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and Ordinal Products
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Received 27. Febraury 2003

Given regular contexts of lattices L; and L,, we describe how to construct regular
contexts of their direct product. We show that the regular contexts of ordinal sums and
products of two lattices can be constructed from the contexts determined by L, and L, in
the case of L; @ L, and from the order matrix of L, and from the context determined
by L, in the case of L; © L,.

1. Introduction

A formal context is a triple (G, M, I) where G and M are sets and [ is a binary
relation between G and M. The elements of G are referred to as objects and the
elements of M as attributes. Let H = G and N < M. Then the definitions

H':= {me M;Vge H (g,m)el}
and
N':= {ge G;VmeN (g,m)e I}

together with the mappings ¢ : P(G) > P(M), ¢ : H— H' and ¢ : P(M) — P(G),
Y : N — N! establish a Galois correspondence between the power sets P(G) and
P(M) of G and M.

A pair (H, N) where H = G and N = M is called a formal concept if H' = N
and N* = H. In this case we also have H = H and NY' = N. The set H is
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called the extent of the formal context (H, N) and N is said to be the intent
of (H, N). On the set of all formal concepts of (G, M, I) one can define an ordering
by
(Hl’ Nl) S (Hz, N2)<$H1 c H2.
In this way we obtain a complete lattice which is called the concept lattice of the
context K = (G, M, I). It will be denoted by B(G, M, I) or B(K). For general facts
about concept lattices and their applications, the reader may refer to [4], [10] and [8].
Let us consider the formal context K, := (G, M, I) where G := {g, g5, ..., g
and M := {m;, m,, ..., m3} and where the relation I is given in Figure 1.

my | my | ms | my | ms|mg
911111111010
g|1]11]0(0]0
gs|1]10]1(1]0
gs|1[1]0]1]0
gs{ 0|01 ([1]1
gs| 010|100
Fig. 1

Here, for example, (g, m3) €I and (gl, m4) ¢l
Notice that we can identify “the interior” of Figure 1 with the matrix

1 1100
11000
1 01 10
11010
0 0111
001 00O

of Z5*; in what follows we often use a similar approach.

By the definitions given above or by some other methods (see, e.g., [6], [7], [9],
[5]; we have used the program Conlmp of P. Burmeister (TU Darmstadt)) one can
find that the considered context K, has the following formal concepts:

kii= (G; 0), ka:= ({9 9o 95}, {ma}). ks := ({61, 5, g5}, {ms}),
ke:= ({015 92 93 94), {mi}), ks := ({g5» g5}, {ms, ma}),
ke = ({95 go)s {ms, ms}). ks := ({gh, g3}, {rm, m3}),
ks := ({01 92 9}, {rm, ma}), ko 2= ({gs}, (s, mi, ms}),
kyo:= ({gs, 94}, {ml’ m4}),k11 L= ({gl}’ {ml’ my m3}),
ko := ({gs}, {m, ms, m}) kyz := ({ga}, {rm, ma, ma}), kg 2= (0, M).

The concept lattice B(K,) can be visualized by the diagram shown in Figure 2.
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Fig. 2

The formal context K; was derived from data concerning men with localized
prostate cancer (see also [1] and [2]).
In this paper, “lattice” will mean “finite lattice having at least two elements”
and its unit and zero element will be denoted by 1 and 0.
An element r of a lattice L is said to be meet-irreducible, if r £ 1 and if the
implication
pAgq=r=(p=torq=r)
holds for any p, g € L. The set of all meet-irreducible elements in L will be denoted
by M(L).
An element s of L is called join-irreducible if s + 0 and if
pvg=s= (p=sorq=s)

is true for any p,q or L. The set of all join-irreducible elements in L will be
denoted by J(L).
Notice that

(1.1) 1¢M(L) & (¢J(L).

As usual, a || b will be used to denote the fact that a and b are incomparable,
ie,a£band b £ a.



Remark 1.1. Any atom of a lattice L is join-irreducible and any dual atom of
L is meet-irreducible. Hence M(L) # @ and J(L) * 0.

Suppose that a lattice L has exactly t elements, ie., #L =t, and write
L = {q, ¢, ..., ¢;}. Next suppose that

(1.2) l=¢>c¢—>..-c¢=0

is a fixed sequence of the elements belonging to L where “—” denotes either “>"
or “||”.
A sequence ¢;,, ¢;,, ..., ¢;, of elements in L will be said to be regular with respect
to (1.2), if
1<i,<..<ph<i<t.

