
Acta Universitatis Carolinae. Mathematica et Physica

Z. Schenková
Extreme value statistics of earthquakes

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 23 (1982), No. 1, 73--79

Persistent URL: http://dml.cz/dmlcz/142486

Terms of use:
© Univerzita Karlova v Praze, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142486
http://project.dml.cz


1982 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 23. NO. 1. 

Extreme Value Statistics of Earthquakes 

Z. SCHENKOVÁ 
Geophysical Institute, Czechoslovak Academy of Sciences, Prague*) 

Received 8 December 1981 

The theory of largest values was applied to the data in the European and Balkán earthquake 
catalogues considering the first and the third asymptotic distributions. Gumbel's distribution of 
the first type holds for extréme values derived from both normá l and exponential populations. 
The extréme value approach in špite of its limitations, is a suitable method for obtaining statistical-
ly defined information on occurrence probabilities or return periods of large earthquakes. 

nepBoe H TpeTbe acHMnTOTH-iecKoe pacnpeflejieHHe TeopHH 3KCTpeMajn>Hbix 3HaneHHH 6biJio 
npHMeHHMo K CTaTHCTince 3eM.neTp5iceHHH eBponeňCKoro H 6ajncaHCKoro KaTajiora. PacnpeaejieHHe 
TyMÓeHH nepBOrO THna V/IOBJIeTBOpHeT 3KCpeMaJIbHbIM 3HaHeHHHM eCJIH MarHHTy^bl 3eMJIeTpHCe-
HRH pacnpe/iejieHbi KaK no HopMajibHOMy TaK no noKa3aTejibHOMy 3aKOHaM. TeopHH 3KCpeMajibHbix 
3Ha4eHHH BOnpeKH CBOHM OrpaHHHeHHHM HBJIHeTCH V/JOĎHblM MeTOflOM flJIH nOJiyHeHHH CTaTHCTF-
HeCKH OnpeileJIeHHOH HH(|)OpMaHHH O BepOHTHOCTH nOHBJIeHHH HJHI nepHOfla nOBTOpeHHH CHJIbHbIX 
3eMJIeTpHCeHHH. 

První a třetí asymptotické rozdělení největších hodnot bylo aplikováno na data z evropského 
a balkánského katalogu zemětřesení. Gumbelovo rozdělení prvního typu vyhovuje extrémním 
hodnotám odvozeným jak z normální tak exponenciální populace. Teorie extrémních hodnot se 
jeví navzdory svým omezením vhodnou metodou pro získání statisticky definované informace 
o pravděpodobnosti výskytu nebo periodě opakování velkých zemětřesení. 

Although it is understood that there is nothing inherently random about the 
origin of earthquakes, it has not yet been possible to predict in a deterministic way 
timing, magnitude and location of future earthquakes. The magnitude-frequency 
relation N(M) and the most likely maximum magnitude Mmax for each region are 
the basic parameters for defining, in a probabilistic sense, the future seismic activity 
of each source region. The N(M) distributions must be limited on both sides for 
physical reasons. The upper limit Mmax or Imax determines the activity threshold and 
consequently the highest possible seismic effects. It can be estimated in several 
ways [1], [2], e.g. using the characteristic of the medium, size of the faults, seismo-
tectonic analysis, strength of the material, thickness of the seismoactive layer, 
isostatic anomalies, the range of oscillation of the Benioff curve, empirical relation 

*) 141 31 Praha 4, Boční II., čp. 1401, Czechoslovakia. 
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between Mmax and the depth of focus, or by correlating observed Mmax and seismic 
activity A, by extrapolating the magnitude-frequency relation and finally also by 
the extreme value statistics. 

The theory of extreme values is founded on the following assumptions, which 
naturally limit the application of the results and must be considered in their inter­
pretation: 

(a) the conditions prevailing in the past must be valid also in the future, 
(b) the observed largest events in a given interval are independent, 
(c) the behaviour of the largest earthquakes in a given interval in the future will 

be similar to that of the past. 

The second part of the theory, which is called the asymptotic theory of extremes, 
deals with asymptotic forms. 

