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On Contexts of Direct Products, Ordinal Sums 
and Ordinal Products 

OTTO BERNARD 

Praha 

Received 27. Febraury 2003 

Given regular contexts of lattices Lx and L2, we describe how to construct regular 
contexts of their direct product. We show that the regular contexts of ordinal sums and 
products of two lattices can be constructed from the contexts determined by Lx and L2 in 
the case of L! © L2 and from the order matrix of Lx and from the context determined 
by L2 in the case of Lx O L2. 

1. Introduction 

A formal context is a triple (G, M, /) where G and M are sets and / is a binary 
relation between G and M. The elements of G are referred to as objects and the 
elements of M as attributes. Let H ^ G and IV _= M. Then the definitions 

W := {me M; Vg e H (g, m) e /} 
and 

Nl: = {geG;VmeIV(g,m)e/} 

together with the mappings cp : P(G) -* P(M), cp : H !-• H] and \j/ : P(M) -» P(G), 
\j/ : IV i—• Nl establish a Galois correspondence between the power sets P(G) and 
P(M) of G and M. 

A pair (//, IV) where H ^ G and IV _= M is called a formal concept if //T = IV 
and Nl = H. In this case we also have Hn = H and IViT = IV. The set H is 
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called the extent of the formal context (H, N) and N is said to be the intent 
of (H, IV). On the set of all formal concepts of (G, M, I) one can define an ordering 

^ (Hl,N1)<(H2,N2)oHl^H2. 

In this way we obtain a complete lattice which is called the concept lattice of the 
context K = (G, M, /). It will be denoted by B(G, M, I) or B(K). For general facts 
about concept lattices and their applications, the reader may refer to [4], [10] and [8]. 

Let us consider the formal context Kx := (G, M, I) where G := {gb g2,..., g6} 
and M : = {mb m2,..., m3} and where the relation J is given in Figure 1. 

ГПi m2 m3 m4 m5 
m6 

01 1 1 1 0 0 

92 1 1 0 0 0 

9Ì 1 0 1 1 0 

94 1 1 0 1 0 

9ь 0 0 1 1 1 

06 0 0 1 0 0 

Fig. 1 

Here, for example, (gu m3) e I and (gl5 m4) £ I. 
Notice that we can identify "the interior" of Figure 1 with the matrix 

1 1 1 0 0 
1 1 0 0 0 
1 0 1 1 0 
1 1 0 1 0 
0 0 1 1 1 
0 0 1 0 0 

of Z2
x5; in what follows we often use a similar approach. 

By the definitions given above or by some other methods (see, e.g., [6], [7], [9], 
[5]; we have used the program Conlmp of P. Burmeister (TU Darmstadt)) one can 
find that the considered context Kx has the following formal concepts: 

kx: = (G; 0), k2: = ({&, g4, g5}, {nk}), k3: = ({gu g3, g5}, {»%}), 

K : = ({gi, g2, g3, g4), W ) , k5: = ({g3, g5}, {m3, m4}), 

K := ({gs> g6), {m3, m5}),k7 := ({gu g3}, {m1? m3}), 

h : = ({gi? g2> g4}, {mu m2}),k9: = ({g5}, {m3, m4, m5}), 

îo : = ({g3, g4}> {mu m4}), kn : = ({&}, {m1? m2, m3}), 

ki2: = ({g3}? {mh m3, m4}), kl3: = ({g4}, {m1? m2, m4}), k14 : = (0, M). 

The concept lattice B(K^ can be visualized by the diagram shown in Figure 2. 



Fig. 2 

The formal context K{ was derived from data concerning men with localized 
prostate cancer (see also [1] and [2]). 

In this paper, "lattice" will mean "finite lattice having at least two elements" 
and its unit and zero element will be denoted by 1 and 0. 

An element r of a lattice L is said to be meet-irreducible, if r =t= 1 and if the 
implication 

p/\q = r=>(p = t or q = r) 

holds for any p,qeL. The set of all meet-irreducible elements in L will be denoted 
by M(L). 