Let M(L) = {r, ry, ..., 1,} where the sequence 7y, 1, ..., , is regular with respect
to (1.2), and, similarly, let J(L) = {s;, 55, ..., s,} Where s,, 55, ..., s, is a sequence
regular with respect to (1.2) so that #M(L) = p and #J(L) = g. By a J/M-context
of L regular with respect to (1.2) we mean the matrix C = (c;) € Z3*? where
c; = 1if and only if s; < r; and ¢; = 0 otherwise.

Given any lattice L, it is natural to ask whether there exists a formal context
K, = (G, M, I) with B(K) isomorphic to L. It can be shown that it is possible to
choose any J/M-context of L for K;, the ordering of the elements in L being quite
irrelevant (see [4, Hilfsatz 12, p. 27]).

2. Direct products

In this section we suppose that L, and L, are two lattices, L, = mand #L, = n
with
Ll = {al’ Az ...y am}aLZ = {bl’ b2, seey bn}
and
2.1) m>2 & n>2.

Moreover, we suppose that there are given two fixed ordering of the elements
in L, and in L,

(2.2) 11 =2 a—-.. >0, 14, = 01
and
(2:3) lLb=b->by,>..>b,_ —>b,=0,

where “—” denotes either “>" or “|”.

Lemma 2.1. Let L;:= L, ® L, be the direct product of the lattices L, and L,.
Then the following assertions hold for any a€ L, and any b € L,.
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1
(iii) (a, 0;) € J(L;) < ae J(Ly);
(iv) (0, b)e J(Ly) = beJ(L,);
(V) if a % 1, and b # 1,, then (a, b)¢ M(L5);
(vi) if a %+ 0, and b # 0,, then (a, b)¢J(L3).

Proof. (i) Let (1,, b) € M(L;). By (1.1), b = 1,. Suppose on the contrary that
b ¢ M(L,). Then b = b, A b, where b < b, and b < b,. It follows that

(1, b) = (1, ) A (1, b,)

(1,6) <(1,b) & (1,b) < (1, b))

a contradiction of the fact that (1, b) € M(L;).

Now suppose that b € M(L,). We want to show that (1;, b) € M(L,). By (1.1),
b+ 1, and so (1, b) * (1, 1,). If (1, b) = (a. b,) A (a,, b,), then a, = a, =1,
and b = b, A b,. Since be M(L,), we can assume that b = b,. Then (1,,b) =
= (1, b,) and it follows that (1,, b) € M(L5).

The assertions (ii) — (iv) can be proved similarly.

(v) From a #+ 1, we conclude that there exists a* € L, such that a* covers a.
Analogously, since b # 1,, there exists b* covering b. Then (a, b) = (a*, b) A (a, b¥)
with (a, b) < (a*, b) and (a, b) < (a, b*). Thus (a, b) ¢ M(L;).

and

A similar reasoning appeals to the assertion (vi). O
Let
(2.4) c = (11, 12) = (al, bl) g (al, bz) - ... = (am, bl) - ...

- (ama bn) = (019 02) =

be the lexicographic ordering of the elements in L; = L; ® L, with respect to
(2.2) and (2.3). By a J/M-context of L; regular with respect to (2.2) and (2.3) we
mean the J/M-context of L, regular with respect to (2.4).

A matrix P = (p;) € Z5 " is said to be a I-matrix, if p; = 1 forany i = 1,2,...,m
andanyj = 1,2,..., n.

Theorem 2.2. If Ly = L; ® L,, then the J/M-context of L; regular with
respect to (2.2) and (2.3) is equal to the matrix A partitioned into blocks U,, K;,

K,, U, of the form
A= <U1 Kl)
K, U,
where U, and U, are 1-matrices, K, is the J/M-context of the lattice L, regular

with respect to (2.2) and K, is the J/M-context of L, regular with respect to (2.3).
The matrix K; (i = 1,2) is of the type (#J(L;), $M(L))).



Proof. Let

(2.9) M(Ly) = {1, P2 --» P}, M(Ly) = {1, 755 ..., 1}
and
(2.6) J(L1) = {01, 03y ey 0}, J(Lo) = {Wi, Way ..y Wi}

where py, ps, ..., p; and vy, vy, ..., v, are sequences regular with respect to (2.2) and
where ry, 1y, ..., 75 and wy, wy, ..., Wy, are sequences regular with respect to (2.3). Using
the description of the sets M(L;) and J(L;) given in Lemma 2.1 we can see that the
J/M-context of L, mentioned in our Theorem can be formed by using Figure 3.