The stability postulate leads to three and only three asymptotic distributions of 
extremes and each assumes a specified behaviour of the absolute large values of the 
variable. This stability postulate may be described as follows: Let us assume that 
there are N samples each of the size n. From each sample the largest value is taken. 
Now the maximum of the N samples of size n is at the same time the maximum in 
a sample of Nn. Therefore the distribution of the largest values in a sample of size Nn 
should be the same as the distribution of the largest values in a simple of size n, 
except for a linear transformation. The asymptotic theory differs from the exact 
theory in the fact that it is still valid if a few neighbouring observations are dependent, 
which is quite favourable in the case of earthquakes. Asymptotic theory can be used 
if the initial distribution is unknown and the extreme observations are the only 
information available. 

In the occurrence of maximum magnitude earthquakes only the first and third 
asymptotic distributions are usually considered [3] —[8]. The first asymptotic 
distribution of extremes assumes an unlimited variable from the right which is con­
trary to the commonly held belief on the existence of an upper magnitude limit which 
cannot be exceeded within a given volume of material of certain physical properties 
and under given stress distribution [3] —[6]. The first distribution also assumes that 
its upper tail falls off in an exponential manner. Therefore the first distribution 
holds for extreme values derived from both normal and exponential populations [6]. 

Under the assumption of the initial exponential distribution of magnitudes 

H(x) = 1 - exp (-x) , x = 0 (1) 

the largest magnitudes x display a cumulative distribution of a double exponential 

lF(x) = exp [ -exp ( - y ) ] , y = ctn(x - un) , <xn > 0 . (2) 

where an is the extremal intensity function, un is the characteristic largest value, 
lF(un) = 1/e. 
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The mode of the largest reduced magnitudes yn = log n and therefore the pro­
bability of the most probable largest magnitude F(xn) has the form 

F(xn) = exp (- i ) . (3) 

The probability of the most probable smallest magnitude F(xi) is the solution of 
equation 

n = H . (4) 
F(xx) Fix,) log F^) log F^) 

The computation of the probability lF(xj) of thej-th most probable largest magnitude 
can be simplified by introducing the following two assumptions: 

; — ^ '*(*,) ^ J- (5) 
n n 

lF(xJ + 1) - lF(xj) = K(n) , j = 1, 2, ..., n - 1 , (6) 

where K(n) only depends on n. This second assumption has been derived from the 
observed frequencies where the differences amount to 1/n. The probabilities F(xi) 
and F(xn) are determined from equations (3) and (4) and, according to equation (7), 
the other (n — 2) probabilities rF(^) must be evenly distributed between F(xx) and 
F(xn). Therefore the probability of the most probable 7-th largest magnitude can be 
determined from the equation 

'*<*..) = Fix,) + L—L [F(xn) - E(x,)] • (7) 

n — 1 

The extreme normal distribution of magnitudes can be expressed as 

™F(x) = [l + <P(x)]l2, (8) 

where <P(x) stands for the Gaussian integral. 
The probability of the most probable largest magnitude NF(xn) is then obtained 

as the solution of the equation 

n - 1 = 2xB[l + <P(*„)]/2 INf(x„), (9) 

where INf(xn) is the probability density function of xn. The values of [1 + ^(xn)] 
are given in tables of normal probability functions for selected numerical values of 
the modes of the largest and smallest values of xn and xt. The value of n can be deter­
mined from equation (9). The probabilities of the most probable largest and the most 
probable smallest observation INF(x„) and INF(x!), are obtained from equation (8) 
as a function number of observations n. With a view to the symmetry of the normal 
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distribution INF(x„) = 1 - ^ ( j q ) , the relation for computing the probability of 
the j-th largest magnitude in a given time interval (7) is simplified to read 

mF(x£) = INT(x.) + [(/ - l)/(n - 1)] [1 - 2 «F(X1)] . (10) 

The third asymptotic distribution of the largest values [7], [8] is defined by the 
formula 

»'F(x) = exp [-((co -x)/(co -«„))<"] , (11) 
K > 0 , X _ CO , un < CO , 

where co is the upper limit of largest values, kn is the shape parameter, un is the charac­
teristic largest value and ulF(un) = \\e and luF(co) = 1. It means that there exists 
an upper threshold in the distribution of the largest values. The third asymptotic 
distribution is related to the first by a logarithmic transformation. 

