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Received 22 December 1982 

Asymptotic relations of M-estimators and L-estimators of regression parameter vector are 
considered. Speciál attention is devoted to the relation of Huber 's M-estimator and of the 
trimmed mean in the location čase and to the relation of H u b e ť s M-estimator and of the trimmed 
least-squares estirnator, recently suggested by Koenker and Bassett, in the regression čase. 

Uvažují se asymptotické vztahy M-odhadů a L-odhadů vektoru regresních parametrů . 
Zvláštní pozornost j e věnována vztahu Huberova M-odhadu a useknutého průměru v případe 
parametru polohy a vztahu Huberova odhadu a useknutého odhadu metodou nejmenších 
čtverců, nedávno navrženého Koenkerem a Bassettem, v regresním modelu. 

B CTaTbe HccjieflOBaHbi acHMnTOTHHecKHe OTHomeHHH M-oueHOK H L-oHeHOK BeKTOpa napa-
MeTpoB perpeccHH. CneHHajibHoe BHHMaHHe nocBíímeHo OTHomeHHK> OHeHKH Xy6epa H yceHeHHoro 
cpe^Hero B crcy-iae napaMeTpa nojio^ceHHH H OTHomeHHio oneHKH Xy6epa H yceHeHHOH onemcH 
MeTOflOM HaHMeHbHJHX KBaApaTOB, HeflaBHO npeflJIODKeHHOH K3HKepOM H BaCCeTTOM, B CJiyHae 
napaMeTpa perpeccHH. 

1. Introduct ion 

Let Xu X2, ..., Xn be independent random variables, Xt distributed according to 
p 

the distribution function F(x — £ cij@j) w i l n cu being given constants, i = 1,. . . , n; 
i = i 

j = 1, ..., p. The problem is that of estimating the parameter 0 = (&l9 ..., @p)\ 
in the situation where F is generally unspecified; it is only assumed that F belongs to 
an appropriate family 3F of distribution functions (e.g., in the location model, SF is 
the family of absolutely continuous symmetric distributions satisfying some general 
regularity conditions). 

The classical least-squares estimator (and the sample mean as the special case) 
is closely connected with the normal distribution and is highly sensitive to the devia­
tions from normality, to the heavy-tailed distributions and to the outlying observa­
tions. This fact is illustrated in a variety of Monte Carlo studies (e.g., Andrews et al. 
(1972)); moreover, Kagan, Linnik and Rao (1965) proved that, under some regularity 
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conditions, the sample mean is admissible with respect to the quadratic loss if and 
only if the basic distribution F is normal; the same proposition holds also for the least 
squares estimator (see Kagan, Linnik, Rao (1972)). 

In the light of these facts, the statisticians tried to develop alternative procedures-
good not only for one model but rather insensitive to the deviations from the assumed, 
model — and they started speaking about robust procedures. Stigler's historical 
studies (1973a, 1980, among others) show that yet the earlier statisticians were aware 
of the picture; some intuitive alternatives to the method of least squares appeared 
in the 19th century. Nontheless, a big development of robust procedures started 
only in the 20th century, mainly in the last 20 years. 

Assume that F is an unknown member of a given family of distribution functions. 
We are looking for an estimation procedure, alternative to the sample mean or to the 
least-square procedure, respectively, the behaviour of which is not too poor whatever 
F G $F we may meet. The choice of the estimation procedure then, of course, depends 
on 3F which may be as large as the family of all symmetric absolutely continuous 
distribution functions, it may be neighbourhood of a fixed distribution or only a finite 
set of selected distribution shapes. 

Among various types of robust estimators, three broad classes play the most 
important role: M-estimators (estimators of maximum-likelihood type; originated 
by Huber (1964)); R-estimators (estimators based on the rank tests; originated by 
Hodges and Lehmann (1963)) and L-estimators (estimators based on the ordered 
observations; e.g., the linear combinations of order statististics in the location model). 
All these estimators follow the same idea; to reduce the influence of the extreme 
values of observations and yet to estimate well the parameter 0 even if the as­
sumption of normality happens to be right. 

