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Extreme Value Statistics of Earthquakes

Z. SCHENKOVA
Geophysical Institute, Czechoslovak Academy of Sciences, Prague*)

Received 8 December 1981

The theory of largest values was applied to the data in the European and Balkan earthquake
catalogues considering the first and the third asymptotic distributions. Gumbel’s distribution of
the first type holds for extreme values derived from both normal and exponential populations.
The extreme value approach in spite of its limitations, is a suitable method for obtaining statistical-
ly defined information on occurrence probabilities or return periods of large earthquakes.

IlepBoe M TPeThE ACHMMOTOTHYECKOE paClpele/ieHHe TEOPUH IKCTPEMAabHbIX 3HAYEHHH ObIIO
NIPUMEHUMO K CTAaTHCTUKE 3EMIIETPSICEHHI eBPOIEHCKOro 1 6ajikaHCKOro xaranora. PacnpzaeneHue
I'ymbens mepBOro THma yaOBJIETBOPSET 3KCPEMAsIbHBIM 3HAYCHUAM €CJIM MAarHUTYIbI 3eMieTpsce-
HUI pacnpeeieHbl Kak 10 BOPMAJILHOMY TakK ITO IOKa3aTenbHOMY 3aKoHaM. TeopHs 3kcpeMaIbHBIX
3HAYEHUN BOMPEKH CBOUM OTrPAHHYCHHSAM SBJISETCH YIOOHBIM METOOOM IJIA IOJIyYEHHS CTaTHCTV-
YECKH OIMpee/IEHHON HHGOPMALIMK O BEPOATHOCTH MOSIBIEHHSA MIIH IEPUOAA MOBTOPEHHS CHUIIBHBIX
3eMJIETPACCHUHH .

Prvni a tfeti asymptotické rozdéleni nejvétSich hodnot bylo aplikovano na data z evropského
a balkanského katalogu zemétfeseni. Gumbelovo rozdéleni prvniho typu vyhovuje extrémnim
hodnotam odvozenym jak z normadlni tak exponencidlni populace. Teorie extrémnich hodnot se
jevi navzdory svym omezenim vhodnou metodou pro ziskdni statisticky definované informace
o pravdépodobnosti vyskytu nebo periodé opakovani velkych zemétieseni.

Although it is understood that there is nothing inherently random about the
origin of earthquakes, it has not yet been possible to predict in a deterministic way
timing, magnitude and location of future earthquakes. The magnitude-frequency
relation N(M) and the most likely maximum magnitude M,,, for each region are
the basic parameters for defining, in a probabilistic sense, the future seismic activity
of each source region. The N(M) distributions must be limited on both sides for
physical reasons. The upper limit M,,,, or I,,. determines the activity threshold and
consequently the highest possible seismic effects. It can be estimated in several
ways [1], [2], e.g. using the characteristic of the medium, size of the faults, seismo-
tectonic analysis, strength of the material, thickness of the seismoactive layer,
isostatic anomalies, the range of oscillation of the Benioff curve, empirical relation
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between M,,,. and the depth of focus, or by correlating observed M,,,, and seismic
activity A, by extrapolating the magnitude-frequency relation and finally also by
the extreme value statistics.

The theory of extreme values is founded on the following assumptions, which
naturally limit the application of the results and must be considered in their inter-
pretation:

(a) the conditions prevailing in the past must be valid also in the future,

(b) the observed largest events in a given interval are independent,

(c) the behaviour of the largest earthquakes in a given interval in the future will
be similar to that of the past.

The second part of the theory, which is called the asymptotic theory of extremes,
deals with asymptotic forms.

The stability postulate leads to three and only three asymptotic distributions of
extremes and each assumes a specified behaviour of the absolute large values of the
variable. This stability postulate may be described as follows: Let us assume that
there are N samples each of the size n. From each sample the largest value is taken.
Now the maximum of the N samples of size n is at the same time the maximum in
a sample of Nn. Therefore the distribution of the largest values in a sample of size Nn
should be the same as the distribution of the largest values in a simple of size n,
except for a linear transformation. The asymptotic theory differs from the exact
theory in the fact that it is still valid if a few neighbouring observations are dependent,
which is quite favourable in the case of earthquakes. Asymptotic theory can be used
if the initial distribution is unknown and the extreme observations are the only
information available.

In the occurrence of maximum magnitude earthquakes only the first and third
asymptotic distributions are usually considered [3]—[8]. The first asymptotic
distribution of extremes assumes an unlimited variable from the right which is con-
trary to the commonly held belief on the existence of an upper magnitude limit which
cannot be exceeded within a given volume of material of certain physical properties
and under given stress distribution [3]—[6]. The first distribution also assumes that
its upper tail falls off in an exponential manner. Therefore the first distribution
holds for extreme values derived from both normal and exponential populations [6].

Under the assumption of the initial exponential distribution of magnitudes

H(x)=1—-exp(—-x), x=0 (1)
the largest magnitudes x display a cumulative distribution of a double exponential
IF(x) =exp[—exp(=»)], y=o(x —u,), 2,>0. (2)

where o, is the extremal intensity function, u, is the characteristic largest value,
'F(u,) = 1fe.
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The mode of the largest reduced magnitudes j, = log n and therefore the pro-
bability of the most probable largest magnitude F(%,) has the form

F(%) = exp <_ %) . (3)

The probability of the most probable smallest magnitude F(il) is the solution of
equation
1 | 1
nh= — + = — — — .
F(%,) F(%)log F(%,) logF(%,)

(4)

The computation of the probability 'F(%;) of the j-th most probable largest magnitude
can be simplified by introducing the following two assumptions:

T=2 <y < )

F(2,4,) — 'F(%) = K(n), j=1,2...n—1, (6)

where K(n) only depends on n. This second assumption has been derived from the
observed frequencies where the differences amount to 1/n. The probabilities F(%,)
and F(%,) are determined from equations (3) and (4) and, according to equation (7),
the other (n — 2) probabilities 'F(%;) must be evenly distributed between F(%,) and
F(%,). Therefore the probability of the most probable j-th largest magnitude can be
determined from the equation

'F() = (&) + L2 [F@) - R )

The extreme normal distribution of magnitudes can be expressed as

NF(x) = [1 + o(x)][2, (®)
where &(x) stands for the Gaussian integral.