An element s of L is called join-irreducible if s 4= 0 and if 

p v q = s => (p = s or q = s) 

is true for any p, q or L. The set of all join-irreducible elements in L will be 
denoted by J(L). 

Notice that 

(i.i) íфM(Ĺ) & (фJ(Ĺ). 

As usual, a \\ b will be used to denote the fact that a and b are incomparable, 
i.e., a £ b and b £ a. 



Remark 1.1. Any atom of a lattice L is join-irreducible and any dual atom of 
L is meet-irreducible. Hence M(L) =# 0 and J(L) =|= 0. 

Suppose that a lattice L has exactly t elements, i.e., #L = t, and write 
L = {cl5 c2,..., ct}. Next suppose that 

(1.2) 1 = Ci -> c2 ->...-+ ct = 0 

is a fixed sequence of the elements belonging to L where "->" denotes either " > " 
or "||". 

A sequence cil9 cl2,..., c,u of elements in L will be said to be regular with respect 
to (1.2), if 

1 < iu < ... < i2 < h < t. 

Let M(L) = {r1? r2,..., rp} where the sequence r1? r2,..., rp is regular with respect 
to (1.2), and, similarly, let J(L) = fa, s2,..., sq} where si9 s2,..., ŝ  is a sequence 
regular with respect to (1.2) so that #M(L) = p and #J(L) = q. By a J/M-context 
of L regular with respect to (1.2) we mean the matrix C = (c,JeZfp where 
ctj = 1 if and only if st < r% and ciy = 0 otherwise. 

Given any lattice L, it is natural to ask whether there exists a formal context 
KL = (G, M, /) with B(KL) isomorphic to L. It can be shown that it is possible to 
choose any J/M-context of L for KL, the ordering of the elements in L being quite 
irrelevant (see [4, Hilfsatz 12, p. 27]). 

2. Direct products 

In this section we suppose that Lx and L2 are two lattices, %LX = m and %L2 = n 
with 

Lx = {ah a2,..., am},L2 = {fy, b2 , . . . , bn} 
and 

(2.1) m > 2 & n>2. 

Moreover, we suppose that there are given two fixed ordering of the elements 
in L t and in L2 

(2.2) lj. = a,. -• a2 -* ••• -> am-\ -> am = 0{ 

and 

(2.3) \1 = b^b2-> ... - £„_! - fo„ = 02 

where "-•" denotes either " > " or "||". 

Lemma 2.1. Let L3: = Ll (x) L2 6c f/zc direct product of the lattices L{ and L2. 
Then the following assertions hold for any ae Lx and any b e L2. 



(i) (lx,b)eM(L3) o beM(L2); 
(ii) (a512) e M(L3) o a e M(L,); 

(Hi) (a, 02) G J(L3) o ae J(LX); 
(iv) (Obb)eJ(L3) o beJ(L2)', 
(v) if a =t= lj and b =f= 12, then (a,b)$M(L3y 

(vi) lf a 4= Oj arzd b #= 02, then (a, b) £ J(L3). 

Proof, (i) Let ( l b b)e M(L3). By (1.1), b #= 12. Suppose on the contrary that 
b $ M(L2). Then b = bu A bv where b < bu and b < bv. It follows that 

(l1,b) = (ll,bu)A(ll,bv) 
and 

( l 1 ,b )<( l ,b u ) & ( l ! ,&)<( l iA) 

a contradiction of the fact that (1, b) e M(L3). 
Now suppose that b e M(L2). We want to show that (lh b) e M(L3). By (1.1), 

b =f= 12 and so (1-, fo) 4= (lx 12). If (ll9 b) = (ax, bM) A (ay, bv), then ax = ay = lx 

and b = bu A bv. Since & e M(L2), we can assume that b = bu. Then (ll5 b) = 
= (11? bM) and it follows that (ll5 b) e M(L3). 

The assertions (ii) — (iv) can be proved similarly. 
(v) From a #= lx we conclude that there exists a* e Lx such that a* covers a. 

Analogously, since b =)= 12, there exists b* covering b. Then (a, b) = (a*, b) A (a, b*) 
with (a, b) < (a*, b) and (a, b) < (a, b*). Thus (a, b) $ M(L3). 

