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Basic properties of permutation groups generated by left and right translations of quasigroups and 
loops are collected. 

Základní vlastnosti permutačních grup generovaných levými a pravými translacemi kvazigrup a lup 
jsou sebrány. 

1. Multiplication groups — first observations 

1.1 A groupoid is a non-empty set supplied with a binary operation. This operation 
is usually denoted multiplicatively, i.e. by . or juxtaposition. 

Let G be a groupoid. For each a e Q, we have two transformations S£(G, a) and 
@(G, a) of G defined by S£(G, a) (x) = ax and S/t(G, a) (x) = xa, resp. The 
transformation S£(G, a) (3l(G, a))is called the left (right) translation by a (of G) 
and will be also denoted by S£(a) ($(a)) when G is clear from the context. 

A groupoid is called a quasigroup if all the translations are permutations (i.e. 
bijective transformations). 

A loop is a quasigroup possesing a neutral element. 

1.2 Let Q be a quasigroup. The subgroup J/(Q) = (S£(a);ae Q} generated by 
all the left translations (in the group Sf(Q) of all permutations of Q) is called the 
left multiplication group of Q. Similarly J/,(Q) = (@(a);aeQ} is the right 
multiplication group and J/(Q) = (@(a), S£(d); aeQ} = lj/,(Q) U J/,(Q)} is the 
multiplication group of Q. 

For aeQ, the stabilizer J?(Q, a) = St(J/(Q), Q, a) = {f e J/(Q); f(a) = a} is 
called the left inner permutation group (with respect to a). Similarly^Q, a) = 
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= St(J/,(Q\ Q, a) is the right inner permutation group and J(Q, a) = St(J/(Q), Q, a) 
is the inner permutation group (with respect to a). If Q is a loop, then J(Q) = 
= J(Q, 1) is called the inner permutation group of Q. 

1.3 In the rest of this section, let Q be a quasigroup, S = ^(Q), G, = J/(Q), 
G,. = J/,(Q)9 G = J/(Q), H(a) = S(Q, a), Hr(a) = Jr(Q, a), and H(a) = J(Q, a). 

1.4 Observation, (i) The permutation group G (Gh G,) is transitive on Q and 
consequently the stabilizers H(a) (H(a), H,.(a)), a e Q, are conjugate in G (Gh Gr). 
In particular, the stabilizers are isomorphic. 

(ii) f]H(a)=l (f]H{a)=\, (]H,.(a) = \). 
ueQ aeQ aeQ 

(iii) LC(H(A)) = 1 (LC,(H,(A)) = 1, LC,(//,(A)) = 1) (here, LC(K) denotes the 
core of a subgroup K in G). 

(iv) ({jH(a);a e Q> {<{jH(a); a e Q}. <{jH,(a); « e Q})is normal in G (G„ G,.). 

(v) card(G) = card(Q) • \(Q) (card(G,) = card(Q) • \{Q), card(Gr) = card(o.) • \,.(Q)), 
where \(Q) = card(/7(a)) (i^Q) = card(H,(a)), i,(Q) = card(H,.(«)). 

(vi) \IQ) = i(Q) and \,(Q) = \(Q), moreover, both \,(Q) and \,(Q) divide \(Q), 
provided that \(Q) is finite. 

1.5 Observation, (i) Z(G,) g C,-(G,) = {f e S; f = .<??(/(«)) <#(«)-' for each 
a e Q) £ G,.(here, Z(K) is the centre of K and CS(K) is the centralize/- of K for 
a subgroup K of S). 

(ii) Z(G,) £ CS(G,) = {/ e S; f = JZ\f(a)) l£(ci)'x for each a e Q] £ G,. 

(iii) Z(G) = CS(G) ^G,n G,. 

(iv) Z(G) = Z(G,) n Z(G,.). 

(v) Z(G,) u Z(G,.) <=G,n G,. 
(vi) / / Q is a loop, then Z(G) = {¥(a); aeZ(Q)} = {:$(a); aeZ(Q)); in 

particular, the groups Z(G) and Z(Q) are isomorphic. 

(vii) Every automorphism of Q is contained in each of the normalizers N,S(G), 
NS(G,), N.s(G,j. 

(viii) Suppose that Q is a loop and that the automorphism group ofQ is transitive 
on Q — {I}.Then each of the normalizers NS(G), NS(G/), NS(G,.) is 2-transitive on Q. 

1.6 Observation. Put A = {&(a)\ a e Q) and B = [<%(a)\ a e Q). 

(i) The set A is a transversal to each of the subgroups H,(a) in Gh i.e. A is 
a stable transversal. 

(ii) The set B is a stable transversal to each of the subgroups Hr(a) in G,. 

(iii) Both A and B are stable transversals to each of the subgroups H(a) in G. 
Moreover, A, B are H(a)-semiconnected transversals (see 1.4.1). 

(iv) UQ ls a loop, then A and B are H( 1 )~connectecl, i.e. the mutual commutator 
\_A, B\ is contained in H(\). 
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