Jaeckel (1971) observed the close relations of these three types of estimators in 
the location model which appear when the number n of observations tends to infinity. 
He proved that, if the weight-functions generating the respective estimators are 
smooth and related in some special way, the difference of L- and M-estimators of 
location is of the stochastic order Op(n

_1). Jaeckel also expressed a conjecture of 
a close asymptotic relation of K-estimators and M-estimators. This conjecture was 
later proved as true by Jureckova (1977) for the linear regression model and by 
Riedel (1979) for the location model. 

We are interested not only in the asymptotic relations of various kinds of 
estimators, but also in the orders of these relations which indicated how precise is 
the approximation of an estimator by another one. While the problem of this order 
has not yet been completely solved, one fact appears in all cases: The orders of the 
asymptotic relations of various types of robust estimators are either Op(«

_1) or 
Op(ri~3/4) depending on whether the weight functions generating the estimators are 
smooth or whether they have jump-discontinuities. Let us mention some results 
illustrating this fact. 

Either of three types of estimators is asymptotically normally distributed under 
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various conditions. The asymptotic normality is usually proved by approximating 
the estimator by a sum of independent random variables. In this context, the author 
(1980) observed that, under some regularity conditions, the order of such approxima­
tion of an M-estimator is Op(n"A)9 provided the weight -function ^ (described in 
Section 2) is smooth while it is 0p(n"3 / 4) only provided \// has at least one jump-
discontinuity; both orders are exact. This result was extended by Jureckova and Sen 
(1981, a, b) to the linear regression model. 

It follows from Huskova and Jureckova (1981) that a similar fact appears also 
in the case of K-estimators, and moreover, if the weight-function \j/ of an M-esti­
mator Mn and the score-generating function cp of an i^-estimator Rn are in the cor­
respondence \l/(x) = a <p(F(x)) + b, x e R1; a > 0, b e R1, then (M„ - Rn) = 
= O^n'1) provided \j/ (and cp) is smooth, while it is Op(n"3/4) only if \j/ (and (p) has 
some jump-discontinuities. 

An analogous thing may be observed in the case of L-estimators: If the L-esti-
mator Ln is a linear combination of a finite set of single sample quantiles (so called 
systematic statistic) then there exists an M-estimator Mn (generated by a step-func­
tion i/>) such that (Ln — Mn) = Op(n~3/4); if L„ is a linear combination of order 
statistics generated by a smooth weight-function J then there exists an M-estimator 
Mn such that (Ln - Mn) = O^n'1). 

In the subsequent text, we shall describe some results on the orders of asymptotic 
relations (i.e., on the second order asymptotic relations) of various robust estimators 
in more details. Our attention will be devoted to the relations of M-estimators and 
L-estimators, in the location as well as in the regression case. We shall consider, 
among others, the relation of the famous pair of Huber's estimator and of the 
trimmed mean in the location case and that of Huber's estimator and of trimmed 
least-squares estimator, recently introduced by Koenker and Bassett (1978), in the 
regression case. We shall also touch the systematic statistics, their extension to the 
linear model and their M-estimator counterparts. 

2. M- and L-estimation alternatives to the method of least squares 

Let Xl9 ..., Xn be independent random variables, Xt distributed according to the 
p 

distribution function (d.f.) F(x - £ c^Q^)', i = 1, ..., n; 0 = (0U ..., <9p)' is an 
y = i 

unknown parameter and ci = (clj9 ..., cnj), j = 1,. . . , p are known vectors. F is 
generally unspecified; it is only assumed that it belongs to an appropriate family #" 
of distributions. 

The classical method of estimating 0 is that of minimizing the sum of squares 

(2.1) £ ( * • • - Z c . 7 < ; ) 2 : = m i n 
i = i ; = i 
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or, equivalently, solving the system of equations 

(2-2) _ cij(Xi - _ ciktk) = 0 , j=l,...,p 
i=l k=l 

with respect to t = (tlf ..., tp)'. 
We get the M-estimator of 0 if we minimize, instead of (2.1), 

(2.3) tQ(Xi-icijtj):= mm 
i = i j=i 

where Q is some (usually convex) function, less sensitive to the extreme values of the 
argument. Differentiating (2.3), we obtain (with \j/ = Q') the system of equations 
equivalent to (2.3): 

(2-4) _ ctJ H^i ~ I ciktk) = 0 , j = l,...,p. 
P 

г 
fc = l 

The M-estimator Mn = (Mnl, ..., Mnp)
f of 0 is defined as the root of the system 

(2.4); if it is not uniquely determined, then it may be defined as the root of (2.4) 
nearest to some initial consistent estimator Tn of 0 {Mn = 0 if there is no root). 