(1r1) oo (Lu1) (P 12) ov (P 1))

0,0)| 1 .. 1

K,
(v,0) | 1 ... 1
(01, wy) 1 ... 1

K,
(01, w) r ... 1 O

Fig. 3

3. Ordinal sums

Given lattices L; := {a, a,, ..., @} and L, := {b;, b,, ..., b,}, in what follows we
suppose that

(3.1) m>2 & nx2.

Further, we suppose that there are fixed orderings

(3.2) ly=a-a,—>..>a,—a,=0
and
(3.3) ,=b-by,—>».. >b,_,—>b,=0,

"

where “—” denotes either “>" or “||”.
We recall that

(3.4) 0¢J(L) & 1¢M(L).

The ordinal sum L, @ L, of lattices (L;, <;)and (L,, <) satisfying L,nL, =0
can be defined (cf. [3, p. 198 and p. 201, ex. 10]) as a lattice (L3, s) such that
L; = L, u L, and where “<” is determined as follows: For any x € L, and any
y € L, one has x < y; furthermore, if x, y € L, then x < y if and only if x <; y
and, similarly, if z, v € L,, then z < v if and only if z <, v.
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Let
(3.5) 12 = bl - b2 - ... > bn—l g bn = 02 > a = 11 - ..4, 14, = 01

be an ordering of the elements in L; obtained by the concatenation of the orderings
in (3.2) and (3.3).

Theorem 3.1. The J/M-context of Ly = L; @ L, regular with respect to (3.5)
is the matrix

K, 0, 0,
U, 0; 0,4
U, Us K,

where the block K, is the J/M-context of L, regular with respect to (3.2), K, is
the J/M-context of L, regular with respect to (3.3), O; (i = 1, 2, 3, 4) are zero
matrices and U; (j = 1,2,3) are I-magtrices. The matrices U, and O, are row

matrices, O, and U are column matrices and O = (0) € Z}*'. The type of

K, (q = 1,2) is (#J(L,), #M(L,)).
Proof. Let
M(L) = {p, ... p.} M(Ly) = {n, ..., 1}
J(Ly) = {v, ..., v}, J(Lo) = {Wi, ..., Wy}

where py, ..., p, and vy, ..., v, are regular with respect to (3.2) and where ry, ...,
and wy, ..., w, are regular with respect to (3.3).
Then it is easily seen that

M(L3) = {rla ) 11) D15 -5 P:}
J(L3) = {Wl, ooy Wp, 02, U1y eeey Ua}-

It is evident that the both sequences ry,..., ry 1y, Py, ..., pr and wy, ..., 0y,
vy, ..., U, are regular with respect to (3.5). Therefore, the J/M-context of L, regular
with respect to (3.5) can be deduced from Figure 4.

and

and

ry ... ro|l{p ... p:
wy 0|0 ... O
K, U O
Whp
0,1 ... 1 0
v |1 ... 1
......... K,
v, | 1 1 |
Fig. 4



4. Ordinal products

Ordinal product L; © L, of lattices (L,, <;) and (L,, <,) (see [2, loc. cit.]) is
the lattice (L1 X Ly, <) where “<” denotes the lexicographic order, i.e.,
(a,b) < (@, b) if either a <, a' orifa = @’ and b <, b'.

Lemma 4.1. Let (a,b) and (c, d) be elements of the ordinal product Ly:=
L, © L,. Then (a, b) A (c, d) is equal to
@) (a,b A d) whenever a = c;
(ii) (a, b) whenever a < c;
(iii) (c, d) whenever ¢ < a;
(iv) (a A ¢, 1,) whenever a | c.
Dually, the element (a, b) v (c, d) is equal to
(i) (a,b v d) whenever a = c;
(ii) (c, d) whenever a < c;
(iii) (a, b) whenever ¢ < a;
(iv) (a v ¢, 0,) whenever a | c.

Proof. This is an easy consequency of the definition of order in L,. O

Let a € L,. The sequence

(a, x := (a, bY), (a, b5), ..., (a, b))

where {(a,b}), (a, b5), ..., (a, b;)} denotes the set consisting of all the elements of
M(L, © L,) having the first component equal to a and where {b{, b5, ..., b,} is
a sequence regular with respect to (3.3) will be called an M-tract determined by
a. A J-tract determined by a is defined dually as the sequence

(a, *)’ := (a, bY), (a, b3), ..., (a, BY)

{(a,bY), (a, b3), ..., (a, bj)} is the set formed by all the elements of J(L; © L,)
having a as the first component and where b, b3, ..., b} is a sequence regular with
respect to (3.3). The number p will be called the length of the M-tract (a, *)M and
g will be denoted as the length of the J-tract (a, *)’.

It follows from Remark 1.1 that (a, *} = 0, (a, *)’ + 0, for arbitrary ae L,.