The probability of the most probable largest magnitude NF| (%,) is then obtained
as the solution of the equation

n—1=2%[1+ o%,)]2"f(%), ©)

where "™f(%,) is the probability density function of %,. The values of [1 + &(%,)]
are given in tables of normal probability functions for selected numerical values of
the modes of the largest and smallest values of X, and X,. The value of n can be deter-
mined from equation (9). The probabilities of the most probable largest and the most
probable smallest observation ™F(%,) and ™F(%,), are obtained from equation (8)
as a function number of observations n. With a view to the symmetry of the normal
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distribution ™F(%,) = 1 — "NF(%,), the relation for computing the probability of
the j-th largest magnitude in a given time interval (7) is simplified to read

(%)) = M%) + [0 = Dl(n = D1 - 2™F(F)] - (10)

The third asymptotic distribution of the largest values [7], [8] is defined by the

formula
HF(x) = exp [~ ((@ — x)/(@ — u,))"], (11)
k,>0, xSw, u <o,

where w is the upper limit of largest values, k, is the shape parameter, u,, is the charac-
teristic largest value and "F(u,) = 1/e and "'F(w) = 1. It means that there exists
an upper threshold in the distribution of the largest values. The third asymptotic
distribution is related to the first by a logarithmic transformation.

Parameters w, u and k can be estimated by several methods [7] — by the classical
method of moments or by the largest observed magnitude xy = M, .05s. Dased on
the stability postulate above mentioned or by the method of the least squares. For
the estimate of the parameters by the first two methods, all values of x; (i = 1, ..., N)
must be available. However, the classical method of moments does not guarantee
that the upper limit  is larger than the largest earthquake magnitude observed
in N years.

For the estimate of parameters by the method of the least squares let us con-
sider x,, x5, ..., Xy to be the observed maximum magnitudes in a given time interval
in a given region arranged in order of increasing magnitude, and p;, p,, ..., py to be
the corresponding plotting positions. The plotting position p,, of the m-th observation
is defined by

P = m|(N + 1), (12)

where m = 1, 2, ..., N is the rank of sample x; and N is the number of observations.
If the curve should pass through all of the plotted observation points, the following
would hold for each p; and x;

pi = exp [~((© — x)f( — w)]. (13)

In general, however, for each set of u, w, and k, this curve will be at some distance
from every x;. Thus for every p;

pi = exp [—((0 - x))f(w — w))] (14)

will hold for a different xj, (i = 1,2, ..., N). Then
xj=o—(o-u)zt, (15)
where z; = —Inp;, A = 1/k. The problem is to minimize
N
1= 3 (5 - ) (16)

forw>0,0<u<w k>0
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When considering the earthquake hazard in planning or in structural design
the probabilistic estimate of the largest earthquake magnitudes in the next n years
using the earthquake data from the past N years is a useful information. The proce-
dure of the statistics of extremes provides the expected and the most probable largest
earthquake magnitudes (mode) among other quantities.

On the assumption that the third asymptotic distribution of the largest values
represents well the distribution of the largest earthquake magnitude in one year
intervals, the largest magnitude in n years has a probability function "™F(x,) given
by the relation

WF(x,) = "F(x) = exp [—n((@ — x,)/(@ — u))]. (17)

The expected largest magnitude during the next n years is
%, =0 — (0 —u) (1 + A) (1/n) (18)
and the most probable largest earthquake magnitude X%, during the next n years is
£, = — (0 — u) [(1 — 2)/n]* where 2 = 1/k. (19)

The return period of earthquakes with magnitudes equal or greater than a given
threshold value is defined for the first and the third asymptotic distributions as

T(x) = [1 - F(x)]™* (20)

assuming that the observations are equidistant in time.

There are, however, limitations employing resulting values of the theory of
extremes. Extreme value methods are unreliable for the estimation of return times
greater than about one-half of the time span covered by the catalogue. In general,
the extreme value statistics deals with the analysis of the extremes of a distribution
and with the forecasting of further extremes. Thus the graphical or numerical treat-
ment can supply useful information on the return periods of earthquakes or the
possibility of estimating their largest magnitudes which will be exceeded with a given
probability.

The theory of largest values was applied to the data in the European [9] and
Balkan [10] catalogues. Examples of both asymptotic distribution of the largest
values are given in Figs. 1 and 2.

The deviation of the observed points from the approximating line or curve is
the measure of the fitness of the statistical model to the actual physical process.

Our analysis of the European data shown that:

(1) the return periods corresponding to the normal extreme distribution are larger
than the return periods corresponding to the extreme double exponential type
of distribution (for hazard calculation, however, the exponential form is still
prefered),
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Fig. 1. The first asymptototic distribution of the largest values for three Balkan provinces (9, 11,
12, 14—19, 22, 23, 25 — Bulgaria and the Eastern part of the Aegean region; 10, 13 — Albania
and West Macedonia; 2, 3, 7 — North-Western Yugoslavia).
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Fig. 2. The third asymptotic distribution of the largest values for Albania and West Macedonia.



(2) the third asymptotic distribution leads to larger return periods in comparison
with the first distribution (i.e. to a lower hazard) and fits the observed data more
closely.
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