The class of M-estimators was originated by Huber (1964) (see also Huber 
(1972, 1973, 1977); the properties of M-estimators are thoroughly studied in Huberts 
recent monograph (1981)). 

L-estimators are defined in a straightforward way in the location model. 
Denote Xn:1 = ... =Xn:n the order statistics corresponding to X1,...,XH9 

where Xfs are independent, identically distributed according to d.f. F(x — 0) such 
that F(x) + F(-x) = 1, x e R1. The L-estimator Ln of 0 is of the form 

(2.5) Ln = tdinXn:i 
i = i 

where dln, ..., dnn are given constants, usually such that din = dn_I + 1 n ^ 0 , i = 
n 

= 1, ..., n, £ din = 1. Simple examples are the sample mean Xn and the sample 
i-*l 

median Xn. If we wish to get a robust L-estimator, insensitive to the extreme ob­
servations, we must put din = 0 for i :_ kn and i = n — kn + 1 for a proper kn. 
Typical examples of such estimators are the a-trimmed mean, 

j n-lna] 

(2-6) L„ = — — - _ X„, 
n — 2[anJ i=[n_]+i 

where 0 < a < _ and [x] denotes the largest integer k satisfying lc ^ x; and the 
a-Winsorized mean, 

я-[na] 

_ 
П ì = [иa]+l 

i я-Lnaj 

(2.7) L„ = - {[иa] Xя:tщl + _ Z я : ; + [иa] Xв:n_lmì+.} . 
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A broad class of L-estimators (2.5) which usually appear in applications is of 
the form 

(-•8) A, = 1 £ I (-L-\ Xn, + i ajXn:lnpj} 
n t=i \n + 1/ y=i 

where J(u), 0 < u < 1 is a proper smooth weight function, usually satisfying J(w) = 
= J(l — u) _ 0, 0 < u < 1, and pu ..., pk; al9 ..., ak are given constants, usually 
satisfying 0 < px < . . . < pk < 1, pj = 1 - pk-j+1, aj = ak_J+1 _ 0,j = 1, ..., k. 
Ln is then of the form (2.5) with din given by n" 1 J(i/(w + l)) plus an additional 
contribution a,- if i = [npj~\ for some (j = 1, ..., k). The L-estimator (2.8) is thus 
a combination of two special L-estimators; in many cases, the estimator under 
consideration is just of one type. 

The L-estimators are computionally appealing and have further convenient 
properties in the location model (cf. Bickel and Lehmann (1975)). However, they do 
not extend to the linear model in straightforward way. A possible regression analog 
of L-estimators was suggested and studied by Bickel (1973). His estimators, defined 
in the two-step way with the aid of an initial estimator, have good efficiency pro­
perties but they are computionally complex. 

Recently Koenker and Bassett (1978) extended the concept of quantiles to the 
linear model in the following way: for a e (0, l), denote 

^W = {a - 1 í 
(2.9) m ^ _ fa if x = 0 

x < 0 

and 

(2A0) Q%(x) = x <pa(x) , x e K 1 . 

The a-th regression quantile 0(oc) is defined as any value of t = (tu t2, •.., tp)' which 
solves 

(2.П) ІQ.(X,-lcIJtJ): = min. 
1=i 

Notice that 0(<x) is, in fact, an M-estimator. Koenker and Bassett (1978) then pro­
posed the a-trimmed least-squares estimatorLn(a), 0 < a < ^, in the following way: 
Assume that there is a rule which selects a unique solution of (2.11). Ln(ct) is defined 
as the least-squares estimator calculated after removing all observations satisfying 

p p 

(2.12) Kt. - £ cl7 <§;(a) < 0 or Xt - £ ctJ &j(l - a) > 0 , 
I=i y = i 

i = 1, ..., n. Let at = 0 or 1 according as i satisfies (2.12) or not and denote An the 
diagonal matrix with diagonal (au ..., an). Then 

(2-13) Z„(a) = (CnAnCn)- (CnA„X„) 
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where 

(2-i4) c„ = (cyX:!1:::::.' 

and (CnAnCn)~ is a generalized inverse of (CnAnCn). 
The asymptotic behavior of Ln(cc) was studied by Ruppert and Carroll (1978), 

(1980), who proved thatL/J(a) is asymptotically normally distributed, 

(2.15) n1/2(Ln(x) - O) -?-» Np(0, <r2(a, F).Q~l), as n -> oo , 

with <r2(a, F) being the asymptotic variance of the a-trimmed mean and Q = 
-= lim (l/ii) C X . 