Parameters co, u and k can be estimated by several methods [7] — by the classical 
method of moments or by the largest observed magnitude xN = MmaXt0bs. based on 
the stability postulate above mentioned or by the method of the least squares. For 
the estimate of the parameters by the first two methods, all values of x,- (i = 1, . . . , N) 
must be available. However, the classical method of moments does not guarantee 
that the upper limit co is larger than the largest earthquake magnitude observed 
in N years. 

For the estimate of parameters by the method of the least squares let us con­
sider xl9 x2,..., xN to be the observed maximum magnitudes in a given time interval 
in a given region arranged in order of increasing magnitude, and pl9 p2,..., pN to be 
the corresponding plotting positions. The plotting position pm of the m-th observation 
is defined by 

pm = m/(N + 1), (12) 

where m = 1, 2 , . . . , N is the rank of sample xt and N is the number of observations. 
If the curve should pass through all of the plotted observation points, the following 
would hold for each pt and x,-

pt = exp [-((co - Xi)l(to - u)f] . (13) 

In general, however, for each set of u, co, and k, this curve will be at some distance 
from every xt. Thus for every pt 

pi = exp[-((co-x'i)l(co-u))k] (14) 

will hold for a different xt, (i = 1,2,..., N). Then 

x[ = co — (co — u) z\ , (15) 

where z{ = —lnph X = l/k. The problem is to minimize 

ч = І(xt-x't)
2 ( 1 6 ) 

for co > 0, 0 < u < to, k > 0. 
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When considering the earthquake hazard in planning or in structural design 
the probabilistic estimate of the largest earthquake magnitudes in the next n years 
using the earthquake data from the past N years is a useful information. The proce­
dure of the statistics of extremes provides the expected and the most probable largest 
earthquake magnitudes (mode) among other quantities. 

On the assumption that the third asymptotic distribution of the largest values 
represents well the distribution of the largest earthquake magnitude in one year 
intervals, the largest magnitude in n years has a probability function IUF(xn) given 
by the relation 

'"F(x„) = ™F"(x) = exp [-n((co - x.)/(«, - «))*] . (17) 

The expected largest magnitude during the next n years is 

xn = co - (co - u) r(l + X) (1/nf (18) 

and the most probable largest earthquake magnitude xn during the next n years is 

xn = co - (co - u) [(1 - X)jn\\ where k = l/jfc. (19) 

The return period of earthquakes with magnitudes equal or greater than a given 
threshold value is defined for the first and the third asymptotic distributions as 

T(x) = [1 - F ( x ) r (20) 

assuming that the observations are equidistant in time. 
There are, however, limitations employing resulting values of the theory of 

extremes. Extreme value methods are unreliable for the estimation of return times 
greater than about one-half of the time span covered by the catalogue. In general, 
the extreme value statistics deals with the analysis of the extremes of a distribution 
and with the forecasting of further extremes. Thus the graphical or numerical treat­
ment can supply useful information on the return periods of earthquakes or the 
possibility of estimating their largest magnitudes which will be exceeded with a given 
probability. 

The theory of largest values was applied to the data in the European [9] and 
Balkan [10] catalogues. Examples of both asymptotic distribution of the largest 
values are given in Figs. 1 and 2. 

The deviation of the observed points from the approximating line or curve is 
the measure of the fitness of the statistical model to the actual physical process. 

Our analysis of the European data shown that: 
(1) the return periods corresponding to the normal extreme distribution are larger 

than the return periods corresponding to the extreme double exponential type 
of distribution (for hazard calculation, however, the exponential form is still 
prefered), 
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Fig. 1. The first asymptototic distribution of the largest values for three Balkan provinces (9, 11, 
12, 14—19, 22, 23, 25 — Bulgaria and the Eastern part of the Aegean region; 10, 13 — Albania 

and West Macedonia; 2, 3, 7 — North-Western Yugoslavia). 

Fig. 2. The third asymptotic distribution of the largest values for Albania and West Macedonia. 



(2) the third asymptotic distribution leads to larger return periods in comparison 
with the first distribution (i.e. to a lower hazard) and fits the observed data more 
closely. 
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