A similar reasoning appeals to the assertion (vi). • 

Let 

(2.4) C! = (lu 12) = (ah bx) -+ (al9 b2) -> ... -^ (am, bx) -> ... 
... -+(am,bn) = (0b02) = ct 

be the lexicographic ordering of the elements in L3 = Lx® L2 with respect to 
(2.2) and (2.3). By a J/M-context of L3 regular with respect to (2.2) and (2.3) we 
mean the J/M-context of L3 regular with respect to (2.4). 

A matrix P = (piy) e Z2
 xw is said to be a 1-matrix, if ptj = 1 for any i = 1, 2,..., m 

and any; = 1, 2,..., n. 

Theorem 2.2. If L3 = L2 ® L^ then the J/M-context of L3 regular with 
respect to (2.2) and (2.3) is equal to the matrix A partitioned into blocks Ul9 Ku 

K2, U2 of the form 
' d KS 
\K2 U2j 

where Ux and U2 are l-matricesf K{ is the J/M-context of the lattice Lx regular 
with respect to (2.2) and K2 is the J/M-context ofL2 regular with respect to (2.3). 
The matrix Kt (i = 1, 2) is of the type (%J(L), #M(Lt)). 



M{LÌ) = {й,p2,..., pt},M{L2) = {rьr2,..., г.} 

Proof. Let 

(2.5) 

and 

(2.6) J(LX) = {vh v2,..., va},J(L2) = {wh w2,..., wb} 

where php2,...,pt and vhv2,...,va are sequences regular with respect to (2.2) and 
where rh r2,..., rs and wh w2,..., wb are sequences regular with respect to (2.3). Using 
the description of the sets M(L3) and J(L3) given in Lemma 2.1 we can see that the 
J/M-context of L3 mentioned in our Theorem can be formed by using Figure 3. 

k l i ^ ) ... ( l i , r s ) ( P l , l 2 ) . . . (p„l2) 

K o2) 

{Va, 02) 

(Ol, щ) 

(0„ wb) 

1 1 

к, 

к. 
D 

Fig. 3 

3. Ordinal sums 

Given lattices Lx: = {ah a2,..., am} and L 2 : = {î , b2,..., bn}, in what follows we 
suppose that 

(3.1) m > 2 & n>2. 

Further, we suppose that there are fixed orderings 

(3.2) lx = ^ -> a2 -> ... -> am_x -> aw = d 

and 

(3.3) 12 = bx -> b2 -> ... -* bn_! ^ bw = 02 

where "->" denotes either " > " or " | | " . 
We recall that 

(3.4) 0£J(L) & 1£M(L). 

The ordinal sum Lx © L2 of lattices (Lh <x) and (L2, <2) satisfying LxnL2 = 0 
can be defined (cf. [3, p. 198 and p. 201, ex. 10]) as a lattice (L3, <) such that 
L3 = Lj u L2 and where " < " is determined as follows: For any xeLx and any 
y e L2 one has x < y; furthermore, if x, y e Lh then x < y if and only if x <i y 
and, similarly, if z, v e L2, then z < v if and only if z <2 v. 
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Let 

(3.5) 12 = Ь. ьn = o 2 > flt = 1. -^rø—1 aw = Ox 

be an ordering of the elements in L3 obtained by the concatenation of the orderings 
in (3.2) and (3.3). 

Theorem 3.1. The J/M-context of L3 = Lx® L2 regular with respect to (3.5) 
is the matrix 

K2 O! O2 

U! O3 O4 

y 2 u3 KK 

where the block Kt is the J/M-context of L1 regular with respect to (3.2), K2 is 
the J/M-context of L2 regular with respect to (3.3), Ot (i = 1, 2, 3, 4) are zero 
matrices and Uj (j = 1, 2, 3) are 1-magtrices. The matrices [/- and O4 are row 
matrices, Ox and U3 are column matrices and 03 = (0)eZ2

x l . The type of 
Kq(q = 1,2) is (M{Lq),$M{Lq)). 

