulfil the relations (1.6a), (1.7a) resp.

Using this fact, we obtain by help of the usual perturbation theory [4] the
following explicite expressions for the perturbations 44, AyA of the simple
positive dominant eigenvalue A of M, N, dues to the perturbation AM,
AN € ./(Ex) resp. of M, N e .</(Ex) resp.:

@3) Mah= A0 AMx, sy i ) = sl = 1)
(X &) N
) . (/1Nw,y> AN . 0o _
(2.4) At = SEEEL (— aNw, 3y il = = 1)

Theorem 2.1: Let P, Py € .«/(ENn).

Let Q=+ A)e.«(Enx) and Qo = (I + Ao) € «#/(En) be nonsingular.

Let 2> 0 be a simple dominant eigenvalue of Mo = Qg' Py, Ny =
= PoQ¢' € /(Ey), with the corresponding right eigenvectors x, Mox = Ax, w,
Now = Aw and left eigenvectors z, Mgz = Az, y, Ngy = Ay resp.

Let M = Q1P,N = PQ1.

Then for the first order perturbations ApA, AnxA resp. of A, dues to the
perturbations AM = M — Mo, AN = N— Ny resp. of M, N resp. the following
relation is valid:

29 At — Ayt 4 M0 =0 INoQ) 2>
{x,2)
where A A, AxA resp. are given by (2.3), (2.4) resp.

Proof:
Clearly, we have, in virtue of the relations (1.9), (1.10)

(2.6) B <{w, y) = Q%3 = <x, Qy) = olx, 2)
so that the denominators in both the expressions (2.3), (2.4) resp. for 4 pA, A yA
resp. are proportional. For the numerator in (2.4), we have obviously

@7 Liane,yy = @V —Noyw, (092> =
= (QU(PQ™T — PoQ) Ox, %)
= (M—Q"NoQ) x, 5
= <AMx: 2‘> + <M0 ‘_'Q_INOQ) X Z>
E.D.
Corollary 2.1:

If Q= Qo, ie.,, A= Ao, (no change in neutron absorbtion during the reactor
perturbation), then we have AxyA = Ayl .

Proof: For Q =Qo we have Q-1NoQ = Q' (PoQ7") Qo = Q3'Po = Mo,
Q.E.D.
Remark 2.1: Physical interpretation of the relations between the eigenvector
pairs x,z and w,y is the following: Because the matrix M = Q~1P is assumed
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to be of Frobenius type with 1€ (M) as dominant simple positive eigenvalue,
M* is also of Frobenius type and both the corresponding left and right eigen-
vectors x = x(A) and z = z(1) of M are positive. Therefore, x has the physical
meaning of neutron flux vector (giving the neutron fluxes on the rods in the reactor
core) and (2.3) implies, that the positive left eigenvector z ot M is the weighting
vector for the neutron flux vector x, giving the importance of the individual
components of x with respect to the perturbation A4 of 4. Therefore, x is
called the neutron importance vector. Clearly, the physical interpretation of the
equivalence between the equations (1.4) and (1.6) is the following: The neutron
absorbtion A is so little, i.e. |4 << 1, that P’ = Q1P ~ (I—A) P can again
be interpreted as production matrix, to which there corresponds in (1.6) a zero
absorbtion matrix A’ = 0.

The matrix N, being similar to M, need not be of Perron — Frobenius type,
so that the right and left eigenvectors @ = w(4) and y = y(1), corresponding to
the dominant simple positive eigenvalue A€ o(N) of N have in general no direct
physical interpretation in reactor physics. But if N is also of the Perron - Frobenius
type, the same physical interpretation of w,y can be applied.

If Q is a matrix with positive entries, then Q® has the same property, so
that both Q and Q° in this case leave invariant the cone of positive vectors in Ex.
But, Q being nonsingular, (Q°)! = (Q1)" needs not leave the cone of the
positive vectors in Ey invariant. Therefore, if M = Q-1P is of Perron — Fro-
benius type, and both the matrices Q, (Q1)*P(Q1)* leave invariant the cone of
positive vectors in Ey, then the right and left eigenvectors (with o > 0,8 > 0)

w(A) = f10x(A) and y(4) :% (O IP*(Q*)12(4) of N, corresponding to its

dominant simple positive eigenvalue A€ o(N), are both positive and therefore
can again be interpreted as the neutron flux @ and neutron importance y in
a reactor with production matrix P’ = PQ-1 ~ P(I—A) and absorbtion matrix
A" =0.