Lemma 4.2. Let L; = L, © L, and let a€ L,. Then
() (a 1)e M(L;) < ae M(L,);
(i) (a,0,) € M(Ls) < 0, M(Ly);
(iii) (a, 1)) € J(Ly) < 1€ J(Lo);
(iv) (a,0,)e J(L;) <> ae J(L,).
If b e L, does not belong to {0, 1,} and a € L,, then
™) (a, b) e M(L3) < be M(L,);
(vi) (a,b)e J(Ls) < beJ(Ly).
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Proof. (i) Let (a, 1;) € M(Ls). By (3.4), a + 1,. Suppose a = a’ A a” where
a<a and a <a”. Then @ | a". It follows from Lemma 4.1 that (a, 1,) =
(@, 1,) A (a”, 1,). This together with (a, 1,) < (d’, 1,) and (a, 1,) < (a’, 1,) gives
a contradiction. Hence a € M(L,).

Conversely, suppose that a € M(L,). From (3.4) we can see that a % 1, and,
therefore, (a, 1,) # (1,, 1,). Suppose, by way of contradiction, that

@) @h)=@drlef) & @) <(cd & (al)<(es)

We distinguish four cases.

Case I: ¢ = e. Then in view of Lemma 4.1 we have (g, 1,) = (c d A f) and,
consequently, ¢ = a, d = 1, and f = 1,. Therefore, (c,d) = (a, ) a contradic-
tion of (4.1).

Casell: c || e. By Lemma 4.1, (a,1,) = (c A e, 1;)sothata = ¢ A e. Fromc || e
conclude that @ < ¢ and a < e. But this contradicts a € M(L,).

Case III: ¢ < e. Then by Lemma 4.1 (a, 1,) = (¢, d) A (e, f) = (c, d), and we
again have a contradiction of (4.1).

Case IV: e < c. This case can be treated by similar methods as the third case.

(i) Let (a, 0,) € M(L;). Then, by (3.1), 0, # 1,. Suppose

0,=bAb" & 0,<b & 0,<Db".
Applying Lemma 4.1 we have that
(@,0) = (@) A (@b) & (@0)<(ab) & (a0)<(ab),

a contradiction. Hence 0, € M(L,).
Conversely, let 0, € M(Lz). Because of (3.1), 0, & 1,, and, consequently,
(a,0,) % (1, 1,). Suppose to the contrary that

(42) (a,0) = (@, b) A (c,d) & (a,0)<(d,b) & (a,0,)<(c,d).

Let us distinguish four cases.

Case I: d =c. By Lemma 4.1, (4,0,) = (a,b" A d). Then ¢ =a and
0, = b’ A d'. Using the fact that 0, € M(L,), we get that either 0, = b’ or 0, = d'.
In the former case we have (d’, b') = (a, 0,), a contradiction. In the latter case we
obtain (¢, d') = (a, 0,), a contradiction.

Case II: d | ¢’. Again, by Lemma 4.1, (a, 0,) = (@’ A ¢/, 1,) and it follows that
0, = 1, which contradicts (3.1).

Case IlI: a' < ¢'. Then, by Lemma 4.1, (a, 0,) = (d’, b') which contradicts (4.2).

The fourth case ¢’ < a’ is analogous.

Thus (4, 0,) € M(L;).

The proofs of (iii) and (iv) are dual.

(v) Let (a, b) € M(L,) where b ¢ {0,, 1,}. Assume to the contrary that

b=b Ab" & b<b & b<d".
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This, together with Lemma 4.1, implies that
(a,b) =(a,b) A(a,b) & (ab)<(ab) & (a,b)<(a,b")

which contradicts (a, b) € M(L,). Hence b e M(L,).
Conversely, let b e M(L,) be such that b ¢ {0,, 1,}. Then (a, b) * (1,, 1,).
Assume

(4.3) (ab)=(cdArlef) & (ab)<(cd & (ab)<(ef).

We distinguish four cases.

Case I: ¢ = e. Then (a,b) = (c,d A f)and, consequently, a =candb=d A f.
Since 1 + be M(L,), we have either b = d or b = f. But the both possibilities
contradict (4.3).

Case II: ¢ || e. Then (a, b) = (c A e, 1,) which gives b = 1,, a contradiction.

Case III: ¢ < e. Here (a, b) = (c, d) and we contradict (4.3). A similar argument
can be used for the fourth case e < c.