Proof. Let 

and 
M(L1) = {й,...,p í},M(L2) = {r1,...,rs} 

ĄL^) = {ą,..., va},J(L2) = {wь ..., wb] 

where pl9...9pt and vl9...9 va are regular with respect to (3.2) and where rl9.. 
and wl9..., wb are regular with respect to (3.3). 

Then it is easily seen that 

and 
M(L3) = {rl9..., rs, ll9pl9..., pt} 

J(L3) = {wl9..., wb9 02, vl9..., va}. 

It is evident that the both sequences rl9..., rS9 lh pl9..., pt and wh ..., 02, 
vu..., va are regular with respect to (3.5). Therefore, the J/M-context of L3 regular 
with respect to (3.5) can be deduced from Figure 4. 

Гì . . . rs l i Pl ••• Pt 

WІ 

wb 

K2 

0 

0 

0 ... 0 

0 ... 0 

02 1 ... 1 0 0 ... 0 

ľi 1 ... 1 

1 ... 1 

1 

1 
к, 

п 
Fig. 4 



4. Ordinal products 

Ordinal product L{ Q L2 of lattices (Lh < t) and (L2, <2) (see [2, loc. cit.]) is 
the lattice (L± x L2, <) where " < " denotes the lexicographic order, i.e., 
(a, b) < (a', b') if either a <x a! or if a = a! and b <2 b'. 

Lemma 4.1. Let (a, b) and (c, d) be elements of the ordinal product L3: = 
Li 0 L2. Then (a, b) A (C, d) is equal to 

(i) (a, b A d) whenever a = c; 
(ii) (a, b) whenever a < c; 

(iii) (c, d) whenever c < a; 
(iv) (a A c, 12) whenever a || c. 

Dually, the element (a, b) v (c, d) w cawa/ to 
(i) (a, b v d) whenever a = c; 

(ii) (c, d) whenever a < c; 
(iii) (a, b) whenever c < a\ 
(iv) (a v c, 02) whenever a || c. 

Proof. This is an easy consequency of the definition of order in L3. • 

Let ae Lx. The sequence 

(a,*)M:=(a,b[),(a,b'2),...,(a,b'p) 

where {(a,b[), (a, b'2),..., (a, b'p)} denotes the set consisting of all the elements of 
M(LX O L2) having the first component equal to a and where [b[, b'2,..., bp) is 
a sequence regular with respect to (3.3) will be called an M-tract determined by 
a. A J-tract determined by a is defined dually as the sequence 

{a,*y := {a,b'{),{a,b'2%...,{a,b'£ 

{{a,b'[), {a, b2), ...,{a, b^)} is the set formed by all the elements of j{Lt Q L2) 
having a as the first component and where b'[, b2,..., b"q is a sequence regular with 
respect to (3.3). The number p will be called the length of the M-tract (a, *)M and 
q will be denoted as the length of the J-tract (a, *f. 

It follows from Remark 1.1 that {a, *)M #= 0, {a, *)J + 0, for arbitrary a e Lu 

Lemma 4.2. Let L3 = Ll Q L2 and let a e L.. Then 
(i) {a, l2)eM(L3) o aeM{L,); 

(ii) (a,02)eM(L3) o 0 2G M(L2); 
(iii) (a,l2)eJ(L3) <*> l2eJ(L2); 
(iv) (a,02)eJ(L3) o aeJ{L,). 

IfbeL2 does not belong to {O2, 12} and a e Lv then 
(v) {a, b)eM{L3) ^ beM{L2); 

(vi) {a, b) e J{L3) o be J{L2). 

10 



Proof, (i) Let (a, 1 2 ) G M ( L 3 ) . By (3.4), a =-= lx. Suppose a = a' A a" where 
a < a! and a < a". Then a' || a". It follows from Lemma 4.1 that (a, l2) = 
(a!, 12) A (a", 12). This together with (a, 12) < (a', 12) and (a, 12) < (a", 12) gives 
a contradiction. Hence a e M(L{). 

Conversely, suppose that aeM(L^). From (3.4) we can see that a =1= li and, 
therefore, (a, 12) #= ( l b 12). Suppose, by way of contradiction, that 

(4.1) (a,l2) = (c,d)A(e,f) & ( a , l 2 ) < ( c , d ) & (a, 12) < (e,f). 