Now, we shall generalize the biorthogonality property [3] to the nonselfadjoint
matrix pencil P —AQ € #/(En) :

Theorem 2.2

Let P —AQ € #/(En) be a given matrix pencil, with Q € 2/(E ) nonsingular,
01 e (Ey). Let {x,y)> be the (complex type) scalar product of x,y € Exy < Ux .
Let the set {xx}, (P —AxQ) xx = 0, xx + 0, 2 = 1,2, ..., N of right eigenvectors
xx = x(Ax) of the matrix pencil P —AQ, corresponding to its eigenvalues A,
span Ey.
Let {z:},i =1,2,..., N be the basis of Ex biorthonormal to {xx} with respect
to the scalar product <z, x>, 2, x€ Ex < Ux, [3], i.e,,
0if 1 +%
(2.8) =i, xky = Oik <1 ik
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Then

29) yi =y = (@)=
are left eigenvectors of the matrix pencil 4 -— AI, corresponding to its eigenvalues
Ar, ie., wehave for v 71 =1,2,..., N

(2.92) (P* =430 yi =0, i #0

Proof: We have clearly, using the definition (2.9) of y;, and the relation
QN =) '
(2.9b) zi= 0"y

Let us compute, using the definition (2.8) of z; and the relation (2.9b) between
z; and g, the scalar product
(P iy xky = {yis Py = {yi> 2eQx) = A3 {Q" yi, xp) =
= A} {21, xp) = Apdix = Af0ix =
= A (Q"yi, xky = A7 Q"yi> xi)
Thus, we have, for ¥ xx € {x&},

(2.10) AP — 40" yi> xky =

anf therefore, in virtue of the assumption span {x;} = Ex, we have
(2.10a) P'y; = 210"y

where

(2.10b) yi = (012 =(QOH'2 0 for ¥i=1,2,..., N
because we have, by (2.8),
(.10c) i xky =0k =240 for ¥1=1,2,...,N Q.E.D.

Corollary 2.2

Let the adjoint matrix pencil P* —A'Q® €.2/(Eyx) with nonsingular
0 e ANy, (Q*)! =(Q V)" e/(En) have a complete system of right eigen-
vectors yr = y(A;) 7% 0, (P* —A;0°) yxr = 0, so that we have
(2.11) span  {yk}y = En

Let {w;}, ¢ =1,2...., be the basis of Ey, biorthonormal to {yx} with
respect to the scalar product {w,y>, w,veEn, ie.

0 if 1k
2.12 Wi, Viy = Otk =
(2.12) {wi, yey = Oik N1 i iz’
Then
(2.13) xe = x(A) = Q7lw;

are the left eigenvectors of the adjoint matrix pencil P* — A*Q*, corresponding
to its eigenvalues™ A, i.e., we have for ¢+ i=1,2,..., N

(2.13a) P—=2Q)x; =0, x%+0
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Proof. Because the adjoint matrix pencil P* —A"Q* fulfills in this case all
assumptions of Theorem 2.2., we obtain both the assertions (2.13), (2.13a) by
applying this theorem and the involutory properties of the involution operation®
in @/(Eyn). QE.D.

There is another possible way of reducing the generalized eigenvalue problems
(1.4), (1.5) resp. to equivalent ordinary eigenvalue problems: via inverse eigenvalue
problems instead inverting Q = I + A. We can consider A, 4% resp. in (1.4),
(1.5) as a physical parameter (the so called criticality parameter) instead as a mathe-
matical eigenvalue of the matrix pencils P = AQ, P* —A°Q" resp. and introduce
formally a new eigenvalue u = u(1), v = v(p) resp., setting

(2.14) A0, A =0%0

and

(2.14a) R(A) x = ux, where R(}) = (/ITP - A) (neutron balance condition)

(2.14b) u=u) =1 (criticality condition)

instead (1.4), as an inverse eigenvalue problem for the corresponding right eigen-
vector x »0 of R(A),
1

(2.15)  S(p) y = vy, where S(p) = (? P — A‘) (neutron balance condition)

(2.15a) v = »(p) = 1 (criticality condition)

instead (1.5), as an inverse eigenvalue problem for the corresponding right eigen-
vector y >0 of S(o).