The proof of the remaining assertion (vi) is essentially the same as the one given
for the assertion (v). O

Now suppose that the elements of L; = L; © L, are ardered by

(4.4) (1, 1) = (ay, b)) > (a1, b)) = ... > (@m by) > (@ b)) > ...
. = (am by) = (0,,0,)

where “—” denotes either “>" or “|”. By a J/M-context of the lattice L, © L,
regular with respect to (3.2) and (3.3) we mean the J/M-contexyt regular with
respect to (4.4).

Theorem 4.3. Let A = (a;) € Z3*™ be the order matrix of the lattice L,, i.e.,
a; = 1 if and only if a; < a; and a; = O otherwise. Then the J/M-context of the
ordinal product L; = L, © L, regular with respect to (3.2) and (3.3) is a matrix
A partitioned into blocks A; (i,j = 1,2, ..., m) having their elements in Z,.

For any 1 < s &t < m the matrix Ay is a zero matrix provided a, = Q; the
matrix Ay is a 1-matrix provided a, = 1.

Forany s = 1,2, ..., m the diagonal block A of A is equal to a matrix having
one of the following forms:

dy ... dy

(1) Dim | covveennnnn :
dPl dpq
1dy ... dy

N ,
( ) 1 dpl . dpq
1 ... 1
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1dy . dlq
(3) ........... ;
1dy ... d,
dll dlq
N A .
() by oo dyy|
1 ... 1

where D denotes the J/M-context of L, regular with respect to (3.3).
Moreover, (1) occurs if and only if

a ¢ M(L,) & a,¢J(Ly);
(2) occurs if and only if

a,eM(L) & a,eJ(Ly);
(3) occurs if and only if

a,e M(L,) & a,¢J(Ly);
(4) occurs if and only if

a, ¢ M(L) & a,eJ(Ly).

Forall 1 < i,j < mthe block A; of A has the type (r,j, s;) where r; is the length
of the J-tract (a,, )’ and s; is the length of the M-tract (a;, *)™

Proof. 1. Let s ¢t and let a, = 0. Then either a, > a, or a,| a,. By the
definition of the ordering in L, (a, %) < (a,,...) is not true for any choice of the
second component “*” of the elements in the J-tract (a,, *)’ and for any choice of
the second component “...” of the elements in the M-tract (a,, *)™. Thus the block
A, 1s a zero matrix.

2. Let s + t and let a, = 1. Then a, < a,. For any element (a, *) of the J-tract
(a5 *)’ and for any element (a,...) of the M-tract (a, *)* we therefore have
(as *) < (a...). Hence the block A, is a 1-matrix.

Notice that the type of A has the indicated form in the both cases.

3. Since a; < a,, a,, = 1. The block A, is determined by the M-tract (a,, *)™
and by the J-tract (a,, *)’.

We distinguish four cases.

Case I: a,¢ M(L,) and a, ¢ J(L,). Then Lemma 4.2 yields

(ap 1) ¢ M(L;) & (as, 0,) ¢ J(L3).
By the same Lemma, an element (as, b,-) belongs to the M-tract (as, *)M if and only
if bye M(L,). Similarly, (a, b)) belongs to the J-tract (a,*)’ if and only if
b, € J(L,). Now
(as b) < (ap b) <= b; < by,
so that 4, = D.

13



Case II: a,e M(L,) and a, € J(L,). Then
(a, 1) e M(Ly) & (a, 0) € J(Ls).
(ap #™ = (a5 1,), ..., (a5 b)), ...
(ap %)’ = ..., (a5 b)), ..., (a5 0,)

where b; runs over the elements of M(L,) and b; runs over the elements of J(L,).
The block A, can be deduced from Figure 5.

(as 1) ... (asd) ...

By Lemma 4.2,

and

@b) 1 .. 4
(@0) 1 .. 1
Fig. 5

Thus A, has the form described in (2).
Case III: a,e M(L,) and a, ¢ J(L,). Then

(a5 1) e M(L;) & (a, 05) ¢ J(Ly).

The block A, can now be obtained from Figure 6.

(a5 1) ... (asb) ...

(as, bj) 1 voe d'!
Fig. 6

Therefore, A, has the form of (3).
Case IV: a;¢ M(L,) and as € J(L,). Then

(a, 1) ¢ M(Ls) & (a3, 0,) € J(Ly).
The block A, can be deduced from Figure 7.

' (a5, b) ...
(a, b)|... dy
(a,0)|.. 1

Fig. 7
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Notice that the type of A, is of the indicated form in all the cases considered
here above. U

Remark 4.4. The ordinal product of two five-element lattices (“the flying kite”

multiplied by “the falling kite”') shows that any form (1), (2), (3) and (4) of
Theorem 4.3 can occur.

Acknowledgment. The author is grateful to the referee for his useful comments.
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