We distinguish four cases. 
Case I: c = e. Then in view of Lemma 4.1 we have (a, 12) = (c, d A / ) and, 

consequently, c = a, d = 12 and / = 12. Therefore, (c, d) = (a, 12), a contradic­
tion of (4.1). 

Case II: c \\ e. By Lemma 4.1, (a, 12) = (c A e, 12) so that a = c A e. From c || e 
conclude that a < c and a < e. But this contradicts a e M(LX). 

Case III: c < e. Then by Lemma 4.1 (a, 12) = (c, d) A (e, f) = (c, d), and we 
again have a contradiction of (4.1). 

Case IV: e < c. This case can be treated by similar methods as the third case. 
(ii) Let (a, 02) e M(L3). Then, by (3.1), 02 4= 12. Suppose 

02 = b'Ab" & 0 2 < b ' & 0 2 < f e " . 

Applying Lemma 4.1 we have that 

(a,02) = (a,b') A(a,b") & (a, 02) < (a, b') & (a, 02) < (a, b"), 

a contradiction. Hence 02 e M(L2). 
Conversely, let 0 2 eM(L 2 ) . Because of (3.1), 02 #= 12, and, consequently, 

(a, 02) 4= (l l 512). Suppose to the contrary that 

(4.2) (a, 02) = (a', b') A (d, d') & (a, 02) < (a', V) & (a, 02) < (d, d'). 

Let us distinguish four cases. 
Case I: a! = c'. By Lemma 4.1, (a, 02) = (a', b' A d'). Then a' = a and 

02 = b' A d'. Using the fact that 02 e M(L2), we get that either 02 = b' or 02 = d'. 
In the former case we have (a', b') = (a, 02), a contradiction. In the latter case we 
obtain (c', d') = (a, 02), a contradiction. 

Case II: a! \\ c'. Again, by Lemma 4.1, (a, 02) = (a' A C', 12) and it follows that 
02 = 12 which contradicts (3.1). 

Case HI: a' < c'. Then, by Lemma 4.1, (a, 02) = (a', b') which contradicts (4.2). 
The fourth case c' < a' is analogous. 
Thus (a, 02) e M(L3). 
The proofs of (iii) and (iv) are dual. 
(v) Let (a, b) e M(L3) where b $ {01, 12}. Assume to the contrary that 

b = b'Ab" & b<b' & b<b". 

11 



This, together with Lemma 4.1, implies that 

(a, b) = (a, b') A (a, b") & (a, b) < (a, b') & (a, b) < (a, b") 

which contradicts (a, b) e M(L3). Hence b e M(L2). 
Conversely, let b e M(L2) be such that b <£ {Oz, 12}. Then (a, b) #= (1-, 12). 
Assume 

(4.3) (a,b) = (c,d)A(c,f) & (a,b)<(c,d) & (a ,b)<(c , f ) . 

We distinguish four cases. 
Case I: c = e. Then (a, b) = (c, d A f) and, consequently, a = c and b = d A f. 

Since 1 -# b e M(L2), we have either b = d or b = f But the both possibilities 
contradict (4.3). 

Case II: c\\ e. Then (a, b) = (c A c, 12) which gives b = 12, a contradiction. 
Case IIL c < e. Here (a, b) = (c, d) and we contradict (4.3). A similar argument 

can be used for the fourth case e < c. 
The proof of the remaining assertion (vi) is essentially the same as the one given 

for the assertion (v). • 

Now suppose that the elements of L3 = Lx O L2 are ardered by 

(4.4) ( 1 - , 12) = (au b{) -» (al9 b2) - • . . . -» (am, b t ) - • (am , b2) - • . . . 

... ^K,b„) = (0i,02) 

where "-*" denotes either " > " or " ||". By a J/M-context of the lattice L{ Q L2 

regular with respect to (3.2) and (3.3) we mean the J/M-contexyt regular with 
respect to (4.4). 