3. Hliber's estimator and the trimmed mean in the location case 

Let Xl9X2,-.- be independent random variables, identically distributed ac­
cording to the d.f. F(x — 0) ; assume that F is absolutely continuous and sym­
metric, i.e. F(x) + F( — x) = 1, xe R1. 

Let L„(a) denote the a-trimmed mean, defined in (2.6). Let Mn be Huber's 
M-estimator of (9, which could be written as 

(3-1) M, = i (M + + Af") 

with 

(3-2) M„+ = inf {/: £ * ( * , - t) < 0} 
• = i 

M„" = sup {t: X MXi - 0 > 0} 

and 

*WҶľ.: (3.3) thU^jx if y ^ c 
sign x if x > c ; 

c > 0 is constant. 

There has been some confusion in the history of the problem of asymptotic 
relations of Ln(a) and Mn. One might intuitively expect that the Winsorized mean 
rather than the trimmed mean resembles Huber's estimator (cf. Huber (1964)). 
Bickel (1965) was apparently the first who recognized the close connection betwenn 
Huber's estimator and the trimmed mean. Jackel (1971) studied the asymptotic 
relations of M- and L-estimators but, in fact, his theorem does not cover this special 
case. 

The following theorem shows that, with a proper choice of the constant c in 
(3.3), the difference of both estimators is of the order Op(rc- 1) as n —> oo. 
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Theorem 3.1. Let Xl9X2,--' be independent random variables, identically 
distributed according to the d.f. F(x — O) such that F(x) + F( — x) = 1, x e R1 

and which satisfies the following conditions: 
(i) F has an absolutely continuous density f and finite Fisher's information, i.e. 

J(f) = l(flffdF <oo. 
(ii) / (x) > a > 0/or a// x such that 

a - e = F(x) = 1 - a + e, 0 < a < i , e > 0 . 

(iii) / ' exists in the interval (F - 1(a — e), F-1(l — a + e)). 
Then 

(3.4) Ln(a) - M„ = O^n"1) , as n -> oo , 

where L.,(a) is the a-trimmed mean (2.6) and M„ is the M-estimator defined in 
(3.1)-(3.3) with c = F_1(l - a). 

Proof. The theorem was proved in Jureckova (1983). 

4. Huber's estimator and the trimmed least squares estimator 
in the regression case 

Let Xnl, -.>,Xnn be independent observations, Xni distributed according to the 
p 

distribution function F(x - £ c^Gj) such that F(-x) + F(x) = 1, x e K 1 and F 
I=i 

is absolutely continuous with the density / Let Mn = (Mnl, ..., Mnp)' be Huber's 
estimator of 0, defined as a solution of (2.4) with \j/ given in (3.3); letL„(a) be the 
a-trimmed least-squares estimator defined in (2.9) —(2.14); furthermore, we shall 
assume that the design matrix satisfies the following regularity conditions (A): 

n 

(A) cn = 1 , i = 1, ..., n; £ cu = 0 , j = 2,...,p; 

lim - CnCn = Q , Q is a positive matrix ; 
n->ao n 

max n~1 £ | c 0 f = o(l) , max iT x £ |cl7|4 = o(l) . 
l^J^P » = 1 l^J^P » = 1 

Theorem 4.1. Le/ Xnl, ...,K„„, n = 1, 2,... be fhe triangular array of in-
p 

dependent observations with Xni distributed according to the d.f. F(x — £ cij®j)> 
I=i 

i = l , . . . , n. Then, provided Cn satisfies the conditions (A) and F satisfies the con­
ditions of Theorem 3.1, 
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(4.1) \\Ln(a) - Mn\\ = Op(n-V*) , as n - oo , 

whereLn(<x) is the (x-trimmed least-squares estimator and Mn is Huberts estimator 
generated by ij/ of (3.3) with c = F-1(l - a); 0 < a < \. 