Let us assume that, for 1 € {Amin, Amax)> 0 € {Omin, Omax), the operators R(1)
and S(p) are of Perron-Frobenius type, and both the dominant eigenvalue func-
tions u(A), v (o) are monotone, with 1 — & < u(d), v(o) < 1 + e, &1, 62 > 0.
We denote Acrit., Ocrit. Tesp. the critical values of the criticality parameters 4, o,
for which the criticality conditions (2.14b), (2.15a) resp. are just fulfilled for the
dominant eigenvalues, i.e.,

(2.16) pa = pllerit.) =1,

2.17) vg = ¥(gerit.) = 1

where pg, vq¢ resp. denote the simple positive dominant eigenvalue of R(Zerit)s
S(oerit.) resp. By xa = x(Aerit.), ya = ¥(0erit.), [[¥all = [yall = 1 let us denote the
corresponding normalized positive eigenvectors.

Clearly, we have, denoting (* the complex conjugate of {€C, and by R*
the adjoint operator to R € 2/(En)

(2.18) [RA)]* = ; Pt — A" — S
In general, we shall have obviously
(219) }‘:rit~ = [lgrit- ]‘ * 4
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so that, despite the validity of the relation (2.18), the positive normalized eigen-
vectors x,y shall not be, in general, elements of biorthonormal bases of right and
left eigenvectors of R(Aerit.) in En.

But if, in a special case, the relation

(2~20) A-:m. = [lcrit.]. = Ocrit.
1

shall be valid, and if the matrix R(Acrit.) =T P — A shall have a complete
system of normalized right eigenvectors erit.

{xk # 03}y R(Merit. xx = prxk, span {xx} = Ex,

then the vectors i, i =1,2,..., N, {y; xx» = dix of the corresponding bi-
orthonormal base in Ex shall be normalized left eigenvectors of R(Aerit.), i.€.,
we shall have [R(Acrit)]" vi =uivi, vi £ 0, i=1,2,..., N, u} = 1.

3. An illustrating numerical example

For numerical illustration of the above mentioned results in the Euclidean
space Es3, let us take [5]

(22 1 18
(3.1) P= ( L1 2 09
LI 1 18

as the neutron production matrix, and

1 2
3.1 A=(1 1)
1 1 1

as the neutron absorbtion matrix, so that the matrix Q = I + A is nonsingular
(det( Q) = 3 # 0) and has positive entries.

The matrices P and A4 were chosen so, that the matrix M = Q1P is
symmetric with nonnegative entries and has three simple real eigenvalues 0,9,
1 and 1,1, with A4 = 1,1 as simple positive dominant eigenvalue, and x4 = z4 =
= (1, 0, 0) as the corresponding nonnegative right and left eigenvectors, so that M
is of Perron-Frobenius type.

The matrix N = PQ-! is a nonsymmetric one. Because N is similar to M,
its eigenvalues shall be the same as for M, i.e., also real and simple, again with
Aq¢ = 1,1 as simple positive dominant eigenvalue, to which there correspond in

—

this case the right eigenvector wg = (1, —;—,—12—) and the left eigencvetor yg =

1 .
= (ﬁ’ 0, —V2—') , so that N is not of Perron-Frobenius type.
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We have clearly
3.3)

2,2 1,1 1,1 2 1 2 2 1 1 —1 0 —1
PP=1{1 2 1},0=|121),0" =|1 2 1),01'= —3 % 0)
1,8 0,9 1,8 1 1 2 21 2 -1 1

so that

L1O O
(3.4 M=0wP=|010

0 00,9

) 38 2 —12

(3.5) N=POl=—o| 4 31 —6

5 2 21
and
(3.6) Oxa= (2 11), Prxg=(22 1,1 1,1) = 1,1 Oxg

. l .

(3‘7) de:(V—Z:’O’O), Pyd=(]/_,00)-lled

so that xg, yg resp. are the right (left) eigenvector resp. of the matrix pencil
P —2Q, corresponding to its dominant eigenvalue Ag = 1,1. Verifying the
relations (1.9) and (1.10), we compute

1
(3.8) 0'ya == V~(10(n 5
and
(3.9) @Falnﬂhgazm

We see that, using the relations (1.9) and (1.10), we need not compute zq
and wg from the homogeneous systems (M*® —1g) za =0, (N —1g) wqa =0,
the norming constants for z4 and wg being arbitrary.
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