Theorem 4.3. Let A = (a^ eZ2
xm be the order matrix of the lattice Lh i.e., 

atj = 1 if and only if a, < a, and atj = 0 otherwise. Then the J/M-context of the 
ordinal product L3 = Lx O L2 regular with respect to (3.2) and (3.3) is a matrix 
A partitioned into blocks Atj (ij = 1, 2,..., m) having their elements in Z2. 

For any 1 < s =h t < m the matrix Ast is a zero matrix provided ast = 0; the 
matrix Ast is a 1-matrix provided ast = 1. 

For any s = 1, 2,..., m the diagonal block Ass of A is equal to a matrix having 
one of the following forms: 

(i) 

(2) 

D: = 

12 



(í du ... dЛ 
(3) 

(4) 

where D denotes the J/M-context of L2 regular with respect to (3.3). 
Moreover, (1) occurs if and only if 

aseM(U) & flseJ(L!); 

a s6M(L!) & a,iJ{LD', 

(2) occurs if and only if 

(3) occurs if and only if 

(4) occurs if and only if 

as$M(Lx) & aseJ(Lx). 

For all 1 < i,j < m the block Ai}- of A has the type (rtj, stJ) where rtj is the length 
of the J-tract (at, *) J and stj is the length of the M-tract (aj9 *) M . 

Proof. 1. Let s 4= t and let ast = 0. Then either as > at or as \\ at. By the 
definition of the ordering in L3, (as, *) < (at,...) is not true for any choice of the 
second component "*" of the elements in the J-tract (as, *) J and for any choice of 
the second component "..."of the elements in the M-tract (at, *) M . Thus the block 
Ast is a zero matrix. 

2. Let 8 #= t and let ast = 1. Then as < at. For any element (a, *) of the J-tract 
(as, *) J and for any element (at,...) of the M-tract (at, *) M we therefore have 
(as, *) < (at,...). Hence the block Ast is a 1-matrix. 

Notice that the type of Ast has the indicated form in the both cases. 
3. Since as < as, ass = 1. The block Ass is determined by the M-tract (as, * ) M 

and by the J-tract (as, *) J. 
We distinguish four cases. 
Case I: as $ M(LX) and as $ J(L^. Then Lemma 4.2 yields 

(as,l2)£M(L3) & (a5,02)£J(L3). 

By the same Lemma, an element (as, b) belongs to the M-tract (as, *)M if and only 
if bi e M(L2). Similarly, (as, bj) belongs to the J-tract (as, *)J if and only if 
bj e J(L2). Now 

(as,bj) < (as,b) o bj < bi9 

so that A„ = D. 

13 



By Lemma 4.2, 

and 

Case II: as e M(LX) and as e J(LX). Then 

(as,l2)eM(L3) & (as,02)GJ(L3). 

K*)M = K 12),..., (a„6,),... 

(as, *)y = ..., (as,b;),..., (as,02) 

where bt runs over the elements of M(L2) and b}- runs over the elements of J(L2). 
The block zlss can be deduced from Figure 5. 

|(as, 12) ... (a„b) 

(as, bj) 

(as, 02) 

Fig. 5 

Thus 4̂SS has the form described in (2). 
Case III: as e M(L{) and as $ J(L2). Then 

(as,l2)eM(L3) & (as,02)£J(L3). 

The block 4̂SS can now be obtained from Figure 6. 

(as, 12) ... (as,b) ... 

K bj) dц 

Fig. 6 

Therefore, ,4SS has the form of (3). 
Case IV: as $ M(LX) and as e J(LX). Then 

(as,l2)£M(L3) & (a3,02)eJ(L3). 

The block 4̂SS can be deduced from Figure 7. 

... (a„Ъ) ... 

(as, bj) d,j ... 

(as,02) 1 ... 

Fig. 7 

14 



Notice that the type of Ast is of the indicated form in all the cases considered 
here above. • 

Remark 4.4. The ordinal product of two five-element lattices ("the flying kite" 
multiplied by "the falling kite"1) shows that any form (1), (2), (3) and (4) of 
Theorem 4.3 can occur. 

Acknowledgment. The author is grateful to the referee for his useful comments. 
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