Proof. The proof is based on a refinement of that of Theorem 3 of Ruppert 
and Carroll (1978) and on Corollary 3.2 of Jureckova and Sen (1981b). See Jureckova 
(1983) for details. 

Remark. The order (4A) diners from that proved in the location case and the 
proof does not indicate that it is the best possible; but the author surmises that it is 
the case due to the fact thatL/J(a) is, unlike in the location case, a two-step estimator. 

5. Systematic statistics and their M-estimator conterparts 

Let us turn back to the location model. Let Ln be the systematic statistic defined as 

(5Л) Ln = ІajXn:lП: 

where 0 < pt < ... < pk < 1; al9 ..., ak are given constants; p, = 1 — pk-.j+1, 
k 

aj = ak_j + 1 > 0, j = 1, ..., k; Yjaj = *• The following theorem shows that, 
y = i 

under some mild conditions on F, there exists an M-estimator Mn such that L„ — 

- Mn = Op(n~v*). 

Theorem 5.1. Let Xl5 X2, ...be independent observations, identically distributed 
according to the d.f. F(x — G) such that F(x) + F( — x) = 1, x e R1, the inverze F~1 

is strictly increasing at p1? ..., pk and F has two bounded derivatives f,f in neigh­
bourhoods of F~1(p1), ...,F~1(pk). Then 

(5.2) Ln-Mn = oP(/J-3/4) 

holds for the L-estimator Ln of (5.1) and for the M-estimator Mn generated by the 
function 

(5.3) +{x) = l — ^ — (l[F(x) = pj-] - Pj), x e K1 ; 
1=i f(F \pj)) 

I[A] is the indicator of the set A. 

Proof. See Jureckova (1982). 

Remark. It follows from (5.3) that \j/(x) is a nondecreasing step-function with the 
jumps at the points F"1(p1), ..., F"1^). The theorem, as well as other analogous 
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theorems, does not enable to evaluate numerically the asymptotically equivalent 
L-estimator, once we have calculated the M-estimator, because the corresponding 
L-estimator depends on given xj/ through the unknown distribution F. The results 
rather indicate the close relations of both types of estimators; namely, (5.3) shows 
that the linear combinations of single sample quantiles are asymptotically close to 
M-estimators generated by the step-functions. 

6. Systematic statistics and Af-estimators in linear model 

Let Xnl, .,Xnn be independent, Xni distributed according to the distribution 
p 

function F(x — £ CijOj), F symmetric. Let 0 < p1 < ... < pk < 1 be given numbers 
1=i 

such that pk-m+1 = 1 — pm, m = 1, ..., k and assume F has two bounded derivatives 
in neighborhoods of F_1(pi),..., F"1^). Denote 0(pm), m = 1, ..., k, the pm-
regression quantile denned in (2.9) — (2.11). Then, we may consider an analogue of 
the systematic statistics (5.1) denned as 

(6.1) Ln = Y.amO(pm) 
m = l 

k 
where am = a*_m+i > 0, m = 1, ..., k\ £ «m = 1- Such statistics were studied by 

m-=l 

Koenker and Bassett (1978) who also derived their asymptotic distribution. We shall 
show that the function ij/ of (5.3) generates the M-estimator Mn of 0 which is asympto­
tically equivalent toLn with the order Op(n"3/4). This is expressed in the following 
theorem. 

Theorem 6.1. Let Cn satisfy the assumption (A) of Section 4. Then, under the 
above assumptions on F, pm and am, m = 1,. . . , k, 

(6-2) \\Ln - M„\\ = Op(n-v<) 

holds for the L-estimator Ln of (6.1) and for the M-estimator Mn of 0 generated 
by the step-function (5.3). 

Proof. The theorem follows by combining the representation of regression 
quantiles given in Theorem 2 of Ruppert and Carroll (1978), and the representations 
of M-estimators (and thus of regression quantiles) given in Theorem 3.3 of JureSkova 
(1980) and in Corollary 3.2 of Jureckova and Sen (1981b). 
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